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Abstract. Let f : M → R
m+1 be an isometrically immersed hypersurface. In

this paper, we exploit recent results due to the authors to analyze the stability
of the differential operator Lr associated with the rth Newton tensor of f .
This appears in the Jacobi operator for the variational problem of minimizing
the r-mean curvature Hr. Two natural applications are found. The first one
ensures that under a mild condition on the integral of Hr over geodesic spheres,
the Gauss map meets each equator of Sm infinitely many times. The second
one deals with hypersurfaces with zero (r+ 1)-mean curvature. Under similar
growth assumptions, we prove that the affine tangent spaces f∗TpM , p ∈ M ,
fill the whole R

m+1.

1. Introduction

In what follows, f : Mm → R
m+1 will always denote a connected, orientable,

complete, noncompact hypersurface of Euclidean space. We fix an origin o ∈ M
and let r(x) = dist(x, o), x ∈ M . We set Br and ∂Br for, respectively, the geodesic
ball and the geodesic sphere centered at o with radius r. Moreover, let ν be the
spherical Gauss map and denote with A both the second fundamental form and the
shape operator in the orientation of ν. Associated with A we have the principal
curvatures k1, . . . , km and the set of symmetric functions Sj :

Sj =
∑

i1<i2<...<ij

ki1 · ki2 · . . . · kij , j ∈ {1, . . . ,m}, S0 = 1.

The j-mean curvature of f is defined as

H0 = 1,

(
n

j

)
Hj = Sj ,

so that, for instance, H1 is the mean curvature and Hm is the Gauss-Kronecker
curvature of the hypersurface. Note that, when changing the orientation ν, the odd
curvatures change sign, while the sign of the even curvatures is an invariant of the
immersion. By the Gauss equations and the flatness of Rm+1 it is easy to see that

H2 =

(
m

2

)−1

S2 =
1

2

(
m

2

)−1

scal,
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where scal is the scalar curvature of M . The j-mean curvatures satisfy the so-called
Newton inequalities

H2
j ≥ Hj−1Hj+1,

equality holding if and only if p is an umbilical point (see [9]). We stress that no
restriction is made on the sign of the Hi’s.

Theorem 1.1. Let f : M → R
m+1 be a hypersurface such that, for some j ∈

{0,m− 2}, Hj+1 is a nonzero constant. If j ≥ 1, assume that there exists a point
p ∈ M at which the second fundamental form is definite. Set

(1) vj(r) =

∫

∂Br

Hj , v1(r) =

∫

∂Br

H1,

where integration is with respect to the (m− 1)-dimensional Hausdorff measure of
∂Br. Fix an equator E ⊂ S

m and suppose that either

(2)

(i)

∫ +∞ dr

vj(r)
= +∞ and H1 �∈ L1(M) or

(ii)

∫ +∞ dr

vj(r)
< +∞ and

lim sup
r→+∞

√
v1(r)vj(r)

∫ +∞

r

ds

vj(s)
>

1

2

[
(j + 1)

(
m+ 1

j + 2

)
Hj+1

]−1/2

.

Then, there exists a divergent sequence {xk} ⊂ M such that ν(xk) ∈ E, where ν is
the spherical Gauss map.

Remark 1.2. Up to changing the orientation of M , we can suppose that the second
fundamental form at p is positive definite. As we will see later in more detail, this
has the remarkable consequence that each Hi, 1 ≤ i ≤ n, is strictly positive at every
point of M . In particular, v1 and vj are both strictly positive and the requirements
in (2) are meaningful.

Remark 1.3. When j = 1, the existence of an elliptic point p ∈ M can be replaced
by requiring H2 to be a positive constant; see [6] for details. The case j = 0 has
been considered in [4].

We clarify the role of (i) and (ii) with some examples. First, we deal with the
case j �= 1, and we assume that vj is of order rk (resp ekr), for some k > 0. Then
assumption (ii) requires that v1(r) is of order at least rk−2 (resp ekr). Roughly
speaking, v1 has to be big enough with respect to the other integral curvature vj .
Under additional requirements on the intrinsic curvatures of M , standard volume
comparisons allow us to control the volume of ∂Br and (ii) can be read as H1 not
decaying too fast at infinity. When j = 1, things are somewhat different. Indeed,
(ii) implies that v1(r) does not grow too fast; that is, loosely speaking, it has at
most exponential growth. This shows that two opposite effects balance in condition
(ii). The same happens for (i) with j = 1 as a consequence of the Cauchy-Schwarz
inequality and the coarea formula

(∫ r

R

ds

v1(s)

)(∫

Br\BR

H1

)
≥ (r −R)2.
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Finally, we stress that (i) and (ii) are mild hypotheses as they only involve the
integral of extrinsic curvatures. In other words, no pointwise control is required.

Up to identifying the image of the tangent space at p ∈ M with an affine hyper-
plane of Rm+1 in the standard way, we can also prove the following result:

Theorem 1.4. Let f : M → R
m+1 be a hypersurface with Hj+1 ≡ 0. If j ≥

1, assume rank(A) > j at every point. Define v1, vj as in (1). Then, under
assumptions (2) (i) or (ii), for every compact set K ⊂ M we have

⋃

p∈M\K
TpM ≡ R

m+1;

that is, the tangent envelope of M\K coincides with R
m+1.

Remark 1.5. As we will see later, condition rank(A) > j implies that Hi > 0 for
every 1 ≤ i ≤ j.

2. Preliminaries

We start by recalling the definition and some properties of the Newton tensors
Pj , j ∈ {0, . . . ,m}. They are inductively defined by

P0 = I, Pj = SjI −APj−1.

For future use, we state the following algebraic lemma. For a proof, see [3].

Lemma 2.1. Let {ei} be the principal directions associated with A, Aei = kiei, and
let Sj(Ai) be the j-th symmetric function of A restricted to the (m−1)-dimensional
space e⊥i . Then, for each 1 ≤ j ≤ m− 1,

(1) APj = PjA;

(2) Pjei = Sj(Ai)ei;

(3) Tr(Pj) =
∑

i Sj(Ai) = (m− j)Sj ;

(4) Tr(APj) =
∑

i kiSj(Ai) = (j + 1)Sj+1;

(5) Tr(A2Pj) =
∑

i k
2
i Sj(Ai) = S1Sj+1 − (j + 2)Sj+2.

It follows from (2) in the above lemma and from the definition of Pm that Pm = 0.
Related to the j-th Newton tensor there is a well-defined, symmetric differential
operator acting on C∞

c (M):

(3) Lju = Tr(PjHess(u)) = div(Pj∇u) ∀ u ∈ C∞
c (M),

where the last equality is due to the fact that A is a Codazzi tensor in R
m+1; see

[5], [13]. Lj naturally appears when looking for stationary points of the curvature
integral

Aj(M) =

∫

M

SjdVM ,

for compactly supported volume-preserving variations. These functionals can be
viewed as a generalization of the volume functional. In fact, in [3] and [6] the
stationary points of Aj are characterized as those immersions having constant Sj+1.
In the above-mentioned paper [6], M.F. Elbert computes the second variation of Aj

in more general ambient spaces and obtains in the Euclidean setting the expression

Tj = Lj +
(
S1Sj+1 − (j + 2)Sj+2

)
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for the Jacobi operator. In what follows we are interested in the case of Lj elliptic.
There are a number of different results giving sufficient conditions to guarantee this
fact, and the next two fit the situation of our main theorems.

Proposition 2.2. Let M be an m-dimensional connected, orientable hypersurface
of some space form N . Then, Li is elliptic for every 1 ≤ i ≤ j in each of the
following cases:

(i) M contains an elliptic point, that is, a point p ∈ M at which A is definite
(positive or negative), and Sj+1 �= 0 at every point of M . Note that up to
changing the orientation of M , we can assume Ap to be positive definite,
and by continuity Sj+1 > 0 on M .

(ii) Sj+1 ≡ 0 and rank(A) > j at every point of M .

Moreover, in both cases, every i-mean curvature Hi is strictly positive on M , for
1 ≤ i ≤ j.

For a proof of (i), see [3], while for (ii), see [10].
From the above proposition, the requirements on p and rank(A) in the main

theorems ensure ellipticity. As stressed in Remark 1.3, when j = 2 in [6] it is shown
that the sole requirement H2 > 0 implies the ellipticity of L1. In the assumptions
of the above proposition, we can define the j-volume of some measurable subset
K ⊂ M as the integral

Aj(K) =

∫

K

SjdVM .

Hereafter, we restrict ourselves to the case that Lj is elliptic. Given the relatively
compact domain Ω ⊂ M , Lj is bounded from below on C∞

c (Ω) and, by Rellich’s
theorem, for a sufficiently large λ, (Lj −λ) is invertible with compact resolvent. By
standard spectral theory, Lj is therefore essentially self-adjoint on C∞

c (Ω) (Theorem
3.3.2 in [12]). Essential self-adjointness implies that C∞

c (Ω) and Lip0(Ω) are cores

for the quadratic form associated to Lj . The first eigenvalue λ
Tj

1 (Ω), with Dirichlet
boundary condition, is therefore defined by the Rayleigh characterization

λ
Tj

1 (Ω) = inf
φ ∈ Lip0(Ω)

φ �= 0

∫
Ω
〈Pj(∇φ),∇φ〉 −

∫
Ω
(S1Sj+1 − (j + 2)Sj+2)φ

2

∫
Ω
φ2

,

where Lip0(Ω) can be replaced with C∞
c (Ω). By the monotonicity property of

eigenvalues (or, in other words, since Lj satisfies the unique continuation property,
[2]), if Ω1 is a domain with compact closure in Ω2, and Ω2\Ω1 has nonempty interior,

then λ
Tj

1 (Ω1) > λ
Tj

1 (Ω2). Hence, we deduce the existence of

λ
Tj

1 (M) = lim
μ→+∞

λ
Tj

1 (Ωμ),

where {Ωμ} is any exhaustion of M by means of increasing, relatively compact
domains with smooth boundary. The next result is substantially an application of
the result of Moss-Piepenbrink [11], slightly modified according to Fischer-Colbrie
and Schoen [8] and Fischer-Colbrie [7] (consult also [12], Chapter 3, and for the
case of L1, [6]).

Proposition 2.3. Let M be a Riemannian manifold and let Tj be as above. The
following statements are equivalent:

(i) λ
Tj

1 (M) ≥ 0;
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(ii) there exists u ∈ C∞(M), u > 0, that is a solution of Tju = 0 on M .

Furthermore, there exists a compact set K ⊂ M and u ∈ C∞(M\K), u > 0, that

is a solution of Tju = 0 on M\K if and only if λ
Tj

1 (M\K) ≥ 0.

Next, we need to consider the following Cauchy problem (here, as usual, R+ =
(0,+∞) and R

+
0 = [0,+∞)):

(4)

{
(v(t)z′(t))′ +A(t)v(t)z(t) = 0 on R

+,

z′(t) = O(1) as t ↓ 0+, z(0+) = z0 > 0,

where A(t) and v(t) satisfy the following conditions:

(A1) A(t) ∈ L∞
loc(R

+
0 ), A(t) ≥ 0, A �≡ 0 in the L∞

loc sense;

(V1) v(t) ∈ L∞
loc(R

+
0 ), v(t) ≥ 0,

1

v(t)
∈ L∞

loc(R
+);

(V2) there exists a ∈ R
+ such that v is increasing on (0, a) and

limt→0+ v(t) = 0.

Observe that (V2) has to be interpreted as there exists a version of v which is
increasing near 0 and whose limit as t → 0+ is 0.

By Proposition A.1 of [4], under the above assumptions (4) has a solution z(t) ∈
Liploc(R

+
0 ) (and the condition z′(t) = O(1) as t ↓ 0+ is satisfied in an appropriate

sense). Furthermore by Proposition A.3 of [4], z(t) has only isolated zeros. In the
case that 1/v ∈ L1((1,+∞)), by Proposition 2.5 of [4] if, for some T > 0,

(5) lim sup
t→∞

∫ t

T

√
A(s)ds

− 1
2 log

∫ +∞
t

ds
v(s)

> 1,

then every solution of

(6)

{
(v(t)z′(t))′ +A(t)v(t)z(t) = 0 on (t0,+∞), t0 > 0

z(t0) = z0 > 0

has isolated zeros and is oscillatory. The same happens if

(7)

∫ +∞ dt

v(t)
= +∞ and

∫ +∞
A(t)v(t)dt = +∞

(see Corollary 2.4 of [4]).
A final result that we shall use is the following computation. (For a proof, see

[13] , [1].)

Proposition 2.4. Let f : M → R
m+1 be an isometric immersion of an oriented

hypersurface and ν : M → S
m its Gauss map. Fix a ∈ S

m. Then

(8)
Lj〈a, ν〉 = −

(
S1Sj+1 − (j + 2)Sj+2

)
〈a, ν〉 − 〈∇Sj+1, a〉,

Lj〈f, ν〉 = −(j + 1)Sj+1 −
(
S1Sj+1 − (j + 2)Sj+2

)
〈f, ν〉 − 〈∇Sj+1, f〉,

where 〈, 〉 stands for the scalar product of vectors in S
m ⊂ R

m+1.

In particular, if Sj+1 is constant, we have Tj〈a, ν〉 = 0. Moreover, if Sj+1 ≡ 0,
then Tj〈f, ν〉 ≡ 0.
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3. Proof of Theorem 1.1

Fix an equator E and reason by contradiction: assume that there exists a suf-
ficiently large geodesic ball BR such that, outside BR, ν does not meet E. In
other words, ν(M\BR) is contained in the open spherical caps determined by E.
Indicating with a ∈ S

m one of the two focal points of E, 〈a, ν(x)〉 �= 0 on M\BR.
Let C be one of the (finitely many) connected components of M\BR; then ν(C) is

contained in only one of the open spherical caps determined by E. Up to replacing
a with −a, we can suppose u = 〈a, ν〉 > 0 on C. Proceeding in the same way for
each connected component, we can construct a positive function u on M\BR. Since
Sj+1 is constant, by Proposition 2.4 we have that u > 0 satisfies

Tju = Lju+
(
S1Sj+1 − (j + 2)Sj+2

)
u = 0

on M\BR. Thus, by Proposition 2.3, λ
Tj

1 (M\BR) ≥ 0. We shall now show that the
assumptions of the theorem contradict this fact. As already stressed, the existence
of an elliptic point forces both Hj and Hj+1 to be positive. Fix a radius 0 < R0 < R
and let Kj be a smooth positive function on M such that

(9) Kj(x) =

{
1 on BR0/2,

(m− j)Sj on M\BR0

.

Next, we define

(10) vj(t) =

∫

∂Bt

Kj .

Using Proposition 1.2 of [4] we see that vj(t) satisfies (V1) with vj(t) > 0 on R
+

and (V2). Next, we define

(11) A(t) =
1

vj(t)

∫

∂Bt

S1Sj+1 − (j + 2)Sj+2.

Then, repeated applications of Newton’s inequalities give

(12) H1Hj+1 −Hj+2 ≥ 0.

Thus, using (12),

(13)

S1Sj+1 − (j + 2)Sj+2 = m

(
m

j + 1

)
H1Hj+1 − (j + 2)

(
m

j + 2

)
Hj+2

=

(
m

j + 1

)
(mH1Hj+1 − (m− j − 1)Hj+2)

≥
(

m

j + 1

)[
m− m− j − 1

j + 2

]
H1Hj+1 = (j + 1)

(
m+ 1

j + 2

)
H1Hj+1 ≥ 0.

This implies that A(t) ≥ 0, and

A(t)vj(t) ≥ (j + 1)

(
m+ 1

j + 2

)
Hj+1

∫

∂Bt

H1 = (j + 1)

(
m+ 1

j + 2

)
Hj+1v1(t).

If 1/vj �∈ L1((1,+∞)), then under (2) (i) and by the coarea formula we deduce
that Avj �∈ L1(R+). Hence, we can apply (7) to deduce that every solution of

(14)

{
(vj(t)z

′(t))′ +A(t)vj(t)z(t) = 0 on (t0,+∞), t0 > 0

z(t0) = z0 > 0
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is oscillatory. The same conclusion holds when 1/vj ∈ L1((1,+∞)). Indeed, from
(11), (13),

(15)

∫ t

T

√
A(s)ds

− 1
2 log

∫ +∞
t

ds
vj(s)

≥ 2

√

(j + 1)

(
m+ 1

j + 2

)
Hj+1

∫ t

T

√
v1(s)
vj(s)

ds

− log
∫ +∞
t

ds
vj(s)

.

Using de l’Hôpital’s rule and (2) (ii), (5) is met. Now let R < T1 < T2 be two
consecutive zeros of z(t) after R. Define

ψ(x) =

⎧
⎨

⎩
z(r(x)) on BT2

\BT1

0 outside BT2
\BT1

.

Note that ψ ≡ 0 on ∂(BT2
\BT1

), ψ ∈ Lip0(M) and ∇ψ(x) = z′(r(x))∇r(x)
where defined. Furthermore, by the coarea formula and the definition of A(t) we
have

∫

M

(S1Sj+1 − (j + 2)Sj+2)ψ
2 =

∫ T2

T1

z2(t)

∫

∂Bt

(S1Sj+1 − (j + 2)Sj+2)dt

=

∫ T2

T1

z2(t)A(t)vj(t)dt = (m− j)

∫

M

SjA(r)ψ2.

Thus, using (4), the above identity and again the coarea formula,

∫

M

〈Pj(∇ψ),∇ψ〉 − (S1Sj+1 − (j + 2)Sj+2)ψ
2

≤
∫

M

Tr(Pj)|∇ψ|2 − (S1Sj+1 − (j + 2)Sj+2)ψ
2

=

∫

M

(m− j)Sj |∇ψ|2 − (S1Sj+1 − (j + 2)Sj+2)ψ
2

= (m− j)

∫

BT2
\BT1

Sj [(z
′)2 −A(t)z2]

= (m− j)

∫ T2

T1

[(z′)2 −A(t)z2]vj(t)dt

= (m− j){z(t)z′(t)vj(t)
∣∣T2

T1
−
∫ T2

T1

[(vj(t)z
′(t))′ +A(t)vj(t)z(t)]z(t)dt = 0.

It follows that

λ
Tj

1 (BT2
\BT1

) ≤ 1∫
M

ψ2

{∫

M

〈Pj(∇ψ),∇ψ〉 − (S1Sj+1 − (j + 2)Sj+2)ψ
2

}
= 0.

As a consequence, λ
Tj

1 (M\BR) < 0, which gives the desired contradiction.
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Remark 3.1. As a matter of fact, the orientability of M is not needed. If M is
nonorientable, ν is not globally defined. However, changing the sign of ν does not
change either the assumptions or the conclusion of Theorem 1.1, since the antipodal
map on S

m leaves each E fixed. If 〈a, ν〉 �= 0 onM\BR, the normal fieldX = 〈a, ν〉ν
is nowhere vanishing and globally defined on M\BR. This shows that, in any case,
every connected component of M\BR is orientable.

4. Proof of Theorem 1.4

Assume that for some K the tangent envelope of M\K does not coincide with
R

m+1. By choosing Cartesian coordinates appropriately, we can assume that

0 �∈
⋃

p∈M\K
TpM.

Then the function u = 〈f, ν〉 is nowhere vanishing and smooth on M\K. Up
to changing the orientation, u > 0 on M\K. By Proposition 2.4, Tju = −(j +
1)Sj+1=0. Note that here the assumption Hj+1 ≡ 0 is essential. It follows that

λ
Tj

1 (M\K) ≥ 0. The rest of the proof is identical to that of Theorem 1.1. Again,
according to Remark 3.1 we can drop the orientability assumption on M . Indeed,
if the tangent envelope of M\K does not cover Rm+1, the vector field X = 〈f, ν〉ν
is a globally defined, nowhere vanishing normal vector field on M\K; hence M\K
is orientable.

References

1. H. Alencar and A. G. Colares, Integral formulas for the r-mean curvature linearized operator
of a hypersurface., Ann. Global Anal. Geom. 16 (1998), 203–220. MR1626663 (99k:53075)

2. N. Aronszajn, A unique continuation theorem for solutions of elliptic partial differential equa-
tions or inequalities of second order, J. Math. Pures Appl. 36 (1957), 235–249. MR0092067
(19:1056c)

3. J. L. M. Barbosa and A. G. Colares, Stability of hypersurfaces with constant r-mean curvature,
Ann. Glob. Anal. Geom. 15 (1997), 277–297. MR1456513 (98h:53091)

4. B. Bianchini, L. Mari, and M. Rigoli, Spectral radius, index estimates for Schrödinger oper-
ators and geometric applications, Journ. Funct. Anal. 256 (2009), 1769–1820. MR2498559
(2010a:58038)

5. S. Y. Cheng and S. T. Yau, Hypersurfaces with constant scalar curvature, Math. Ann. 225
(1977), 195–204. MR0431043 (55:4045)

6. M. F. Elbert, Constant positive 2-mean curvature hypersurfaces, Ill. J. Math. 46 (2002),
247–267. MR1936088 (2003g:53103)

7. D. Fisher-Colbrie, On complete minimal surfaces with finite Morse index in three manifolds,

Invent. Math. 82 (1985), 121–132. MR808112 (87b:53090)
8. D. Fisher-Colbrie and R. Schoen, The structure of complete stable minimal surfaces in 3-

manifolds of nonnegative scalar curvature, Comm. Pure Appl. Math. XXXIII (1980), 199–
211. MR0562550 (81i:53044)

9. G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities (2nd ed.), Cambridge University
Press, 1952. MR0046395 (13:727e)

10. J. Hounie and M. L. Leite, The maximum principle for hypersurfaces with vanishing curvature
functions, J. Differential Geom. 41 (1995), 247–258. MR1331967 (96b:53080)

11. W. F. Moss and J. Piepenbrink, Positive solutions of elliptic equations, Pac. J. Math. 75
(1978), 219–226. MR500041 (80b:35008)

12. S. Pigola, M. Rigoli, and A. G. Setti, Vanishing and finiteness results in geometric analysis.
A generalization of the Bochner technique, Progress in Mathematics, vol. 266, Birkhäuser
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