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Abstract. The initial motivation for this paper is to discuss a more concrete
approach to an approximation theorem of Axler and Shields, which says that
the uniform algebra on the closed unit disc D generated by z and h, where h is
a nowhere-holomorphic harmonic function on D that is continuous up to ∂D,
equals C(D). The abstract tools used by Axler and Shields make harmonicity
of h an essential condition for their result. We use the concepts of plurisubhar-
monicity and polynomial convexity to show that, in fact, the same conclusion
is reached if h is replaced by h+ R, where R is a non-harmonic perturbation
whose Laplacian is “small” in a certain sense.

1. Introduction and statement of results

This paper is motivated by the following result of Axler and Shields [1] (in what
follows, D will denote the open unit disc in C centered at the origin):

Result 1.1 ([1], Theorem 4). Let h be a function in C(D) that is harmonic but
nowhere holomorphic on D. Then, [z, h]

D
= C(D).

Recall that [z, h]
D
denotes the uniform algebra on D generated by z and h. Axler

and Shields use results that are abstract and of extremely general scope, such as
the Bishop Antisymmetric Decomposition, to deduce their theorems. Harmonicity
plays a very central role in their approach, and it is difficult to answer even this
simple question: to what extent can we allow harmonicity to fail, by adding a small
perturbation R to h, and yet recover the conclusion of Result 1.1 with h+R replacing
h?

Axler and Shields themselves imply that they tried to prove Result 1.1 without
the use of their deep result on the L∞(D)-subalgebra H∞(D)[h] (which is where
harmonicity plays a key role) but to no avail (see page 636 of [1] for their statement).
Hence, there is an interest in a more explicit approach even to Result 1.1.
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We are able, using plurisubharmonic functions and polynomial convexity in a
simple way, to prove an Axler-Shields-type result which states that [z, h + R]

D
=

C(D), where R is a small (in an appropriate sense) non-harmonic perturbation.
Furthermore, taking R = 0 in our result reproduces the conclusion of Result 1.1,
thus providing a different approach to the Axler-Shields theorem.

The central result of this article is:

Theorem 1.2. Let h : D −→ C be a function that is harmonic on D and belongs
to C(D). Let R ∈ C2(D)∩C(D), and suppose that R is a non-harmonic perturbation
of h that is small in the following sense:

a) The set {z ∈ D : ∂z(h+R)(z) = 0} has zero Lebesgue measure.
b) The Laplacian of R has the bound

(1.1) |ΔR(z)| ≤ C
|∂z(h+R)(z)|2
sup

D
|h+R| ∀z ∈ D,

for some constant C ∈ (0, 1).

Then, [z, h+R]
D
= C(D).

Remark 1.3. Observe that we can recover Result 1.1 from the above theorem. First,
R ≡ 0 certainly satisfies (b). Note, furthermore, that ∂zh is anti-holomorphic on
D. Its zeros in D thus form a discrete subset of D, hence a set of zero Lebesgue
measure. All the hypotheses of Theorem 1.2 are satisfied, and hence [z, h]

D
= C(D).

Before proceeding to the proof, let us glance at the central ideas involved. The
proof may be summarised as follows (in what follows, given a function f and a set
S ⊂ dom(f), GrS(f) will denote the set graph(f) ∩ (S × C), i.e. the portion of the
graph of f whose projection onto the first coordinate is S):

• We start with a construction that goes back to Hörmander and Wermer [5]:
we define the function

ψr(z, w) := |w − (h+R)(rz)|2, (z, w) ∈ D(0; r−1)× C, r ∈ (0, 1),

which vanishes precisely on the graph of (h+R)(r·). We use the condition
(1.1) to show that ψr is plurisubharmonic in Δr := D(0; r−1) × D(0; ρ),
where ρ > 0 is large enough to contain the aforementioned graph.

• From the last fact and the fact that each Δr, r ∈ (0, 1), is Runge, we realise
that Gr

D
((h+R)(r·)) is polynomially convex. But because (h+R)(r·) −→

(h+R) uniformly on D as r ↑ 1, we deduce the same for Gr
D
(h+R).

• Knowing that Gr
D
(h+R) is polynomially convex, the first condition on R

allows us to appeal to a variation on a theorem of Wermer [6, Theorem 1].
Wermer’s original theorem would have required us to demand that h,R ∈
C1(D). However, with very slight modifications to Wermer’s proof, we can
appeal to the resulting theorem to infer that [z, h+R]

D
= C(D).

The main idea needed for the aforementioned variation on Wermer’s theorem
has been remarked upon in [6]. However, it might be of interest to the reader to see
the relevant lemmas carefully restated to suit the present setting (i.e. with lower
boundary regularity). Hence, we shall discuss this variation in Section 2. The proof
of Theorem 1.2 will be presented in Section 3.
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2. Technical results

We begin this section with a technical, but essentially elementary, result. We
must first explain some notation. Given a domain Ω ⊂ C

d and a real-valued function
F ∈ C2(Ω), the Levi form of F at z, denoted by LF (z; ·), is the quadratic form
given by

LF (z;V ) :=
d∑

j,k=1

∂2F

∂zj∂zk
(z)vjvk ∀V = (v1, . . . , vd) ∈ C

d.

Lemma 2.1. Let Ω be a domain in C and let f ∈ C2(Ω). Define the function
ψ(z, w) := |w − f(z)|2, (z, w) ∈ Ω×C. Then, for the Levi form Lψ(z, w;V ), V =
(V1, V2) ∈ C

2, we have

(2.1) Lψ(z, w;V ) ≥
(
2Re

(
(f(z)− w)∂2

zzf(z)
)
+ |∂zf(z)|2

)
|V1|2.

In particular, if f = h+R, where h ∈ harm(Ω), we have

(2.2) Lψ(z, w;V ) ≥
(
|∂z(h+R)(z)|2 + 2Re

(
(h(z) +R(z)− w)∂2

zzR(z)
))

|V1|2.

Proof. We compute:

∂2
zzψ(z, w) = 2Re(∂2

zzf(z).(f(z)− w)) + |∂zf(z)|2 + |∂zf(z)|2,
∂2
zwψ(z, w) = −∂zf(z),

∂2
wwψ(z, w) = 1.

Now, using the above calculation, we have the Levi form Lψ(z, w;V ), with V =
(V1, V2) ∈ C

2, as (we denote the function mapping (z, w) �−→ w by w):

Lψ(·;V ) =
(
2Re(∂2

zzf · (f − w)) + |∂zf |2 + |∂zf |2
)
|V1|2 − 2Re(∂zf · V1V2) + |V2|2

= |∂zf · V1 − V2|2 +
(
2Re(∂2

zzf · (f − w)) + |∂zf |2
)
|V1|2

≥
(
2Re(∂2

zzf · (f − w)) + |∂zf |2
)
|V1|2.

The second inequality follows by replacing f by h+R and noting that ∂2
zzh = 0. �

We now present the following variation on [6, Theorem 1]. We need to clarify
some notation needed in its proof: given a compact subset K � C

d, we define

P(K) := the class of uniform limits on K of holomorphic polynomials in C
d.

Theorem 2.2 (A variation on Theorem 1 of [6]). Let f : D −→ C be a continuous
function. Assume Gr

D
(f) is polynomially convex. Define

S := {z ∈ D : there exists a C-open neighbourhood Vz � z such that

f has continuous first-order partial derivatives on Vz},

and let W := {z ∈ S : ∂zf(z) 
= 0}. If D \ W has zero Lebesgue measure, then

[z, f ]
D
= C(D).

Remark 2.3. Wermer’s original result requires that f ∈ C1(D) and that ∂zf be non-
vanishing. But immediately after the proof of [6, Theorem 1], it is stated that the
hypothesis of [6, Theorem 1] can be weakened by letting the condition ∂zf(z) 
= 0
fail on a non-empty subset of zero Lebesgue measure. The key to Theorem 2.2
is that f can also be allowed to be non-differentiable on this exceptional set. We
justify this below.
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Sketch of the proof of Theorem 2.2. Since the proof involves minor modifications to
the original, we shall be brief. The notation μ ⊥ [z, f ]

D
will denote a complex mea-

sure μ ∈ C(D)� representing a bounded linear functional on C(D) that annihilates
[z, f ]

D
.

Wermer’s proof uses the following fact, which occurs as a part of Bishop’s proof
of [2, Theorem 4]:

(∗) (Bishop) For any complex measure μ ∈ C(D)�, let

Hμ(a) :=

∫

C

1

z − a
dμ(z).

If Hμ = 0 m-a.e., then μ = 0 (m denotes the planar Lebesgue measure on
C).

Wermer’s strategy consists of the following two parts:

(a) Use the Oka-Weil theorem to construct, for each a ∈ D, an open neigh-
bourhood D ⊃ Gr

D
(f) and a function h ∈ O(D) (which depend on a) such

that:
• ∃R > 0 such that h(Gr

D
(f)) ⊂ ER ∪ {0}, where ER denotes the com-

plement in C of the closed sector {reiθ : 0 ≤ r ≤ R, |θ| ≤ π/4};
• h is non-vanishing on Gr

D
(f) \ {(a, f(a))};

• ∃h1 ∈ O(D) satisfying h(z, w) = (z − a)h1(z, w) ∀(z, w) ∈ D.
(b) Apply (for a fixed a ∈ D) the dominated convergence theorem to the mea-

sure μ ⊥ [z, f ]
D
and the sequence

{h1(· , f)Pn ◦ h(· , f)}n∈Z+
⊂ P(D)

(where the sequence {Pn}n∈Z+
is as given by [6, Lemma 3]) to conclude

that Hμ(a) = 0. This implies that Hμ ≡ 0 because the above argument

works for each a ∈ D.

Since Hμ ≡ 0 for every μ ⊥ [z, f ]
D
, it follows from (∗) that [z, f ]

D
= C(D).

Observe that the inference Hμ ≡ 0 (for μ ⊥ [z, f ]
D
) is stronger than is necessary

for the desired conclusion. This suggests the following modified two-step strategy:

(a′) Construct the objects (D, h, ER, h1) having exactly the same properties as
in Part (a) above, but only associated to each a ∈ W .

(b′) Repeat Part (b) of Wermer’s strategy for all those points a ∈ D for which
Wermer’s dominated-convergence-theorem argument, showing Hμ(a) = 0,
still makes sense (call the complement of all such points E).

It is not hard to see that E = (D \W ) ∪ (Ẽ ∩ D), where:

Ẽ :=

{
a ∈ C :

∫

C

|z − a|−1d|μ|(z) = ∞
}
.

The set Ẽ has zero Lebesgue measure, which is a well-known fact about finite,
positive Borel measures in general. By exactly the same considerations as in Part (b)
and from the obvious fact that μ ⊥ [z, f ]

D
=⇒ Hμ(a) = 0 ∀a /∈ D, our modified

strategy gives us

μ ⊥ [z, f ]
D

=⇒ Hμ(a) = 0 ∀a ∈ C \ E .
Since, by hypothesis, m(E) = 0, we infer from (∗) that each μ ⊥ [z, f ]

D
is just the

zero measure. Hence, [z, f ]
D
= C(D). �
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3. The proof of Theorem 1.2

We recall a standard notation that we shall use in our proof. Given a domain
Ω ⊂ C

d and a compact subset K � Ω, we define the O(Ω)-hull of K as

K̂Ω := {z ∈ Ω : |f(z)| ≤ supK |f | ∀f ∈ O(Ω)}.

Proof of Theorem 1.2. We begin with a preliminary observation. The estimate
(1.1) may be rewritten as

|ΔR(z)| ≤ |∂z(h+R)(z)|2
sup

D
|h+R|+

(
1
C − 1

)
sup

D
|h+R|

,

whence we can certainly find a constant δ0 > 0 such that

sup
D

|h+R|+
(
1
C − 1

)
sup
D

|h+R| ≥ sup
D

|h+R|+ δ0.

Hence, for the remainder of this proof, we may assume that

(3.1) |ΔR(z)| ≤ |∂z(h+R)(z)|2
sup

D
|h+R|+ δ0

∀z ∈ D.

For each r ∈ (0, 1), let us define

ψr(z, w) := |w − (h+R)(rz)|2, (z, w) ∈ D(0; r−1)× C.

The Levi-form computations (2.1) and (2.2), taken together with the estimate (3.1)
on ΔR, establish that

(3.2) ψr is plurisubharmonic in Δr := D(0; r−1)×D(0;M + 2δ0) ∀r ∈ (0, 1),

where M := sup
D
|h+R|. Given these preliminaries, we can complete the proof in

two steps.

Step I. Polynomial convexity of Gr
D
(h+R).

Since (h+R) is uniformly continuous on D, it follows that:

For each ε > 0, ∃δ(ε) > 0 such that

0 < (1− r) ≤ δ(ε) =⇒ |(h+R)(rz)− (h+R)(z)| < ε ∀z ∈ D.(3.3)

Consider a point p = (z0, w0) ∈ D×D(0;M+2δ0)\GrD(h+R). Then, by definition,
ψ1(z0, w0) =: ε2p > 0. Write r(p) := 1− δ(εp/3), where δ(εp/3) is as given by (3.3).
Then, (3.3) tells us:

|w0 − (h+R)(r(p)z0)| ≥ |w0 − (h+R)(z0)| − |(h+R)(z0)− (h+R)(r(p)z0)|
> 2εp/3,

ψr(p)(z, w) = |(h+R)(z)− (h+R)(r(p)z)|2

< ε2p/9 ∀(z, w) ∈ Gr
D
(h+R).

By the last two estimates, we have just shown that

(3.4) ψr(p)(p) > 4ε2p/9 and ψr(p)(z, w) < ε2p/9 ∀(z, w) ∈ Gr
D
(h+R).
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Let us now writeK := Gr
D
(h+R). We claim that p /∈ K̂. To do so, we invoke a well-

known result of Hörmander [4, Theorem 4.3.4] which states that if Ω ⊂ C
d, d ≥ 2,

is a pseudoconvex domain and K � Ω is a compact subset, then the hull K̂Ω can
also be expressed as

K̂Ω = {z ∈ C
d : U(z) ≤ supK U ∀U ∈ psh(Ω)}.

It thus follows from (3.4) that p /∈ K̂Δr(p)
. Note that each Δr(p) is Runge. We

know therefore that K̂Δr(p)
= K̂. Since p was arbitrarily chosen, we have just

shown that

p /∈ K̂ ∀p ∈ D×D(0;M + 2δ0) \K.

Of course, it is easy to see that no point in C
2 \ (D ×D(0;M)) can belong to K̂.

Hence, K = Gr
D
(h+R) is polynomially convex.

Step II. Completing the proof.

We appeal to Theorem 2.2 with (h+ R) playing the role of f . In the terminology
of Theorem 2.2,

D \W = ∂D ∪ {z ∈ D : ∂z(h+R)(z) = 0},

which, by hypothesis, has zero Lebesgue measure. We have already established
that Gr

D
(h+ R) is polynomially convex. Thus, (h+ R) satisfies all the conditions

stated in Theorem 2.2, and we conclude that [z, h+R]
D
= C(D). �

Added in Proof. It was brought to our notice that stronger results subsuming
Result 1.1 had been established by Chirka [3] in 1969. However, there are gaps
in the proofs of [3, Theorem 4] and [3, Theorem 5], on which Chirka’s results rely.
The most significant gap is the one in the proof of Theorem 4, which is false as

stated. The proof appears to presume that (in the notation of [3, Theorem 4]) K̂A

is always connected. In short: [1] gives the earliest complete proof of Result 1.1 that
we are aware of. That said, we feel that the basic ideas in [3] could still (bypassing
Theorems 4 and 5 entirely) be made to work. �
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