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SEQUENTIALLY Sr SIMPLICIAL COMPLEXES

AND SEQUENTIALLY S2 GRAPHS

HASSAN HAGHIGHI, NAOKI TERAI, SIAMAK YASSEMI, AND RAHIM ZAARE-NAHANDI

(Communicated by Irena Peeva)

Abstract. We introduce sequentially Sr modules over a commutative graded
ring and sequentially Sr simplicial complexes. This generalizes two properties
for modules and simplicial complexes: being sequentially Cohen-Macaulay,
and satisfying Serre’s condition Sr . In analogy with the sequentially Cohen-
Macaulay property, we show that a simplicial complex is sequentially Sr if and

only if its pure i-skeleton is Sr for all i. For r = 2, we provide a more relaxed
characterization. As an algebraic criterion, we prove that a simplicial complex
is sequentially Sr if and only if the minimal free resolution of the ideal of its
Alexander dual is componentwise linear in the first r steps. We apply these
results for a graph, i.e., for the simplicial complex of the independent sets of
vertices of a graph. We characterize sequentially Sr cycles showing that the
only sequentially S2 cycles are odd cycles and, for r ≥ 3, no cycle is sequentially
Sr with the exception of cycles of length 3 and 5. We extend certain known
results on sequentially Cohen-Macaulay graphs to the case of sequentially Sr

graphs. We prove that a bipartite graph is vertex decomposable if and only if
it is sequentially S2. We provide some more results on certain graphs which in
particular implies that any graph with no chordless even cycle is sequentially
S2. Finally, we propose some questions.

1. Introduction

Let R = k[x1, . . . , xn] be the polynomial ring over a field k. For finitely generated
graded R-modules, Stanley has defined the sequentially Cohen-Macaulay property
[16, Chapter III, Definition 2.9] and has studied the corresponding simplicial com-
plexes. Here we consider sequentially Sr graded modules, i.e., finitely generated
graded R-modules which satisfy Serre’s Sr condition sequentially. Then we study
the corresponding simplicial complexes, sequentially Sr simplicial complexes. Du-
val has shown that a simplicial complex is sequentially Cohen-Macaulay if and only
if its pure i-skeleton is Cohen-Macaulay for all i [5, Theorem 3.3]. We prove the
analogue result for sequentially Sr simplicial complexes (see Theorem 2.6). For
r = 2, we show that a simplicial complex is sequentially S2 if and only if its pure
i-skeletons are connected for all i ≥ 1 and the link of every singleton is sequentially
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S2 (see Theorem 2.9). A major result of Eagon and Reiner states that a simplicial
complex is Cohen-Macaulay if and only if the Stanley-Reisner ideal of its Alexan-
der dual has a linear resolution [6, Theorem 3]. Later, Herzog and Hibi generalized
this result by proving that a simplicial complex is sequentially Cohen-Macaulay if
and only if the minimal free resolution of the Stanley-Reisner ideal of its Alexander
dual is componentwise linear [10, Theorem 2.9]. The result of Eagon and Reiner has
been generalized in another direction by Yanagawa (with N. Terai), showing that a
simplicial complex is Sr if and only if the minimal free resolution of its Alexander
dual is linear in the first r steps [22, Corollary 3.7]. We adopt the above two re-
sults to show that a simplicial complex is sequentially Sr if and only if the minimal
free resolution of the Stanley-Reisner ideal of its Alexander dual is componentwise
linear in the first r steps (see Corollary 3.3).

As the first application of our results, we characterize sequentially Sr cycles. It
is known that the only cycles which are sequentially Cohen-Macaulay are C3 and
C5 [8, Proposition 4.1] and that the only cycles which are S2, are C3, C5 and C7

[9, Proposition 1.6]. We extend these results by showing that Cn is sequentially S2

if and only if n is odd and that the only sequentially S3 cycles are C3 and C5, i.e.,
the Cohen-Macaulay cycles (see Theorem 4.1 and Proposition 4.2).

Van Tuyl [19, Theorem 2.10] has recently proved that a bipartite graph is vertex
decomposable if and only if it is sequentially Cohen-Macaulay. We prove that
a bipartite graph is vertex decomposable if and only if it is sequentially S2 (see
Theorem 4.5). This also generalizes the result [9, Theorem 1.3] which states that a
bipartite graph is Cohen-Macaulay if and only if it is S2.

Van Tuyl and Villarreal [20] have studied sequentially Cohen-Macaulay graphs.
We extend some of their results and generalize a result of Francisco and Hà [7,
Theorem 4.1] on graphs with whiskers (see Corollary 4.7). We also provide some
graph theoretic criterion for graphs to be sequentially S2 and for bipartite graphs
to be vertex decomposable (see Theorem 4.8 and Corollary 4.9).

Woodroofe [21, Theorem 1.1] has proved that a graph with no chordless cycles
other that cycles of length 3 and 5 is sequentially Cohen-Macaulay. We extend this
result for the S2 property (see Theorem 4.10). This in particular implies that any
graph with no chordless even cycle is sequentially S2 (see Corollary 4.11).

At the end of this paper we propose two questions on sequentially the Sr prop-
erty of the join of two simplicial complexes and the topological invariance of Sr,
respectively.

The motivation behind our work is the general philosophy that Serre’s Sr con-
dition plays an important role, not only in algebraic geometry and commutative
algebra, but also in algebraic combinatorics (e.g. see [15], [22], [17]).

2. Criteria for sequentially Sr simplicial complexes

In this section we give some basic definitions and criteria for sequentially Sr

property on simplicial complexes. We prove that a simplicial complex is sequentially
Sr if and only if its pure skeletons are all Sr, a generalization of Duval’s result
on sequentially Cohen-Macaulay simplicial complexes [5, Theorem 3.3]. We show
that a simplicial complex is sequentially S2 if and only if its pure i-skeletons are
connected for all i ≥ 1 and the link of every singleton is sequentially S2.
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Recall that a finitely generated graded module M over a Noetherian graded
k-algebra R is said to satisfy the Serre’s condition Sr if

depthMp ≥ min(r, dimMp),

for all p ∈ Spec (R).
First we introduce the concept of sequentially Sr modules.

Definition 2.1. Let M be a finitely generated Z-graded module over a standard
graded k-algebra R where k is a field. For a positive integer r we say that M is
sequentially Sr if there exists a finite filtration

0 = M0 ⊂ M1 ⊂ . . . ⊂ Mt = M

of M by graded submodules Mi satisfying the following two conditions:
(a) Each quotient Mi/Mi−1 satisfies the Sr condition of Serre.
(b) dim(M1/M0) < dim(M2/M1) < . . . < dim(Mt/Mt−1).

We say that a simplicial complex Δ on [n] = {1, . . . , n} is sequentially Sr (over a
field k) if its face ring k[Δ] = k[x1, . . . , xn]/IΔ, as a module over R = k[x1, . . . , xn],
is sequentially Sr.

This is a natural generalization of an Sr simplicial complex, i.e., when k[Δ]
satisfies the Sr condition of Serre.

Since k[Δ] is a reduced ring, it always satisfies the S1 condition. Thus, through-
out this paper we will always deal with Sr for r ≥ 2.

Using a result of Schenzel [15, Lemma 3.2.1] and Hochster’s formula on local
cohomology modules, N. Terai has formulated the analogue of Reisner’s criterion
for Cohen-Macaulay simplicial complexes in the case of Sr simplicial complexes
[17, page 4, following Theorem 1.7]. According to this formulation, a simplicial
complex Δ of dimension d − 1 is Sr if and only if for all −1 ≤ i ≤ r − 2 and all

F ∈ Δ (including F = ∅) with #F ≤ d − i − 2 we have ˜Hi(lkΔF ; k) = 0, where
lkΔF = {G ∈ Δ : F ∪ G ∈ Δ, F ∩ G = ∅}. For i = −1 the vanishing condition
is equivalent to purity of Δ, and for i = 0 it is equivalent to the connectedness of
lkΔF [17, page 4 and 5].

By this characterization of Sr simplicial complexes it follows that the Sr property
carries over links.

Lemma 2.2. Let Δ be a (d− 1)-dimensional simplicial complex which satisfies the
Sr condition. Then for each F ∈ Δ the simplicial complex lkΔF also satisfies Sr.

Proof. Let #F = j; then dim lkΔF ≤ d−j−1. By the above characterization of Sr

simplicial complexes, it suffices to show that for all i ≤ r− 2 and every G ∈ lkΔF ,

with #G ≤ d − j − i − 2, the reduced homology module ˜Hi(lk lkΔFG; k) is zero.

This follows from the facts that lklkΔF (G) = lkΔ(F ∪G), #(F ∪G) ≤ d− i− 2 and
Δ is Sr. �

Recall that a relative simplicial complex is a pair of simplicial complexes (Δ,Γ)
where Γ is a subcomplex of Δ. For a relative simplicial complex (Δ,Γ) define
IΔ,Γ to be the ideal in k[Δ] generated by the monomials xi1xi2 . . . xis with F =
{i1, . . . , is} ∈ Δ \ Γ. A relative simplicial complex is said to be Sr if IΔ,Γ is Sr as
a module over R = k[x1, . . . , xn]. Let Δ

∗
i be the subcomplex of Δ generated by its

i-dimensional facets. Following [3, Appendix II], it turns out that Δ is sequentially
Sr if and only if the relative simplicial complex (Δ∗

i ,Δ
∗
i ∩ (Δ∗

i+1 ∪ . . . ∪Δ∗
dim(Δ)))

is Sr for all i.



1996 H. HAGHIGHI, N. TERAI, S. YASSEMI, AND R. ZAARE-NAHANDI

For a relative simplicial complex (Δ,Γ), let ˜Hi(Δ,Γ; k) denote the ith reduced
relative homology group of the pair (Δ,Γ) over k (see [16, Chapter III, §7]). Reis-
ner’s criterion for Cohen-Macaulayness of a relative simplicial complex is similar
to the one for a simplicial complex [16, Chapter III, Theorem 7.2]. Likewise, in an
exact analogy, Terai’s formulation for an Sr simplicial complex carries over for the
relative case. In other words, a relative simplicial complex (Δ,Γ) is Sr if and only

if ˜Hi(lkΔF, lkΓF ; k) = 0 for all −1 ≤ i ≤ r − 2 and all F ∈ Δ (including F = ∅)
with #F ≤ d− i− 2, where d− 1 = dim(Δ).

For a relative simplicial complex (Δ,Γ), as an R-module, IΔ,Γ only depends on
the difference Δ \ Γ (see the remarks following [16, Chapter III, Theorem 7.3]). In
particular, if Δ(i) is the i-skeleton of Δ and Δ[i] is the pure i-skeleton of Δ, then

Δ∗
i \ (Δ∗

i ∩Δ∗
i+1 ∪ . . . ∪Δ∗

dim(Δ)) = Δ[i] \ (Δ[i+1])(i).

Duval makes the above observation and proves that the relative simplicial complex
Δ[i] \ (Δ[i+1])(i) is Cohen-Macaulay for all i if and only if every pure i-skeleton Δ[i]

is Cohen-Macaulay [5, Section 3]. We follow his proof step by step to show that
the same result is true if we replace the Cohen-Macaulay property with Sr. To do
this we need some preliminary results.

It is known that if Δ is a Cohen-Macaulay simplicial complex, then so is Δ(i),
the i-skeleton of Δ. We generalize this result for the property Sr.

Proposition 2.3. If Δ satisfies Serre’s condition Sr, then Δ(i) satisfies this con-
dition (2 ≤ r ≤ i+ 1).

Proof. We check Terai’s criterion for Sr simplicial complexes. To prove the assertion
for Δ(i) we use induction on r ≥ 2. Assume that Δ satisfies Serre’s condition S2.
Then Δ is pure and hence Δ(i) is pure. Furthermore, for F ∈ Δ with #F ≤ d− 2,
lkΔF is connected. Let F ∈ Δ(i) and #F ≤ i − 1. It is enough to show that
lkΔ(i)F is connected, or equivalently, path connected. Let {u}, {v} ∈ lkΔ(i)F . Then
{u}, {v} ∈ lkΔF , which is connected. Hence, there exists a sequence of vertices of
Δ, u0 = u, u1, . . . , ut = v, such that {uj , uj+1} ∈ lkΔF , j = 0, . . . , t − 1. Thus,
{uj , uj+1} ∩ F = ∅ and {uj , uj+1} ∪ F ∈ Δ. Since #({uj , uj+1} ∪ F ) ≤ i + 1,

{uj , uj+1} ∪ F ∈ Δ(i) and hence {uj , uj+1} ∈ lkΔ(i)F .
Now assume that Δ satisfies Serre’s condition Sr for r > 2. Then Δ satisfies

Serre’s condition Sj for j = 1, . . . , r. Thus by induction hypothesis Δ(i) satisfies

Serre’s condition Sj for j = 1, . . . , r−1. Therefore, for q ≤ r−3 and F ∈ Δ(i) with

#F ≤ i−q−1, ˜Hq(lkΔ(i)F ; k) = 0. Thus it remains to show that for #F ≤ i−r+1,
˜Hr−2(lkΔ(i)F ; k) = 0. To prove this, since lkΔ(i)F ⊂ lkΔF it is enough to show that
for q ≤ r−1, any q-dimensional faceH of lkΔF lies in lkΔ(i)F . But #(H∪F ) ≤ i+1,
and hence H ∪ F ∈ Δ(i), and consequently H ∈ lkΔ(i)F . �

Now we adopt Duval’s results for the case of sequentially Sr simplicial complexes.

Lemma 2.4 (see [5, Lemma 3.1]). Let F be a face of a (d−1)-dimensional simplicial
complex Δ and let Γ be either the empty simplicial complex or a Sr simplicial
complex of the same dimension as Δ. Then

˜Hi(lkΔF ; k) = ˜Hi(lkΔF ; lkΓF ; k)

for all i ≤ r − 2 and all F ∈ Δ with #F ≤ d− i− 2.
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Proof. The proof is the same as the proof of the similar lemma of Duval [5,
Lemma 3.1]. If lkΓF is an empty set, then the equality is obvious. Otherwise
one only needs to change the range of the index i with the one given above, impose
the condition on #F and replace Cohen-Macaulay property with Sr. �

Corollary 2.5 (see [5, Corollary 3.2]). Let Δ be a simplicial complex, and let
Γ be either the empty simplicial complex or a Sr simplicial complex of the same
dimension as Δ. Then Δ is Sr if and only if (Δ,Γ) is relative Sr.

Proof. Similar to the corresponding corollary by Duval [5, Corollary 3.2], it follows
from Lemma 2.4. �

Theorem 2.6 (see [5, Theorem 3.3]). Let Δ be a (d − 1)-dimensional simplicial
complex. Then Δ is sequentially Sr if and only if its pure i-skeleton Δ[i] is Sr for
all −1 ≤ i ≤ d− 1.

Proof. The proof is the same as the one given by Duval [5, Theorem 3.3]. The only
item needed is that each i-skeleton of an Sr simplicial complex is again Sr for all i.
But this is proved in Proposition 2.3. �

The following is an immediate bi-product of this theorem.

Corollary 2.7. A simplicial complex Δ is Sr if and only if it is sequentially Sr

and pure.

Proof. Since the Sr condition implies purity, one implication is clear. Assume that
Δ is pure and dimΔ = d − 1. Then Δ[d−1] = Δ, and the assertion follows by
Theorem 2.6. �

Remark 2.8. Some authors define a simplicial complex to be sequentially Cohen-
Macaulay if its pure i-skeleton is Cohen-Macaulay for all i. Likewise, we might take
a similar statement as the definition of sequentially Sr simplicial complexes. But
we preferred to begin with the algebraic definition given in this section and prove
that both definitions are equivalent.

We end this section with the following characterization of sequentially S2 sim-
plicial complexes which will be used in the last section.

Theorem 2.9. Let Δ be a simplicial complex with vertex set V. Then Δ is se-
quentially S2 if and only if the following conditions hold:

(i) Δ[i] is connected for all i ≥ 1.
(ii) lkΔ(x) is sequentially S2 for all x ∈ V.

Proof. Let Δ be sequentially S2. Then Δ[i] is S2 for all −1 ≤ i ≤ d− 1. Thus Δ[i]

is connected for all i ≥ 1. On the other hand lkΔ[i](x) is S2 for all −1 ≤ i ≤ d− 1,
and so lkΔ[i+1](x) = (lkΔ(x))

[i] is S2 for all −1 ≤ i ≤ d − 2. Therefore lkΔ(x) is
sequentially S2.

Now let Δ satisfy conditions (i) and (ii). Since lkΔ(x) is sequentially S2 for all
x ∈ V, we have that (lkΔ(x))

[i] = lkΔ[i+1](x) is S2 for all −1 ≤ i ≤ d − 2, and
so lkΔ[i](x) is S2 for all −1 ≤ i ≤ d − 1. Now the connectedness of Δ[i] for i ≥ 1
implies that Δ[i] is S2 for all −1 ≤ i ≤ d − 1. Indeed, for F 	= ∅ and x ∈ F ,
lkΔ[i]F = lk lk

Δ[i] (x)
G for G = F \ {x}. Therefore Δ is sequentially S2. �
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3. Alexander dual of sequentially Sr simplicial complexes

In this section we show that a simplicial complex is sequentially Sr if and only
if the minimal free resolution of the Stanley-Reisner ideal of its Alexander dual is
componentwise linear in the first r steps. This result resembles a result of Herzog
and Hibi [10, Proposition 1.5] on sequentially Cohen-Macaulay simplicial complexes.
Also our proof would be a modification of the sequentially Cohen-Macaulay case
together with an application of Theorem 2.6.

We first adopt the following definitions from [22, Definition 3.6] and [10, §1].
Consider R = k[x1, . . . , xn] with deg(xi) = 1 for all i. If I is a homogenous ideal

of R and r ≥ 1, then I is said to be linear in the first r steps, if for some integer d,
βi,i+t(I) = 0 for all 0 ≤ i < r and t 	= d. We write I〈j〉 for the ideal generated by
all homogenous polynomials of degree j belonging to I. We say that a homogenous
ideal I ⊂ R is componentwise linear if I〈j〉 has a linear resolution for all j. The
ideal I is said to be componentwise linear in the first r steps if for all j ≥ 0, I〈j〉 is
linear in the first r steps. A simplicial complex Δ on [n] is said to be linear in the
first r steps, componentwise linear and componentwise linear in the first r steps if
IΔ satisfies either of these properties, respectively.

Now let I ⊂ R be an ideal generated by squarefree monomials. Then for each
degree j we write I[j] for the ideal generated by the squarefree monomials of degree
j belonging to I. We say that I is squarefree componentwise linear if I[j] has linear
resolution for all j. The ideal I is said to be squarefree componentwise linear in the
first r steps if I[j] has a resolution which is linear in the first r steps for all j.

Below we adopt a result of Herzog and Hibi [10, Proposition 1.5] for the case of
componentwise linearity in the first r steps.

Proposition 3.1. Let I be a squarefree monomial ideal in R. Then I is componen-
twise linear in the first r steps if and only if I is squarefree componentwise linear
in the first r steps.

Proof. The proof is the same as [10, Proposition 1.5] with just a restriction on the
index i used in the proof of Herzog and Hibi. Here we need to assume that i < r.
Also, one needs to observe that when I has a linear resolution in the first r steps,
the ideal mI has a linear resolution in the first r steps too. Here m = (x1, . . . , xn)
is the irrelevant maximal ideal. �

We may now generalize a result of Herzog and Hibi [10, Theorem 2.1]. As we
already mentioned, Yanagawa and Terai proved that Δ is Sr if and only if I∨Δ is
linear in the first r steps.

Theorem 3.2. The Stanley-Reisner ideal of Δ on [n] is componentwise linear in
the first r steps if and only if Δ∨, the Alexander dual of Δ, is sequentially Sr.

Proof. The proof is an adaptation of the proof of part (a) of [10, Theorem 2.1]
with the following additional remarks: Let I = IΔ. Then by Proposition 3.1, I is
squarefree componentwise linear in the first r steps if and only if I is componentwise
linear in the first r steps. By [22, Corollary 3.7] for every j, I[j] is linear in the first

r steps if and only if (Δ∨)[n−j−1] is Sr. Therefore, I is componentwise linear in
the first r steps if and only if (Δ∨)[q] is Sr for every q. But by Theorem 2.6, this is
equivalent to the sequentially Sr property for Δ∨. �
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Van Tuyl and Villarreal [20, Theorem 3.8 (a)] state the dual version of [10,
Theorem 2.1] for sequentially Cohen-Macaulay simplicial complexes. Dualizing the
statement of the above theorem, we get a similar generalization for sequentially Sr

simplicial complexes.

Corollary 3.3. A simplicial complex Δ is sequentially Sr if and only if the Stanley-
Reisner ideal of the Alexander dual of Δ is componentwise linear in the first r steps.

4. Some characterizations of sequentially Sr cycles

and sequentially S2 bipartite graphs

In this section, we provide some applications of the results of the previous sec-
tions. We first classify sequentially Sr cycles and show that a cycle Cn is sequen-
tially S2 if and only if n is odd and no cycles are sequentially S3 except those
which are Cohen-Macaulay, i.e., C3 and C5. This generalizes a result of Francisco
and Van Tuyl [8, Proposition 4.1]. Then we generalize a result of Van Tuyl [19,
Theorem 2.10], who proves that a bipartite graph is vertex decomposable if and
only if it is sequentially Cohen-Macaulay. We prove that a bipartite graph is vertex
decomposable if and only if it is sequentially S2. Then we generalize some results
of Van Tuyl and Villarreal [20] for sequentially Sr graphs. We extend a result of
Francisco and Hà [7, Theorem 4.1] on graphs with whiskers. We also provide some
graph theoretic criteria for S2 property on graphs and for vertex decomposability
on bipartite graphs. Woodroofe [21, Theorem 1] proved that a graph with no chord-
less cycles other than cycles of length 3 and 5 is sequentially Cohen-Macaulay. We
provide some results which extend this statement for the S2 property. In particular,
they imply that any graph with no chordless even cycle is sequentially S2.

At the end of this section we pose two questions on sequentially Sr property of
the join of two simplicial complexes and topological invariance of Sr, respectively.

Recall that to a simple graph G one associates a simplicial complex ΔG on V (G),
the set of vertices of G whose faces correspond to the independent sets of vertices
of G. A graph G is said to be Sr if ΔG is a Sr simplicial complex. Likewise,
G is Cohen-Macaulay, sequentially Cohen-Macaulay and shellable if ΔG satisfies
either of these properties, respectively. We adopt the definition of shellability in
the nonpure sense of Björner-Wachs [1].

We also recall the definition of a vertex decomposable simplicial complex. A
simplicial complex Δ is recursively defined to be vertex decomposable if it is either
a simplex or else has some vertex v so that

(1) both Δ \ {v} and lkΔ(v) are vertex decomposable and
(2) no face of lkΔ(v) is a facet of Δ \ {v}.
The notion of vertex decomposability was introduced in the pure case by Provan

and Billera [13] and was extended to nonpure complexes by Björner and Wachs [1].
Sequentially Cohen-Macaulay cycles have been characterized by Francisco and

Van Tuyl [8, Proposition 4.1]. They are just C3 and C5. Woodroofe has given a
more geometric proof for this result [21, Theorem 3.1]. In [9, Proposition 1.6] it is
shown that the only S2 cycles are C3, C5 and C7. We now generalize this result and
prove that the odd cycles are sequentially S2 and that they are the only sequentially
S2 cycles.

Theorem 4.1. The cycle Cn is sequentially S2 if and only if n is odd.
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Proof. Let n = 2k. Then Δ = ΔCn
has only two facets of dimension 2k − 1 (=

dimΔ), namely, {1, 3, . . . , 2k − 1} and {2, 4, . . . , 2k}. Thus Δ[k−1] is the union of
two disjoint (k−1)-simplices. In particular, it is disconnected, contradicting Terai’s
criterion for Δ[k−1] to be S2.

Let n be an odd integer. The assertion is trivially valid for n ≤ 3. Thus we may
assume that n ≥ 5. To show that Cn is sequentially S2, by Theorem 2.9, we need
to show that Δ[i] is connected for all i ≥ 1 and lkΔ(x) is sequentially S2 for all
{x} ∈ Δ. Observe that lkΔ(x) is the simplicial complex of an (n− 3)-path, Pn−3,
and so it is sequentially Cohen-Macaulay, e.g., by [8, Theorem 3.2].

To prove the connectedness of the pure i-skeleton of Δ we first claim that for
each E ∈ Δ with dimE = 1 there exists F ∈ Δ such that dimF = dimΔ and
E ⊆ F . We know that

1 + dimΔ = max{#F |F is an independent set of Cn} = (n− 1)/2.

We may assume that E = {1,m}, m ≥ 3. If m is odd, we take F to be the set of
odd integers less than n− 1. If m is even, then F may be taken to be the union of
the set of odd integers less than m−1 with the set of even integers e, m ≤ e ≤ n−1.
In both cases we have #F = (n− 1)/2 and E ⊆ F . Therefore the claim holds.

Let E ∈ Δ with dimE = 1. Then there exists F ∈ Δ such that E ⊆ F and
dimF = dimΔ. Thus for each i ≥ 1 there exists H ∈ Δ such that dimH = i and
E ⊆ H ⊆ F . Therefore E ⊆ H ∈ Δ[i]. Thus we have shown that E ∈ Δ with
dimE = 1 if and only if E ∈ Δ[i] for all i ≥ 1. Therefore (Δ[i])[1] = Δ[1].

On the other hand Δ[i] is connected if and only if (Δ[i])[1] is connected. Therefore
it is enough to show that Δ[1] is connected. Let x and y be two elements in V. If x
is not adjacent to y, then {x, y} ∈ Δ. If x is adjacent to y, then there exists z ∈ V
such that x is not adjacent to z and y is not adjacent to z. Therefore {x, z} and
{y, z} belong to Δ, and hence Δ[1] is connected. �

The following result completes the characterization of cycles with respect to the
property Sr. We will give two proofs using some extra data from the algebraic
proof of [8, Proposition 4.1] and the geometric proof of [21, Theorem 3.1].

Proposition 4.2. The cycle Cn is sequentially S3 if and only if n = 3, 5, i.e., if
and only if Cn is Cohen-Macaulay.

Proof. The first proof: Let Δ = ΔCn
. Let n = 2t + 1 > 7. By the proof of

[8, Theorem4.1], if J is the Alexander dual of IΔ, then J[t+1] fails to have linear
resolution in the first 3 steps. Hence Cn is not sequentially S3 by Corollary 3.3.

For n = 7, again we follow the proof of [8, Theorem 4.1]. In this case, the ideal
J is generated in degree 4. Thus the resolution of J is the same as the resolution
of J[4]. Moreover, the resolution of J is linear in the first 2 steps but not in step 3.
Thus by Corollary 3.3, C7 is not sequentially S3.

The second proof: Let n = 2t+ 1 ≥ 7. By [21, Lemma 3.2], Δ[t−1] is homotopic

to the circle S1. Thus ˜H1(Δ
[t−1]; k) = k. By Hochster’s formula on Betti numbers

of simplicial complexes, we have depth(k[Δ[t−1]]) ≤ 2. Thus k[Δ[t−1]] does not
satisfy S3. Hence Cn is not sequentially S3. �

We now outline the analogue statements of [20, Section 3] to conclude the se-
quentially Sr counterparts of some of the results there.
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Lemma 4.3 (see [20, Lemma 3.9]). Let G be a bipartite graph with bipartition
{x1, . . . , xm} and {y1, . . . , yn}. If G is sequentially Sr, then there is a vertex v ∈
V (G) with deg(v) = 1.

Proof. The only modification needed in the proof of [20, Lemma 3.9] is to justify
that the kernel of the linear map f used in that proof is generated by linear syzygies.
But under the hypothesis of the lemma, this is proved in Proposition 3.1. �

For a graph G and a vertex x ∈ VG, the set of neighbors of x will be denoted by
NG(x). For F ∈ ΔG we set

NG(F ) =
⋃

x∈F

NG(x).

We also use the following notation:

NG[x] = {x} ∪NG(x),

NG[F ] = F ∪NG(F ).

The following lemma gives a recursive procedure to check if a graph fails to be
sequentially Sr. It is a sequentially Sr version of [20, Theorem 3.3].

Lemma 4.4. Let G be graph and x a vertex of G. Let G′ = G \ NG[x]. If G is
sequentially Sr, then G′ is also sequentially Sr.

Proof. The proof is identical with that of [20, Lemma 3.3]. We only need to use
Theorem 2.6 and Lemma 2.2 instead of their sequentially Cohen-Macaulay and
Cohen-Macaulay counterparts, respectively. �

Van Tuyl [19, Theorem 2.10] has proved that a bipartite graph is vertex decom-
posable if and only if it is sequentially Cohen-Macaulay. We now generalize this
result. Observe that our result also generalizes the authors’ result, which states
that a bipartite graph is Cohen-Macaulay if and only if it is S2 [9, Theorem 1.3].

Theorem 4.5. Let G be a bipartite graph. The following conditions are equivalent:

(i) G is vertex decomposable.
(ii) G is shellable.
(iii) G is sequentially Cohen-Macaulay.
(iv) G is sequentially S2.

Proof. (i) ⇒ (ii): Follows from [2, Theorem 11.3].
(ii) ⇒ (iii): Follows from [16, Chap. III, §2].
(iii) ⇒ (iv): This is trivial.
(iii) ⇒ (i): Follows from [19, Theorem 2.10].
(iv) ⇒ (ii): The proof is by induction on the number of vertices of G. Now

let G be a sequentially S2 graph. By Lemma 4.3 there exists a degree one vertex
x1 ∈ V (G). Assume that NG(x1) = {y1}. Let G1 = G \ NG[x1] and G2 =
G \NG[y1]. By Lemma 4.4 both of these graphs are sequentially S2; hence by the
induction hypothesis they are both shellable. Therefore, by [20, Theorem 2.9] G is
shellable. �

Lemma 4.4 could be extended further.

Corollary 4.6. Let G be a graph which is sequentially Sr. Let F be an independent
set in G. Then the graph G′ = G \NG[F ] is sequentially Sr.



2002 H. HAGHIGHI, N. TERAI, S. YASSEMI, AND R. ZAARE-NAHANDI

Proof. This follows by repeated applications of Lemma 4.4. �
The following generalizes a result of Francisco and Hà [7, Theorem 4.1], which

is also proved by Van Tuyl and Villarreal by a different method (see [20, Corol-
lary 3.5]).

Recall that for a subset S = {y1, . . . , ym} of a graph G, the graph G ∪ W (S)
is obtained from G by adding an edge (whisker) {xi, yi} to G for all i = 1, . . . ,m,
where x1, . . . , xm are new vertices.

Corollary 4.7. Let S ⊂ V (G) and suppose that the graph G∪W (S) is sequentially
Sr; then G \ S is sequentially Sr.

Proof. This also follows by repeated applications of Lemma 4.4. �
The following result gives some graph theoretic criteria which implies sequentially

S2 property.

Theorem 4.8. Let G = (V,E) be a graph. Suppose H = G \NG[F ] satisfies one
of the conditions (i), (ii), and (iii) for any F ∈ ΔG which is not a facet:

(i) H has no chordless even cycle.
(ii) H has a simplicial vertex; i.e., for some z ∈ V (H), NH [z] is a complete

graph.
(iii) For some t ≥ 2, H has a chordless (2t + 1)-cycle which has t independent

vertices of degree 2 in H.

Then G is sequentially S2.

Proof. We prove the theorem by induction on n, the number of vertices of G. The
assertion holds for n ≤ 3. Now we assume that n ≥ 4. Set Δ = ΔG and let
x ∈ V (G). Observe that G′ = G \ NG[x] satisfies the statement of the theorem.
Thus it is sequentially S2 by the induction hypothesis. Hence by [20, Lemma
2.5], lkG(x) = ΔG′ is sequentially S2. Thus by Theorem 2.9 it is enough to show
that Δ[i] is connected for 1 ≤ i ≤ dimΔ. We show that for any X,Y ∈ Δ with
dimX = dimY = i, there is a chain X = X0, X1, . . . , Xs = Y of i-faces of Δ such
that Xj−1 ∩ Xj 	= ∅ for j = 1, 2, . . . , s. We may assume that X ∩ Y = ∅. For
simplicity we set X = {x1, x2, . . . , xi+1} and Y = {y1, y2, . . . , yi+1}.

We assume that condition (i) is satisfied for G. Set B = GX∪Y , the restriction of
G toX∪Y . Then B is a bipartite graph on the partitionX∪Y . Since B is bipartite,
B has no odd cycle. Since B has no (chordless) even cycle by condition (i), B is a
forest. Then there exists a vertex with degree 0 or 1 in B. We may assume that x1

is such a vertex and that x1 is adjacent at most to y1. Set X1 = {x1, y2, . . . , yi+1}.
Then X,X1, Y is a desired chain.

We assume that condition (ii) is satisfied for G. Then using the hypotheses for
F = ∅, there is a simplicial vertex z in G. Assume z 	∈ X ∪Y . Since z is simplicial,
z is adjacent to at most one vertex in X. We may assume that z is not adjacent to
x2, . . . , xi+1. Similarly, we may assume that z is not adjacent to y2, . . . , yi+1. Set
X1 = {z, x2, . . . , xi+1} and X2 = {z, y2, . . . , yi+1}. Then X,X1, X2, Y is a desired
chain. Assume z ∈ X ∪Y . We may assume z = y1 ∈ Y . Then X,X1, Y is a desired
chain.

Next we assume that condition (iii) is satisfied for G. Then for some t ≥ 2 there
exists a chordless (2t + 1)-cycle C which has t vertices of degree 2 in G which are
independent in G. Let {z1, z2, . . . , zt} ⊂ V (C) be an independent set of vertices of
G such that degG zj = 2 for j = 1, 2, . . . , t.
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Case I. X ∪ Y ⊂ V (C). As in the case that condition (i) is satisfied, B = GX∪Y

is a bipartite graph on the partition X ∪ Y . Since C has no chord, B is a disjoint
union of paths. Then we can construct a desired chain as in the above case.

Case II. X ⊂ V (C), and Y ∩ (V (G)\V (C)) 	= ∅. We may assume that y1 ∈ V (G)\
V (C). Note that i + 1 ≤ t. Set Y1 = {y1, z2, . . . , zi+1} and Z = {z1, z2, . . . , zi+1}.
Then Y, Y1, Z is a chain with Y ∩ Y1 	= ∅, Y1 ∩Z 	= ∅. Between Z and X we have a
desired chain as in Case I. Hence we have a desired chain between X and Y .

Case III. X ∩ (V (G) \ V (C)) 	= ∅ and Y ⊂ V (C). As in Case II.

Case IV. X ∩ (V (G) \ V (C)) 	= ∅ and Y ∩ (V (G) \ V (C)) 	= ∅. As in Case II, we
can construct desired chains between X and Z and between Y and Z. Thus we
have a desired chain between X and Y via Z. �

By the following result one can detect whether a bipartite graph is vertex de-
composable/shellable/sequentially Cohen-Macaulay/sequentially S2 directly from
the graph theoretic properties.

Corollary 4.9. Let G be a bipartite graph. Then G is vertex decomposable if
and only if for any F ∈ ΔG (including ∅) which is not a facet, there is a vertex
v ∈ G \NG[F ] such that degG\NG[F ](v) ≤ 1.

Proof. Assume that G is vertex decomposable. Then G is sequentially Cohen-
Macaulay by Theorem 4.5. For F ∈ ΔG which is not a facet, set H = G \NG[F ].
If H has no edge, every vertex v ∈ V (H) satisfies degH(v) = 0. Therefore, we
may assume that the bipartite graph H has an edge. Applying [20, Theoerm 3.3]
repeatedly, we know H is sequentially Cohen-Macaulay. Hence by [20, Lemma 3.9]
there is a vertex v ∈ V (H) such that degH(v) = 1.

Conversely, assume that for any F ∈ ΔG which is not a facet, there is a vertex
v ∈ H := G \ NG[F ] such that degH(v) ≤ 1. Hence NH [v] = {v} or is an edge
{v, w}; thus in either case it is a complete graph. This means v is a simplicial
vertex in H. By Theorem 4.8 (ii), G is sequentially S2. Thus by Theorem 4.5, G
is vertex decomposable. �

In [21, Theorem 1.1] it is shown that a graph G with no chordless cycles of length
other than 3 or 5 is sequentially Cohen-Macaulay. In the following we extend this
result on a larger class of graphs for the sequentially S2 property.

Theorem 4.10. Let G be a graph. Suppose that a vertex in each chordless even
cycle in G has a whisker. Then G is sequentially S2.

Proof. We prove the theorem by induction on n, the number of vertices of G.
The assertion holds for n ≤ 3. Now we assume n ≥ 4. Set Δ = ΔG and let
x ∈ V . Since G \ NG[x] satisfies the condition of the theorem, it is sequentially
S2 by the induction hypothesis. Hence by Theorem 2.9 it is enough to show that
Δ[i] is connected for 1 ≤ i ≤ dimΔ. We show that for any X,Y ∈ Δ with
dimX = dimY = i, there is a chain X = X0, X1, . . . , Xs = Y of i-faces of Δ such
that Xj−1 ∩ Xj 	= ∅ for j = 1, 2, . . . , s. We may assume that X ∩ Y = ∅. For
simplicity we set X = {x1, x2, . . . , xi+1} and Y = {y1, y2, . . . , yi+1}. Let x1 have a
whisker; that is, there exists z ∈ V (G) such that deg z = 1 and {x1, z} ∈ E. Assume
z 	∈ Y . Set X1 = {z, x2, . . . , xi+1} and X2 = {z, y2, . . . , yi+1}. Then X,X1, X2, Y
is a desired chain. Assume z = y1 ∈ Y . Then X,X1, Y is a desired chain.
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Hence we may assume that no vertex inX∪Y has a whisker inG. SetB = GX∪Y ,
the restriction of G to X ∪ Y . Then B is a bipartite graph on the partition X ∪ Y .
Since B is bipartite, B has no odd cycle. Since any vertices in X ∪ Y do not have
a whisker in G, B has no (chordless) even cycle. Hence B is a forest. Then there
exists a vertex with degree 0 or 1 in B. We may assume that x1 is such a vertex and
that x1 is connected at most to y1. Set X1 = {y1, x2, . . . , xi+1}. Then X,X1, Y is
a desired chain. �
Corollary 4.11. If G is a graph with no chordless even cycle, then G is sequentially
S2.

Remark 4.12. Corollary 4.11 gives an alternative proof for the fact that any odd
cycle is sequentially S2, the significant part of Theorem 4.1.

We end this section by proposing two questions.
Let Δ and Γ be two simplicial complexes over disjoint vertex sets. In [14] it is

shown that Δ ∗ Γ is sequentially Cohen-Macaulay if and only if Δ and Γ are both
sequentially Cohen-Macaulay. By [18, Theorem 6] it follows that for r ≤ t, if Δ is
Sr but not Sr+1 and Γ is St, then Δ ∗Γ is Sr but not Sr+1. One may study similar
questions for sequentially S2 complexes.

Question 4.13. Let Δ and Γ be two simplicial complexes. Is it true that Δ ∗ Γ is
sequentially S2 if and only if Δ and Γ are both sequentially S2?

In particular, it is tempting to show that the join of the simplicial complexes of
two disjoint odd cycles is sequentially S2.

Munkres [12, Theorem 3.1] showed that Cohen-Macaulayness of a simplicial
complex is a topological property. Stanley [16, Chap. III, Proposition 2.10] proved
that sequentially Cohen-Macaulayness is also a topological property. Recently,
Yanagawa [23, Theorem 4.5(d)] proved that Serre’s condition Sr is a topological
property as well. Therefore it is natural to pose the following question.

Question 4.14. Is sequentially Sr a topological property on simplicial complexes?
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