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ON MULTIPLE APPELL POLYNOMIALS

D. W. LEE

(Communicated by Walter Van Assche)

Abstract. In this paper, we first define the multiple Appell polynomials and
find several equivalent conditions for this class of polynomials. Then we give a
characterization theorem that if multiple Appell polynomials are also multiple
orthogonal, then they are the multiple Hermite polynomials.

1. Introduction

For a sequence {Pn(x)}∞n=0 of Appell polynomials ([3]), which is a sequence of
polynomials satisfying

P ′
n(x) = nPn−1(x), n ≥ 1,

tremendous properties are well known. Among them, the most important character-
izations of Appell polynomials may be the following equivalent conditions ([12, 24]).

Theorem A. Let {Pn(x)}∞n=0 be a sequence of polynomials. Then the following
are all equivalent:

(a) {Pn(x)}∞n=0 is a sequence of Appell polynomials.
(b) {Pn(x)}∞n=0 has a generating function of the form

A(t)ext =

∞∑

n=0

Pn(x)
tn

n!
,

where A(t) is a formal power series independent of x with A(0) �= 0.
(c) There exists a sequence {an}∞n=0 with a0 �= 0 such that

Pn(x) =

n∑

k=0

(
n

k

)
an−kx

k.

(d) There exists a sequence {an}∞n=0 with a0 �= 0 such that

Pn(x) =

( ∞∑

k=0

ak
k!

Dk

)
xn,

where D = d
dx .

Received by the editors December 21, 2009 and, in revised form, May 31, 2010 and June 11,
2010.

2000 Mathematics Subject Classification. Primary 33C45, 42C05.

c©2010 American Mathematical Society
Reverts to public domain 28 years from publication

2133



2134 D. W. LEE

(e) {Pn(x)}∞n=0 satisfies

Pn(x+ y) =

n∑

k=0

(
n

k

)
Pn−k(x)y

k, n = 0, 1, 2, · · · .

The typical examples of Appell polynomials besides the trivial example {xn}∞n=0

are the Bernoulli polynomials, the Euler polynomials, and the Hermite polynomials.
In particular, a Hermite polynomial is a unique sequence of Appell polynomials that
is also orthogonal with respect to a positive measure.

The literature on orthogonal polynomials contains many papers dealing with
characterization theorems which specify a class of orthogonal polynomials satisfying
a special property. Al-Salam gave a very nice survey on characterization theorems
of orthogonal polynomials. See [1] and the references therein. In [17], which is
also a nice reference, Ismail mentioned open characterization problems. One of the
simplest of the characterization problems is the following ([1]).

Problem 1. Find all Appell polynomial sets which are also orthogonal.
As mentioned by Al-Salam, this problem was first solved by Angelesco and later

by many authors. (See Carlitz [10], Hahn [16], Meixner [20], Shohat [23], Toscano
[25], and Webster [27].)

Recently multiple orthogonal polynomials were extensively studied in a special
function theory, in number theory, in approximation theory, and so on ([6, 7, 11, 13,
14, 19, 21, 22]). But there do not exist characterization theorems to specify a class
of multiple orthogonal polynomials (in the general case), as far as the author knows.
In the meantime, there exist characterization theorems for d-orthogonal polynomials
which can be regarded as a special case of multiple orthogonal polynomials. See [4]
or Chapter 23 written by Walter Van Assche in Ismail’s book [17]. Douak obtained
a characterization by introducing a more general Appell character, which is an
example of Problem 1 for d-orthogonal polynomials ([15]). The characterizations
of d-orthogonal polynomials were studied by many authors such as Douak, Maroni,
Ben Cheikh, and others. We recommend references [8, 9, 28] and therein for a good
survey of d-orthogonal polynomials.

In this paper, we first define the multiple Appell polynomials and find several
equivalent conditions for this class of polynomials (Theorem 2.1). Then we solve
the following characterization problem, which is a generalization of Problem 1, in
the context of multiple orthogonal polynomials.

Problem 2. Find all multiple Appell polynomial sets which are also multiple or-
thogonal.

The author actually proves that if a set of Appell polynomials is also multiple
orthogonal, then it is a set of multiple Hermite polynomials (Theorem 2.3). This
result may be viewed as the only known characterization theorem for multiple
orthogonal polynomials until now.

2. Main results

By a multiple polynomial system (multiple PS) we mean a set of polynomials
{Pn1,n2

(x)}∞n1,n2=0 with deg(Pn1,n2
) = n1 + n2 for n1, n2 ≥ 0.
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A multiple PS is called a multiple orthogonal polynomial system (multiple OPS)
if there exist positive weight functions w1 and w2 such that

∫ ∞

−∞
xkPn1,n2

(x)wi(x)dx = 0 for k = 0, 1, 2, · · · , ni − 1 (i = 1, 2).

In this case, (w1, w2) is called a pair of orthogonalizing weight functions for multiple

OPS {Pn1,n2
(x)}∞n1,n2=0. In particular, if wi(x) = e

δ
2x

2+αix, where δ < 0 and
α1 �= α2, then the multiple OPS is called the multiple Hermite polynomials.

The origin of multiple OPS goes back to Angelesco’s paper dealing with the
simultaneous Padé approximation ([2]). The multiple Hermite polynomials actually
appeared and were treated as an example of multiple OPS in the papers [5, 26],
which generalize the properties of classical orthogonal polynomials to a multiple
OPS for the case of classical weights.

In [18], the author obtained generating functions for classical multiple OPS’s
including multiple Hermite polynomials. In particular, the author showed that for

the multiple Hermite polynomial {H(α1,α2)
n1,n2 (x)}∞n1,n2=0 (α1 �= α2),

e
δ
2 (t1+t2)

2+δ(t1+t2)x+α1t1+α2t2 =
∞∑

n1=0

∞∑

n2=0

H(α1,α2)
n1,n2

(x)
tn1
1 tn2

2

n1!n2!
(δ < 0),

from which many properties of multiple Hermite polynomials are obtained. Note
that if we take t2 = 0, it is the generating function for the classical Hermite poly-
nomials.

From the generating function of multiple Hermite polynomials, we can deduce
how to define multiple Appell polynomials. A multiple PS {Pn1,n2

(x)}∞n1,n2=0 is
called multiple Appell if there exists a generating function of the form

(2.1) A(t1, t2)e
x(t1+t2) =

∞∑

n1=0

∞∑

n2=0

Pn1,n2
(x)

tn1
1 tn2

2

n1!n2!
,

where A has a series expansion

(2.2) A(t1, t2) =
∞∑

n1=0

∞∑

n2=0

an1,n2

tn1
1 tn2

2

n1!n2!

with A(0, 0) = a0,0 �= 0.
Then we can easily generalize Theorem A to the following.

Theorem 2.1. Let {Pn1,n2
(x)}∞n1,n2=0 be a multiple PS. Then the following are all

equivalent:

(a) {Pn1,n2
(x)}∞n1,n2=0 is a set of multiple Appell polynomials.

(b) There exists a sequence {an1,n2
}∞n1,n2=0 with a0,0 �= 0 such that

Pn1,n2
(x) =

n1∑

k1=0

n2∑

k2=0

(
n1

k1

)(
n2

k2

)
an1−k1,n2−k2

xk1+k2 .

(c) For every n1 + n2 ≥ 1, we have

(2.3) P ′
n1,n2

(x) = n1Pn1−1,n2
(x) + n2Pn1,n2−1(x).
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(d) There exists a sequence {an1,n2
}∞n1,n2=0 with a0,0 �= 0 such that

(2.4)

Pn1,n2
(x) =

{
n1∑

k1=0

n2∑

k2=0

(
n1

k1

)(
n2

k2

)
(n1 + n2 − k1 − k2)!

(n1 + n2)!
ak1,k2

Dk1+k2

}
xn1+n2 ,

where D = d
dx .

(e) Pn1,n2
(x) satisfies that for n1, n2 = 0, 1, 2, · · · ,

(2.5) Pn1,n2
(x+ y) =

n1∑

k1=0

n2∑

k2=0

(
n1

k1

)(
n2

k2

)
Pn1−k1,n2−k2

(x)yk1+k2 .

Proof. (a)⇒(b). Since
∑∞

n=0

∑∞
k=0 anbk =

∑∞
n=0

∑n
k=0 an−kbk, we have from

equations (2.1) and (2.2),

A(t1, t2)e
x(t1+t2) =

( ∞∑

n1=0

∞∑

n2=0

an1,n2

tn1
1 tn2

2

n1!n2!

)( ∞∑

k=0

xk

k!
(t1 + t2)

k

)

=

∞∑

n1=0

∞∑

k1=0

( ∞∑

n2=0

∞∑

k2=0

an1,n2

xk2

k2!

tk2+n2
2

n2!

)
xk1

k1!

tk1+n1
1

n1!

=

∞∑

n1=0

∞∑

n2=0

{
n2∑

k2=0

n1∑

k1=0

(
n1

k1

)(
n2

k2

)
an1−k1,n2−k2

xk1+k2

}
tn1
1

n1!

tn2
2

n2!
.

(2.6)

Hence, we obtain (c) by comparing the coefficients of (2.1) and (2.6).
(b)⇒(c). From the definition of Pn1,n2

(x) and the identity

(k1 + k2)

(
n1

k1

)(
n2

k2

)
= n1

(
n1 − 1

k1 − 1

)(
n2

k2

)
+ n2

(
n2 − 1

k2 − 1

)(
n1

k1

)
, k1, k2 ≥ 1,

we have

P ′
n1,n2

(x) =

n1∑

k1=0

n2∑

k2=0

(k1 + k2)

(
n1

k1

)(
n2

k2

)
an1−k1,n2−k2

xk1+k2−1

=

n1∑

k1=0

n2∑

k2=0

{
n1

(
n1−1

k1−1

)(
n2

k2

)
+n2

(
n2−1

k2−1

)(
n1

k1

)}
an1−k1,n2−k2

xk1+k2−1

= n1

n1−1∑

k1=0

n2∑

k2=0

(
n1 − 1

k1

)(
n2

k2

)
a(n1−1)−k1,n2−k2

xk1+k2

+ n2

n1∑

k1=0

n2−1∑

k2=0

(
n2 − 1

k2

)(
n1

k1

)
an1−k1,(n2−1)−k2

xk1+k2

= n1Pn1−1,n2
(x) + n2Pn1,n2−1(x),

where
(
n
a

)
= 0 if a < 0.

(c)⇒(a). Assume that P ′
n1,n2

(x) = n1Pn1−1,n2
(x)+n2Pn1,n2−1(x) for n1+n2 ≥ 1

and
∞∑

n1=0

∞∑

n2=0

Pn1,n2
(x)

tn1
1 tn2

2

n1!n2!
= A(x; t1, t2)e

x(t1+t2).
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Taking a differentiation on both sides in the variable x, we have
(
∂A

∂x
+ (t1 + t2)A(x; t1, t2)

)
ex(t1+t2) =

∞∑

n1=0

∞∑

n2=0

P ′
n1,n2

(x)
tn1
1 tn2

2

n1!n2!

=

∞∑

n1=0

∞∑

n2=0

(n1Pn1−1,n2
(x) + n2Pn1,n2−1(x))

tn1
1 tn2

2

n1!n2!

=
∞∑

n1=0

∞∑

n2=0

(t1Pn1,n2
(x) + t2Pn1,n2

(x))
tn1
1 tn2

2

n1!n2!

= (t1 + t2)A(x; t1, t2)e
x(t1+t2),

where Pn1,n2
(x) = 0 if n1 < 0 or n2 < 0. Hence, ∂A

∂x = 0, which implies that A is
independent of x so that A(x; t1, t2) = A(t1, t2).

(b)⇔(d). This immediately follows from

Pn1,n2
(x) =

{
n1∑

k1=0

n2∑

k2=0

(
n1

k1

)(
n2

k2

)
(n1 + n2 − k1 − k2)!

(n1 + n2)!
ak1,k2

Dk1+k2

}
xn1+n2

=

n1∑

k1=0

n2∑

k2=0

(
n1

k1

)(
n2

k2

)
an1−k1,n2−k2

xk1+k2 .

(a)⇔(e). Using the generating function, we have

A(t1, t2)e
(x+y)(t1+t2) =

( ∞∑

n1=0

∞∑

n2=0

Pn1,n2
(x)

tn1
1 tn2

2

n1!n2!

)⎛

⎝
∞∑

k1=0

k1∑

j=0

(
k1
j

)
yk1

k1!
tj1t

k1−j
2

⎞

⎠

=

( ∞∑

n1=0

∞∑

n2=0

Pn1,n2
(x)

tn1
1 tn2

2

n1!n2!

)( ∞∑

k1=0

∞∑

k2=0

yk1+k2
tk1
1 tk2

2

k1! k2!

)

=

∞∑

n1=0

∞∑

n2=0

∞∑

k1=0

∞∑

k2=0

Pn1,n2
(x)yk1+k2

tn1+k1
1 tn2+k2

2

k1! k2!n1!n2!

=

∞∑

n1=0

∞∑

n2=0

{
n1∑

k1=0

n2∑

k2=0

(
n1

k1

)(
n2

k2

)
Pn1−k1,n2−k2

(x)yk1+k2

}
tn1
1 tn2

2

n1!n2!
.

(2.7)

By definition of Pn1,n2
(x+ y) with a generating function, the equation (2.5) is an

immediate consequence of (2.7). �

By the definition of multiple Appell polynomials, the multiple Hermite polyno-
mials are a subset of the multiple Appell polynomials. Hence, by Theorem 2.1,

the multiple Hermite polynomials {H(α1,α2)
n1,n2 (x)}∞n1,n2=0 satisfy the equation (2.3)

which was already proved in [18].

Remark 2.2. If {Pn(x)}∞n=0 and {Qn(x)}∞n=0 are Appell polynomials with generat-
ing functions

A(t)ext =

∞∑

n=0

Pn(x)
tn

n!
and B(t)ext =

∞∑

n=0

Qn(x)
tn

n!
,
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then we can make a new set of multiple Appell polynomials in two ways. Let
Rn1,n2

(x) = Pn1+n2
(x) and Sn1,n2

(x) = Pn1
(x)Qn2

(x). By the Leibniz rule we can
easily prove that Rn1,n2

(x) and Sn1,n2
(x) satisfy

R′
n1,n2

(x) = P ′
n1+n2

(x) = (n1 + n2)Pn1+n2−1(x) = n1Rn1−1,n2
+ n2Rn1,n2−1

and

S′
n1,n2

(x) = (Pn1
(x)Qn2

(x))′ = n1Sn1−1,n2
(x) + n2Sn1,n2−1(x),

which are the equation (2.3) in Theorem 2.1. Hence, {Rn1,n2
(x)}∞n1,n2=0 and

{Sn1,n2
(x)}∞n1,n2=0 are sets of multiple Appell polynomials. In this case, the gener-

ating functions of {Rn1,n2
(x)}∞n1,n2=0 and {Sn1,n2

(x)}∞n1,n2=0 are A(t1+ t2)e
x(t1+t2)

and A(t1)B(t2)e
x(t1+t2), respectively. More precisely, by a direct calculation and

by the definition of {Rn1,n2
(x)}∞n1,n2=0, we have

A(t1 + t2)e
x(t1+t2) =

∞∑

n=0

Pn(x)
(t1 + t2)

n

n!

=

∞∑

n=0

n∑

k=0

(
n

k

)
Pn(x)

tk1 t
n−k
2

n!

=

∞∑

n=0

∞∑

k=0

(
n+ k

k

)
Pn+k(x)

tk1 t
n
2

(n+ k)!

=

∞∑

n=0

∞∑

k=0

(
n+ k

k

)
Rn,k(x)

tk1 t
n
2

(n+ k)!

=

∞∑

n=0

∞∑

k=0

Rn,k(x)
tk1 t

n
2

k!n!
.

Similarly, we can prove the case of {Sn1,n2
(x)}∞n1,n2=0. Hence, any product of

Appell polynomials generates a new multiple Appell polynomial.
However, the multiple Hermite polynomials are not such a trivial type of multiple

Appell polynomials.

We proved by Theorem 2.1 that the multiple Hermite polynomials form a se-
quence of multiple Appell polynomials as well as a multiple OPS. Here, we prove
the converse.

Theorem 2.3. If {Pn1,n2
(x)}∞n1,n2=0 is a multiple Appell PS and also a multiple

OPS, then {Pn1,n2
(x)}∞n1,n2=0 are multiple Hermite polynomials.

Proof. Since {Pn1,n2
(x)}∞n1,n2=0 is multiple Appell, we have by Theorem 2.1 that

A(t1, t2)e
x(t1+t2) =

∞∑

n1=0

∞∑

n2=0

Pn1,n2
(x)

tn1
1 tn2

2

n1!n2!
.

Multiplying (2.1) by xkwi(x) on both sides, where (w1, w2) is a pair of orthogonal-
izing weight funtions for {Pn1,n2

(x)}∞n1,n2=0, and then applying an integration, we
obtain
(2.8)

A(t1, t2)

∫ ∞

−∞
xkex(t1+t2)wi(x)dx =

∞∑

n1=0

∞∑

n2=0

∫ ∞

−∞
xkPn1,n2

(x)wi(x)dx
tn1
1 tn2

2

n1!n2!
.
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By the orthogonality of multiple OPS, the right-hand side of (2.8) becomes a poly-
nomial of degree k in the variable ti. In particular, if we take k = 0, 1, we get

A(t1, t2)

∫ ∞

−∞
xkex(t1+t2)wi(x)dx =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

γ(t2) k = 0, i = 1,

α(t2)t1 + β(t2) k = 1, i = 1,

γ̃(t1) k = 0, i = 2,

α̃(t1)t2 + β̃(t1) k = 1, i = 2.

Let

fi(t1, t2) =

∫ ∞

−∞
ex(t1+t2)wi(x)dx (i = 1, 2).

Then fi(t1, t2) = fi(t2, t1) and fi is a function of t1 + t2. By a series expansion

ex(t1+t2) =

∞∑

n1=0

∞∑

n2=0

xn1+n2
tn1
1 tn2

2

n1!n2!
,

we have

fi(t1, t2) =
∞∑

n1=0

∞∑

n2=0

μ
(i)
n1+n2

tn1
1 tn2

2

n1!n2!
,

where the μ
(i)
n ’s are the moments of the weight function wi. Note that

∫ ∞

−∞
xkex(t1+t2)wi(x)dx =

∞∑

n1=0

∞∑

n2=0

μ
(i)
n1+n2+k

tn1
1 tn2

2

n1!n2!

=

∞∑

n1=k

∞∑

n2=0

n1!

(n1 − k)!
μ
(i)
n1+n2

tn1−k
1 tn2

2

n1!n2!

=
∂kfi
∂tk1

(t1, t2)

and similarly

∂kfi
∂tk1

(t1, t2) =

∫ ∞

−∞
xkex(t1+t2)wi(x)dx =

∂kfi
∂tk2

(t1, t2).

Thus, we obtain

A(t1, t2)f1(t1, t2) = γ(t2),

A(t1, t2)
∂f1
∂t1

(t1, t2) = α(t2)t1 + β(t2),

A(t1, t2)f2(t1, t2) = γ̃(t1),

A(t1, t2)
∂f2
∂t2

(t1, t2) = α̃(t1)t2 + β̃(t1),

(2.9)

and so γ(t2)
∂f1
∂t1

(t1, t2) = (α(t2)t1 + β(t2))f1(t1, t2). Hence,

f1(t1, t2) = e
1
2a(t2)t

2
1+b(t2)t1+c(t2),

where a, b, c are functions determined by α, β, γ. Similarly,

(2.10) f2(t1, t2) = e
1
2 ã(t1)t

2
2+b̃(t1)t2+c̃(t1),



2140 D. W. LEE

where ã, b̃, c̃ are functions determined by α̃, β̃, γ̃. Since f1(t1, t2) = f1(t2, t1), we
have

(2.11)
1

2
a(t2)t

2
1 + b(t2)t1 + c(t2) =

1

2
a(t1)t

2
2 + b(t1)t2 + c(t1),

from which we obtain that a(t) and b(t) are quadratic polynomials of t, and c(t) =
1
2a(0)t

2 + b(0)t+ c(0). Let us write

a(t) =
1

2
a′′(0)t2 + a′(0)t+ a(0),

b(t) =
1

2
b′′(0)t2 + b′(0)t+ b(0).

By comparing the coefficients of (2.11), we have a′(0) = b′′(0) so that

f1(t1, t2) = e
1
4a

′′(0)t21t
2
2+

1
2a

′(0)t1t2(t1+t2)+
1
2a(0)(t

2
1+t22)+b′(0)t1t2+b(0)(t1+t2)+c(0).

Since f1 is a function of t1+ t2, we have a
′′(0) = a′(0) = 0 and b′(0) = a(0). Hence,

f1(t1, t2) = e
1
2a(0)(t1+t2)

2+b(0)(t1+t2)+c(0).

By the same process with f2(t1, t2) = f2(t2, t1) and (2.10), we have

f2(t1, t2) = e
1
2 ã(0)(t1+t2)

2+b̃(0)(t1+t2)+c̃(0).

Hence, we have by (2.9),

A(t1, t2) = γ(t2)e
− 1

2a(0)(t1+t2)
2−b(0)(t1+t2)−c(0)

= γ̃(t1)e
− 1

2 ã(0)(t1+t2)
2−b̃(0)(t1+t2)−c̃(0).

By comparing the coefficient of t1t2, we have a(0) = ã(0). Letting t1 = 0, and
t2 = 0, respectively, and then comparing the coefficients we can easily see that

γ(t2) = γ(0)e(b(0)−b̃(0))t2 ,

γ̃(t1) = γ̃(0)e(b̃(0)−b(0))t1

so that
A(t1, t2) = γ(0)e−

1
2a(0)(t1+t2)

2−b(0)t1−b̃(0)t2−c(0).

Hence, we can write A(t1, t2) by

A(t1, t2) = e
δ
2 (t1+t2)

2+α1t1+α2t2 ,

where δ = −a(0), α1 = −b(0), α2 = −b̃(0) are constants. By comparing gener-

ating functions of {Pn1,n2
(x)}∞n1,n2=0 and {H(α1,α2)

n1,n2 (x)}∞n1,n2=0, we conclude that
Pn1,n2

(x) = Hn1,n2
(xδ ). �
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