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ON VARIETIES OF ALMOST MINIMAL DEGREE II:

A RANK-DEPTH FORMULA

M. BRODMANN, E. PARK, AND P. SCHENZEL

(Communicated by Irena Peeva)

Abstract. Let X ⊂ P
r
K denote a variety of almost minimal degree other than

a normal del Pezzo variety. Then X is the projection of a rational normal scroll
X̃ ⊂ P

r+1
K from a point p ∈ P

r+1
K \ X̃. We show that the arithmetic depth of

X can be expressed in terms of the rank of the matrix M ′(p), where M ′ is the
matrix of linear forms whose 3× 3 minors define the secant variety of X̃.

1. Introduction

Let X ⊂ P
r
K denote an irreducible and reduced projective variety over an alge-

braically closed field K. In the following we always assume that X is nondegenerate,
i.e. that X is not contained in any hyperplane. Then it is well known (see for in-
stance [H]) that there is the inequality degX ≥ codimX + 1 between the degree
and the codimension of X. Varieties satisfying the equality are called varieties of
minimal degree. See [H] for a classification of these varieties.

Varieties of almost minimal degree are those for which degX = codimX + 2.
The results of [F1], [F2] and [BS] imply that a variety X ⊂ P

r of almost minimal
degree is either a normal del Pezzo variety or a linear projection of a variety of
minimal degree X̃ ⊂ P

r+1 from a point p ∈ P
r+1
K \ X̃. In the latter case, X ⊂ P

r
K is

either smooth and not linearly normal or else nonnormal, depending on the location
of p with respect to X̃. The arithmetic depth of X is defined as the depth of the
coordinate ring of AX and is denoted by depthX. It is an important homological
invariant. In the case of a smooth rational normal scroll X̃ we have

depthX = dimΣp(X̃) + 2 ≤ 4,

where Σp(X̃) denotes the secant locus of X̃ with respect to p; see [BS, Theorem 7.5].

The secant variety Sec X̃ of a smooth rational normal scroll X̃ ⊂ P
r+1
K is de-

scribed (see [C]) as the variety V3(M
′) defined by the ideal generated by the 3× 3

minors of a certain 3 × s matrix M ′ associated to the matrix defining the scroll
X̃ ⊂ P

r+1
K . Let M ′(p) denote the matrix M ′ with the entries given by p ∈ P

r+1
K .

Although p is defined up to a scalar the rank of M ′(p) is well defined.

The particular case that X ⊂ P
r
K and X̃ ⊂ P

r+1
K are isomorphic (by means of

our projection) holds if and only if depthX = 1, i.e. if and only if p �∈ Sec X̃. In
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terms of the matrix M ′ this means that rankM ′(p) = 3. The main result of the
present paper is an extension of this phenomenon to the general situation.

Theorem 1.1. With the previous notation let X ⊂ P
r
K denote a variety of almost

minimal degree obtained as a linear projection of a rational normal scroll X̃ ⊂ P
r+1

from a point p ∈ P
r+1
K \ X̃. Then depthX = 4− rankM ′(p).

The advantage of this theorem is an intrinsic description of the arithmetic depth
without knowing the secant locus of X̃ with respect to p. Our main result is proved
in Section 3 of the present paper. It is a consequence of the first two authors’ work
on the secant stratification of X̃; see [BP]. Theorem 1.1 also admits a straight-
forward generalization to scrolls which are not necessarily smooth; see Corollary 3.6.

In the following we shall give an illustration of Theorem 1.1.

Example 1.2. Let X̃ ⊂ P
8
K be the rational normal scroll defined by the vanishing

of the 2× 2 minors of the matrix

M =

(
x0 x2 x4 x5 x6 x7

x1 x3 x5 x6 x7 x8

)
.

We consider the following four points pi ∈ P
8
K \ X̃, i = 1, . . . , 4 :

p1 = (0 : 0 : 0 : 0 : 0 : 0 : 1 : 0 : 0), p2 = (0 : 0 : 0 : 0 : 0 : 1 : 0 : 0 : 0),

p3 = (0 : 0 : 0 : 1 : 1 : 0 : 0 : 0 : 0), p4 = (0 : 1 : 1 : 0 : 0 : 0 : 0 : 0 : 0).

Let Xpi
⊂ P

7
K denote the image of X̃ ⊂ P 8

K under the linear projection map
πpi

: P8
K \ {pi} → P

7
K .

By [C] the secant variety Sec X̃ ⊂ P
8
K is given by the vanishing of the determinant

of the matrix

M ′ =

⎛
⎝ x4 x5 x6

x5 x6 x7

x6 x7 x8

⎞
⎠ .

By the definition of M ′(p) it is easily seen that rankM ′(pi) = 4− i for i = 1, 2, 3, 4.
Therefore, depthXpi

= i, i = 1, 2, 3, 4, by Theorem 1.1. So all the possible values
for the arithmetic depth of the projection occur.

2. Preliminaries

We first fix some notation which we shall keep for the whole paper.

Notation and Remark 2.1. (A) Let r ≥ 2 be an integer and letK be an algebraically
closed field. Let

X̃ = S(1, . . . , 1︸ ︷︷ ︸
k

, 2, . . . , 2︸ ︷︷ ︸
l

, a1, . . . , an−k−l) = S(1, 2, a) ⊂ P
r+1
K

be the smooth rational normal scroll of type (1, . . . , 1, 2, . . . , 2, a1, . . . , an−k−l) with
3 ≤ a1 ≤ . . . ≤ an−k−l. So, we have

dim(X̃) = n, deg(X̃) = k + 2l +
n−k−l∑
j=1

aj = r + 2− n.

(B) We consider the polynomial ring

K[x, y, z] = K[{xh,u}h=1,...k,u=0,1, {yi,s}i=1,...,l,s=0,1,2, {zj,t}j=1,...,n−k−l,t=0,...,aj
]
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and its subrings K[x],K[y],K[z] and K[y, z] ⊆ K[x, y, z]. We write

P
r+1
K = Proj(K[x, y, z])

and consider the four spaces

P
2k−1
K = Proj(K[x]), P

3l−1
K = Proj(K[y]),

P
r+1−2k−3l
K = Proj(K[z]), P

r+1−2k
K = Proj(K[y, z])

canonically as subspaces of Pr+1
K .

Using this notation we now may define the following subscrolls of X̃:

S(1) =X̃ ∩ Proj(K[x]) ⊆ 〈S(1)〉 = Proj(K[x]);

S(2) =X̃ ∩ Proj(K[y]) ⊆ 〈S(2)〉 = Proj(K[y]);

S(a) =X̃ ∩ Proj(K[z]) ⊆ 〈S(a)〉 = Proj(K[z]);

S(2, a) =X̃ ∩ Proj(K[y, z]) ⊆ 〈S(2, a)〉 = Proj(K[y, z]).

(C) Let ϕ : X̃ → P
1
K denote the canonical projection map which turns X̃ in a

variety ruled by the linear subspaces Pn−1
K = L(x) =: ϕ−1(x) with x ∈ P

1.

Let x = (λ : μ). Then L(x) consists precisely of the points given by

(. . . : uaμ : uaλ : . . . : vbμ
2 : vbμλ : vbλ

2 : . . .

. . . : wcμ
ac : . . . : wcμ

ac−1λ : . . . : wcμλ
ac−1 : wcλ

ac : . . .)

with (u1, . . . , uk, v1, . . . , vl, w1, . . . , wn−k−l) ∈ Kn \ {0} and integers satisfying 1 ≤
a ≤ k, 1 ≤ b ≤ l, 1 ≤ c ≤ n− k − l.

Notation and Remark 2.2. (A) Let N be an (m × n)-matrix whose entries are
linear forms in the polynomial ring K[t] = K[t0, . . . , ts] and let e be a nonnegative
integer. We then write Ie(N) for the ideal generated by all (e× e)-minors of N and
Ve(N) := V (Ie(N)) ⊆ P

s
K for the projective variety defined by these minors.

(B) Consider the (2× (k + l +
n−k−l∑
j=1

aj))-matrix

(
· · · xa,0 · · · yb,0 yb,1 · · · zc,0 · · · zc,ac−1 · · ·
· · · xa,1 · · · yb,1 yb,2 · · · zc,1 · · · zc,ac

· · ·

)

with entries in K[x, y, z], so that I2(M) ⊆ K[x, y, z] is the homogeneous vanishing

ideal of X̃ and hence
X̃ = V2(M).

Notation and Reminder 2.3. (A) Keep the previous notation and let p ∈ P
r+1
K .

We consider a linear projection P
r+1 \ {p} → P

r
K , denote the image of X̃ under

this projection by Xp and consider the induced finite morphism πp : X̃ → Xp

which is birational. Moreover Xp is of almost minimal degree, that is, degXp =
codimXp + 2.

(B) We introduce the secant cone and the secant locus

Secp(X̃) =
⋃

x∈X̃,closed,#(〈p,x〉∩X̃)>1

〈p, x〉 and Σp(X̃) = Secp(X̃) ∩ X̃.

Then, by [BS, Theorem 3.1] we know that Secp(X̃) = P
t−1
K and Σp(X̃) ⊆ Secp(X̃)

is a hyperquadric, where t = depthXp is the arithmetic depth of Xp.
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As X̃ is smooth, we also have 1 ≤ depthXp ≤ 4 by [BS, Corollary 7.6].

We also consider the submatrices Mx,My,Mz and My,z of M which consist of

the columns whose entries are the indeterminates indicated by the index. Then
clearly I2(Mx) ⊆ K[x], I2(My) ⊆ K[y], and so on.

(C) Next, we also consider the (3× (k + 2l − n+
n−k−l∑
j=1

aj))-matrix

M ′ :=

⎛
⎝ · · · yi,0 · · · zj,0 zj,1 · · · zj,aj−2 · · ·

· · · yi,1 · · · zj,1 zj,2 · · · zj,aj−1 · · ·
· · · yi,2 · · · zj,2 zj,3 · · · zj,aj

· · ·

⎞
⎠

with entries in K[y, z]1. This matrix allows us to describe the secant variety Sec(X̃)

of X̃ by

V3(M
′) = Sec(X̃) :=

⋃
p,q,∈X̃,p�=q

〈p, q〉

(see [C]). Similarly as above we now define the submatrices M ′
y and M ′

z.

It is easy to see that

I2(M
′
y) ⊆ I2(My) ⊆ K[y] and I2(M

′) ⊆ I2(My,z) ⊆ K[y, z].

In particular, in view of the observations made in part (B) we get:

S(2, a) ⊆ V2(M
′) ∩ 〈S(2, a)〉 and S(a) = V2(M

′
z) ∩ 〈S(a)〉 = V2(M

′) ∩ 〈S(a)〉.
(D) Next, we consider the Segre embedding

σ : P2
K × P

l−1
K ↪→ 〈S(2)〉 = P

3l−1
K ,

((u0 : u1 : u2), (v1 : . . . : vl)) �→ (. . . : uivj : . . .), i = 0, 1, 2, j = 1, . . . , l,

and set

Δ := Im(σ).

Then it is well known that Δ is defined by the 2× 2 minors of M ′
y; thus (see [S,

§5])
Δ = V2(M

′
y) ∩ 〈S(2)〉 = V2(M

′) ∩ 〈S(2)〉.

3. The rank-depth formula

We keep the hypotheses and notation of the previous section. Moreover we
continue with some further definitions.

Notation 3.1. If p = [p] ∈ P
r+1
K with

p = (. . . , as,0, as,1, . . . , bi,0, bi,1, bi,2, . . . , cj,0, cj,1, . . . , cj,aj
, . . .) ∈ Kr+1 \ {0},

we allow ourselves to write

M ′(p) :=

⎛
⎝ · · · bi,0 · · · cj,0 cj,1 · · · cj,aj−2 · · ·

· · · bi,1 · · · cj,1 cj,2 · · · cj,aj−1 · · ·
· · · bi,2 · · · cj,2 cj,3 · · · cj,aj

· · ·

⎞
⎠ ,

although this matrix is determined by p only up to a nonzero scalar multiple.

The aim of this section is to relate the rank of the matrix M ′(p) (which is

obviously well defined) with the arithmetic depth of the projected image Xp of X̃.
We begin with two auxiliary results.
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Lemma 3.2. Join(S(1), X̃) = Join(〈S(1)〉, S(2, a)).
Proof. “⊆”: This containment is easy to see.

“⊇”: Let z′′ ∈ 〈S(1)〉 and z′ ∈ S(2, a). It suffices to show that the line 〈z′, z′′〉
is contained in Join(S(1), X̃). So, let z ∈ 〈z′, z′′〉. Let x ∈ P

1
K \ ϕ(z′). Then

L(x) ∩ 〈S(1)〉 and L(ϕ(z′)) ∩ 〈S(1)〉
are two disjoint (k − 1)-dimensional subspaces of 〈S(1)〉 = P

2k−1
K . So, these two

subspaces span 〈S(1)〉. Hence there are points u ∈ L(ϕ(z′)) ∩ 〈S(1)〉 and v ∈
L(x) ∩ 〈S(1)〉 such that z′′ ∈ 〈u, v〉.

Observe that 〈u, z′〉 ⊆ L(ϕ(z′)) ⊆ X̃ and that v ∈ S(1). Moreover the four points
u, v, z, z′ are coplanar so that the lines 〈v, z〉 and 〈u, z′〉 intersect and the lines 〈v, z〉
and 〈u, z′〉 intersect in some point z. It follows that z ∈ 〈v, z〉 ⊆ Join(S(1), X̃). �
Lemma 3.3. Assume that k = 0. Then V2(M

′) \Δ ⊆ S(2, a).

Proof. Let q ∈ P
r
K be a point with q ∈ V2(M

′) \Δ such that

q = (. . . : bi,0 : bi,1 : bi,2 : . . . : cj,0 : cj,1 : . . . : cj,aj
: . . .).

Therefore the matrix M ′(q) = (B1 . . . BlC1 . . . Cn−l) has rank one, where

Bi :=

⎛
⎝bi,0
bi,1
bi,2

⎞
⎠ and Cj =

⎛
⎝cj,0 cj,1 · · · cj,aj−2

cj,1 cj,2 · · · cj,aj−1

cj,2 cj,3 · · · cj,aj

⎞
⎠

for i = 1, . . . , l, and j = 1, . . . , n− l.
Clearly some of the entries cj,t do not vanish, as otherwise we would have q ∈

〈S(2)〉 in contradiction to q ∈ V2(M
′) ∩ 〈S(2)〉 = Δ (see Notation and Remark 2.2

(D)). So, we find a largest index j such that the block matrix Cj does not vanish.
Assume first that cj,0 �= 0. Then, the fact that the columns of Cj are linearly

dependent shows that there is some λ ∈ K such that

Cj =

⎛
⎝cj,0λ

0 cj,0λ
1 · · · cj,0λ

aj−2

cj,0λ
1 cj,0λ

2 · · · cj,0λ
aj−1

cj,0λ
2 cj,0λ

3 · · · cj,0λ
aj

⎞
⎠ .

Now, by the linear dependence of the columns in M ′(p) the above formula holds
for all blocks Cj with the same element λ, and moreover all columns Bi have the
shape

Bi =

⎛
⎝bi,0λ

0

bi,0λ
1

bi,0λ
2

⎞
⎠ .

Setting bi := bi,0 for i = 1, . . . , l and cj = cj,0 for j = 1, . . . , n− l we get

bi,s = biλ
s, for i = 1, . . . , l, and s = 0, 1, 2,

cj,t = cjλ
t, for j = 1, . . . , n− l, and t = 0, 1, . . . , aj .

But this implies that q ∈ S(2, a).
Assume now that cj,0 = 0. As rank(Cj) = 1 it follows immediately that

Cj =

⎛
⎜⎜⎜⎜⎝

0 · · · · · · 0
...

...
... 0
0 · · · 0 cj,aj

⎞
⎟⎟⎟⎟⎠
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with cj,aj
�= 0. By the linear dependence of columns in M ′(q) it follows easily that

all blocks Cj must have this shape (with cj,aj
= 0, possibly) and that all columns

Bi have the shape

Bi =

⎛
⎝ 0

0
bi,2

⎞
⎠ .

This implies again that p ∈ S(2, a). This completes the proof. �

Theorem 3.4. For each point p ∈ P
r+1
K \ X̃ it follows that

depth(Xp) = dim(Σp(X̃)) + 2 = 4− rank(M ′(p)).

Proof. The first equality follows by the observations made in Notation and Re-
minder 2.3 (B).

Now, set

A := 〈S(1)〉, B := Join(S(1), X̃) and U := Join(A,Δ).

Then, by the secant stratification of X̃ (see [BP, Theorem 4.2]) we have the following
four cases:

1: dimΣp(X̃) = 2 if and only if p ∈ A \ X̃.

2: dimΣp(X̃) = 1 if and only if p ∈ (U ∪B) \ (A ∪ X̃).

3: dimΣp(X̃) = 0 if and only if p ∈ Sec(X̃) \ (U ∪B).

4: dimΣp(X̃) = −1 if and only if p ∈ P
r+1
K \ Sec(X̃).

Clearly p ∈ A \ X̃ is equivalent to M ′(p) = 0, whereas p ∈ P
r+1
K \ Sec(X̃) is

equivalent to p /∈ V3(M
′) (see Notation and Remark 2.2 (C)), whence to the fact

that rank(M ′(p)) = 3. So, we are in case 1 precisely if the matrix M ′(p) has rank
0 and in case 4 precisely if this matrix has rank 3. It remains to show that we are
in case 2 precisely if M ′(p) is of rank 1 and in case 3 precisely if M ′(p) is of rank
2. By exclusion, it suffices to prove the first of these equivalences. It thus remains
to show that for our point p ∈ P

r+1
K \ X̃ we have rank(M ′(p)) = 1 if and only if

p ∈ (U ∪B) \A.
Assume first that rank(M ′(p)) = 1. Then p ∈ V2(M

′) and p /∈ A. Now suppose
first that p ∈ 〈S(2, a)〉. Assume for the moment that p /∈ Δ. Then, by Lemma 3.3

applied to the scroll S(2, a) = X̃ ∩ 〈S(2, a)〉 ⊂ 〈S(2, a)〉 we get the contradiction

that p ∈ S(2, a) ⊂ X̃. Therefore we must have p ∈ Δ and hence p ∈ U in this case.
Suppose now that p /∈ 〈S(2, a)〉. As M ′(p) �= 0 we cannot have p ∈ A (see

Notation 3.1). Therefore we can write p ∈ 〈t, q〉 with t ∈ A and q ∈ 〈S(2, a)〉.
Observe that by definition of M ′, the matrix M ′(q) must be a nontrivial scalar
multiple of the matrix M ′(p) (see Notation 3.1), so that q ∈ V2(M

′). Since q ∈
S(2, a) we have p ∈ Join(A,S(2, a)) = B (see Lemma 3.2). So, if rank(M ′(p)) = 1,
we have indeed p ∈ (U ∪B) \A.

Assume now conversely that p ∈ (U ∪ B) \ A. As p /∈ A we must then have
rank(M ′(p)) ≥ 1. If p ∈ U , we write p = 〈t, q〉 with t ∈ A and q ∈ Δ ⊆ 〈S(2)〉. In
view of Notation and Remark 2.2 (D) it follows that q ∈ V2(M

′), whence p ∈ V2(M
′)

so that rank(M ′(p)) = 1. If p ∈ B = Join(A,S(2, a)), we write p ∈ 〈t, q〉 with t ∈ A
and q ∈ S(2, a). By Notation and Remark 2.2 (C) it follows that q ∈ V2(M

′),
whence p ∈ V2(M

′) so that rank(M ′(p)) = 1. �
Finally, we wish to extend our rank-depth formula to the case of possibly singular

scrolls. We first give a few preparatory remarks.
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Notation and Reminder 3.5. (A) Let h be an integer≥ −1. Consider the polynomial
ring K[w, x, y, z] = K[w0, .., wh, x, y, z] and the possibly singular scroll

X̃ = S(0, . . . , 0, 1, . . . , 1, 2, . . . , 2, a1, . . . , an−k−l)

= S(0, 1, 2, a) ⊂ P
r+h+2
K = Proj(K[w, x, y, z]).

Define the matrix M ′ as in Notation and Reminder 2.3 (A).

(B) Observe that X̃ is a cone with vertex

Vert(X̃) = P
h
K = Proj(K[w, x, y, z]/(x, y, z) = Proj(K[w])

over the smooth rational normal scroll

X̃0 = S(1, 2, a) ⊂ P
r+1
K = Proj(K[w, x, y, z]/(w)) = Proj(K[x, y, z])

defined in Notation and Remark 2.1 (A).

Now, let p ∈ P
r+h+2
K \ X̃ and let p0 be the point obtained by projecting p

from Vert(X̃) = P
h
K to the span 〈X̃0〉 = P

r+1
K . Then p0 ∈ P

r+1
K \ X̃0. Moreover if

Xp ⊂ P
r+h+1
K and (X0)p ⊂ P

r
K respectively are projections of X̃ from p and of X̃0

from p0, we have (see [BP, Remark 5.4]) that

depth(Xp) = dim(Σp(X̃)) + 2 = dim(Σp(X̃0)) + h+ 2.

Now, in the previous notation we obtain:

Corollary 3.6. For each point p ∈ P
r+h+2
K \ X̃ it follows that

depthXp = dim(Σp(X̃)) + 2 = 5 + h− rankM ′(p).

Proof. The claim is immediate by Theorem 3.4 and Notation and Reminder 3.5. �
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