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ANOSOV THEOREM FOR COINCIDENCES

ON SPECIAL SOLVMANIFOLDS OF TYPE (R)

KU YONG HA, JONG BUM LEE, AND PIETER PENNINCKX

(Communicated by Alexander N. Dranishnikov)

Abstract. Suppose that S and S′ are simply connected solvable Lie groups
of type (R) with the same dimension. We show that the Lefschetz coincidence
numbers of maps f, g : Γ\S → Γ′\S′ between special solvmanifolds Γ\S →
Γ′\S′ can be computed algebraically as follows:

L(f, g) = det(G∗ − F∗),

where F∗, G∗ are the matrices, with respect to any preferred bases, of mor-
phisms of Lie algebras induced by f and g. This generalizes a recent result by
S. W. Kim and J. B. Lee to special solvmanifolds of type (R). Moreover, we
can drop the dimension match condition imposed in the latter result.

1. Introduction

Let M and N be closed manifolds, and f, g : M → N continuous maps. Then
we define Coin(f, g) = {x ∈ M | f(x) = g(x)}, the coincidence set of f and g.
Coincidence theory for pairs f, g is a natural extension of fixed point theory for a
self-map f : M → M . There are well-known homotopy invariants in coincidence
theory which are the Lefschetz coincidence number L(f, g) and Nielsen coincidence
number N(f, g). Suppose that M,N are closed orientable manifolds of the same
dimension. Then L(f, g) is defined ([15, Chap. 7]). The Nielsen coincidence number
N(f, g) is a non-negative integer with the property that any two maps f ′, g′ which
are homotopic to f, g, respectively, have at least N(f, g) coincidences. The Nielsen
coincidence number is much more powerful than the Lefschetz coincidence number
but computing it is very hard.

In [4], Brooks, Brown, Pak and Taylor show that for a self-map f : Tn → Tn on
a torus Tn, the Nielsen number N(f) and the Lefschetz number L(f) are equal up
to sign, i.e. N(f) = |L(f)|. Additionally, they show that L(f) = det(I− f∗), where
f∗ : π1(T

n) → π1(T
n) is the endomorphism on π1(T

n) induced by f . In [1], Anosov
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generalizes this result to compact nilmanifolds: he proves that N(f) = |L(f)| for
any self-map f on a nilmanifold. He also gives a formula for the Lefschetz number
L(f). Let L be a connected, simply connected, nilpotent Lie group and Γ a uniform
lattice of L. Then by definition, M = Γ\L is a nilmanifold. One can show that
any self-map f : M → M is homotopic to a map obtained from an endomorphism
F : L → L for which F (Γ) ⊂ Γ. Let F∗ be the homomorphism of Lie algebras
induced by F . Then Anosov shows that L(f) = det(I − F∗).

The relation between the Nielsen number and the Lefschetz number for self-maps
on nilmanifolds has been generalized to coincidence theory by different authors
([14, 16]; see also [5, 9, 12]), who show that the Nielsen coincidence number N(f, g)
equals the absolute value of the Lefschetz coincidence number L(f, g) for any pair of
maps f, g : M → N between nilmanifolds of equal dimension. McCord generalizes
this result to special solvmanifolds ([14, Theorem 2.1]). In this way, he reduces the
computation of the Nielsen coincidence number of a pair of maps between special
solvmanifolds to the computation of the Lefschetz coincidence number. For a long
time, however, a practical formula for the Lefschetz coincidence number was only
known for maps on the torus ([3]). Only recently, this formula has been generalized
to nilmanifolds ([12]), but only under the ‘dimension match’ condition. Let L,L′

be simply connected, nilpotent Lie groups of equal dimension and Γ ⊂ L, Γ′ ⊂ L′

uniform lattices. For any f, g : Γ\L → Γ′\L′, there exist morphisms of Lie groups
Φ,Ψ : L → L′ such that Φ is a lift of a map homotopic to f and Ψ is a lift of
a map homotopic to g. Now Φ,Ψ : L → L′ induce morphisms of Lie algebras
Φ∗,Ψ∗ : L → L′. The uniform lattices Γ and Γ′ give rise to preferred bases for L

and L′ (a precise definition is in the next section). Let F∗ and G∗ be the matrices
of the morphisms Φ∗,Ψ∗ with respect to any preferred bases of L and L′. Then it
is shown in [12] that

(1.1) L(f, g) = det(G∗ − F∗)

when the ‘dimension match’ condition is satisfied, that is, when the Lie groups
γi(L) and γi(L

′) in the lower central series of L and L′ have equal dimension.
In this paper, we prove that formula (1.1) holds in general, also when the ‘di-

mension match’ condition is not satisfied. Additionally, we generalize the formula
to special solvmanifolds of type (R). The idea for our proof comes from the proofs
of [10, Proposition 2.7] and [15, Corollary 7.25], and [2, p. 398].

2. Solvmanifolds

We recall from [6, 10, 11] some definitions about solvable Lie groups and give
some basic properties which are necessary for our discussion. A connected solvable
Lie group S is said to be of type (NR) (for ‘no roots’) [11] if the eigenvalues of
Ad(x) : S → S are always either equal to 1 or else they are not roots of unity.
Solvable Lie groups of type (NR) were considered first in [11]. A connected solvable
Lie group S is said to be of type (R) (or completely solvable) if ad(X) : S → S has
only real eigenvalues for each X ∈ S. A connected solvable Lie group S is said to
be of type (E) (or exponential) if exp : S → S is surjective. Below we list some
important and relevant properties of connected solvable Lie groups. See [6, 7, 10]
for more details.
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(1) Abelian =⇒ Nilpotent =⇒ type (R) =⇒ type (E) =⇒ type (NR).
(2) (Rigidity of Lattices) Let S and S′ be connected and simply connected

solvable Lie groups of type (R), and let Γ be a lattice of S. Then any ho-
momorphism from Γ to S′ extends uniquely to a Lie group homomorphism
from S to S′.

Let S be a connected and simply connected solvable Lie group. A discrete
subgroup Γ of S is a lattice of S if Γ\S is compact, and in this case, we say that
Γ\S is a special solvmanifold. For a special solvmanifold, the universal covering
space is an orientable Lie group and all covering transformations are orientation-
preserving as left translations of this Lie group. Hence any special solvmanifold is
orientable. A special solvmanifold M = Γ\S is of type (R) if S is of type (R).

Let us first recall the construction of the Chevalley-Eilenberg complex of a Lie
algebra G: the complex is given by

0 −→
∧

nG −→ · · · −→
∧

2G −→ G −→ R −→ 0

with the differential

∂(w1 ∧ · · · ∧ wk) =
∑

i<j

(−1)i+j+1[wi, wj ] ∧ w1 ∧ · · · ∧ ŵi ∧ · · · ∧ ŵj ∧ · · · ∧ wk.

The exterior algebra
∧
G∗ over the dual G∗ of G is canonically identified with

the dual of
∧
G, and

∧
G∗ is a cochain complex with the coboundary operator δ,

defined as the transpose of ∂.
In what follows, we shall only deal with special solvmanifolds of type (R). We

start with the following result of Hattori [8].

Theorem 2.1. Let (
∧
S∗, δ) denote the Chevalley-Eilenberg complex associated to

the Lie algebra S of a simply connected solvable Lie group S of type (R). If Γ ⊂ S
is a lattice, then

H∗(Γ\S) ∼= H∗(
∧

S∗).

Recall that the Hirsch rank of Γ is equal to the dimension n of the Lie group
S. Since S is simply connected of type (R), the exponential map exp : S → S is a
diffeomorphism. We denote the inverse by log : S → S. We can choose a set of n
generators {γi} of Γ and write ei = log γi. Then (ei) is a basis of the vector space
S and e1 ∧ · · · ∧ en represents a fundamental class of Hn(

∧
S). We refer to (ei) as

a preferred basis of S or of the uniform lattice Γ.
Let f : Γ\S → Γ′\S′ be a continuous map between special solvmanifolds of type

(R) with the same dimension n. Take any lifting f̃ : S → S′ of f . This lifting
induces a homomorphism ϕ : Γ → Γ′ by the following rule:

f̃α = ϕ(α)f̃ for α ∈ Γ.

By the rigidity of lattices, ϕ extends uniquely to a Lie group homomorphism F :
S → S′. Then F induces a map φF : Γ\S → Γ′\S′ so that F is a lifting of φF , and
the induced homomorphism between the groups Γ,Γ′ of covering transformations
is exactly the same as ϕ. Hence f is homotopic to φF . Since we are dealing with
homotopy invariants, we shall assume that f = φF ; in other words, f is covered by
a Lie group homomorphism F : S → S′.
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Denote by F∗ : S → S′ the differential of F , and by F ∗ : S′∗ → S∗ the
transpose of F∗. By Theorem 2.1, we have the commutative diagrams

H∗(Γ\S)
H∗(f)−−−−→ H∗(Γ

′\S′)
⏐⏐�∼=

⏐⏐�∼=

H∗(
∧
S)

H∗(F∗)−−−−−→ H∗(
∧
S′)

H∗(Γ′\S′)
H∗(f)−−−−→ H∗(Γ\S)

⏐⏐�∼=
⏐⏐�∼=

H∗(
∧
S′∗)

H∗(F∗)−−−−−→ H∗(
∧
S∗)

3. Theorem

Let Γ\S and Γ′\S′ be special solvmanifolds of type (R) with the same dimension
n. If we use F∗ : S → S′ to denote the morphism of Lie algebras associated to
f : Γ\S → Γ′\S′ as in the previous section (and similarly for G∗), then we can
formulate our main result as follows:

Theorem 3.1. Let f, g : Γ\S → Γ′\S′ be continuous maps. Then

L(f, g) = det(G∗ − F∗),

where F∗ and G∗ are expressed with respect to any preferred bases of S and S′.

For every integer p > 0, let

Fp(n) = {(i1, i2, . . . , ip) | 1 ≤ i1 < · · · < ip ≤ n}.
Let M = (aij) be an n × n real matrix. If I, J ∈ Fp(n), then we shall denote
by MI,J the square matrix of type (I, J) equal to (ai,j)(i,j)∈I×J . The determinant
det(MI,J ) is called the minor of the matrix M of indices I, J ; these determinants
are also called the minors of M of order p. With this notation:

Lemma 3.2. Let F : V → W be a linear map between vector spaces V and W of the
same dimension n, and let M be a matrix of F with respect to a basis (ei) of V and a
basis (fj) of W . Then, for every integer p ≤ n, the matrix of

∧p
F :

∧p
V →

∧p
W

with respect to the basis (eI)I∈Fp(n) of
∧p V and the basis (fJ )J∈Fp(n) of

∧p W is
the matrix (det(MI,J )) of type (Fp(n), Fp(n)).

The matrix (det(MI,J )) of type (Fp(n), Fp(n)) is called the p-th exterior power
of the matrix M and is denoted by

∧p
(M). When p = n,

∧n
(M) is the matrix

with the single element detM . For I ∈ Fp(n), denote by I ′ the complement of I so
that I ′ ∈ Fn−p(n). Then:

Lemma 3.3. Let M,N be n× n matrices. Then

det(N −M) =

n∑

p=0

(−1)p
∑

I,J∈Fp(n)

det(MI,J ) det(NI′,J′).

Proof of Theorem 3.1. Form the diagram

Hp(
∧
S)

Hp(F∗)−−−−−→ Hp(
∧
S′)

�⏐⏐D1

�⏐⏐D2

Hn−p(
∧
S∗)

Hn−p(G∗)←−−−−−−− Hn−p(
∧
S′∗),

where D1 and D2 are Poincaré duality isomorphisms. We define

Θp = D1 ◦Hn−p(G∗) ◦D−1
2 ◦Hp(F∗) : Hp(

∧
S) −→ Hp(

∧
S′).
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Then by Theorem 2.1, the Lefschetz coincidence number of f and g is given by

L(f, g) =

n∑

q=0

(−1)qtr(Θq).

Now we choose a preferred basis {ei} for S and a preferred basis {fi} for S′

so that e1 ∧ · · · ∧ en represents a fundamental class of Hn(
∧
S) and f1 ∧ · · · ∧ fn

represents a fundamental class of Hn(
∧
S′). Thus the evaluation map

∧p
S∗ →∧n−p

S at e1 ∧ · · · ∧ en, e
∗
I �→ eI′ , is an isomorphism and induces the Poincaré

duality isomorphism D1 : Hp(
∧
S∗) → Hn−p(

∧
S). The isomorphism D2 can be

described similarly.
To evaluate the Lefschetz number, we look at Θp on the (co)chain level. Namely,

we observe the following commutative diagram of (co)chain complexes that induces
Θp:

R −−−−→ R ∼=
∧n

S′∗
∧n G∗

−−−−→
∧n

S∗ ∼= R
�⏐⏐

�⏐⏐
�⏐⏐

S
F∗−−−−→ S′ ∼=

∧n−1
S′∗

∧n−1 G∗

−−−−−−→
∧n−1

S∗ ∼= S
�⏐⏐

�⏐⏐
�⏐⏐

∧2
S

∧2 F∗−−−−→
∧2

S′ ∼=
∧n−2

S′∗
∧n−2 G∗

−−−−−−→
∧n−2

S∗ ∼=
∧2

S
�⏐⏐

�⏐⏐
�⏐⏐

...
...

...
�⏐⏐

�⏐⏐
�⏐⏐

∧n
S

∧n F∗−−−−→
∧n

S′ ∼= R −−−−→ R ∼=
∧n

S.

With respect to the fixed bases (ei), (fj) of S,S′ and the corresponding bases
(eI)I∈Fp(n), (fJ )J∈Fp(n) of

∧p
S,

∧p
S′, by Lemma 3.2, the matrix of

∧p F∗ is the
p-th exterior power of the matrix F∗, i.e.,

∧
pF∗ = [det(F∗I,J )]I,J∈Fp(n)

.

Taking the dual, we immediately have that
∧p

F ∗ is the transpose of
∧p

F∗. Con-
sequently, the chain map

∧p
S

∧p F∗−−−−→
∧p

S′ ∼=
∧n−p

S′∗
∧n−p G∗

−−−−−−→
∧n−p

S∗ ∼=
∧p

S

is given by the matrix

[
det(G∗I′,J′)

]t
I,J∈Fp(n)

· [det(F∗I,J )]I,J∈Fp(n)
.

The trace of this matrix is
∑

I,J∈Fp(n)

det(F∗I,J ) det(G∗I′,J′).
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By the Hopf trace theorem together with Lemma 3.3, we have

L(f, g) =

n∑

p=0

(−1)p tr(Θp) =

n∑

p=0

(−1)ptr{
∧

p
S →

∧
p
S}

=
n∑

p=0

(−1)p
∑

I,J∈Fp(n)

det(F∗I,J ) det(G∗I′,J′)

= det(G∗ − F∗).

Finally, suppose that (e′i) and (f ′
j) are other bases for S and S′, respectively.

We note that the transition matrices from one preferred basis to another one (both
corresponding to the same fundamental class) have determinant +1. It follows that
det(G∗ − F∗) does not depend on the choice between the pairs of preferred bases
(ei), (fj) and (e′i), (f

′
j) of S,S′. Hence we have completed the proof. �

4. Examples

In this section, we illustrate, by some examples, how practical the algebraic
coincidence formula is. In the first example, we will consider maps from the three-
torus to a three-dimensional nilmanifold. Here the result from [12] cannot be applied
since the ‘dimension match’ condition is not satisfied.

In the second example we will consider self-maps on a three-dimensional solv-
manifold. Here, the result from [12] cannot be applied either since [12] only concerns
nilmanifolds.

Example 4.1. The Lie group Nil,

Nil =

⎧
⎨

⎩

⎡

⎣
1 x z
0 1 y
0 0 1

⎤

⎦
∣∣∣ x, y, z ∈ R

⎫
⎬

⎭ ,

is one of the eight geometries that one considers in the study of 3-manifolds. Its
Lie algebra nil is

nil =

⎧
⎨

⎩

⎡

⎣
0 a c
0 0 b
0 0 0

⎤

⎦
∣∣∣ a, b, c ∈ R

⎫
⎬

⎭ .

For any integer k > 0, we consider the subgroups Γk of Nil:

Γk =

⎧
⎨

⎩

⎡

⎣
1 m �

k
0 1 n
0 0 1

⎤

⎦
∣∣∣ 	,m, n ∈ Z

⎫
⎬

⎭ .

These are uniform lattices of Nil, and every uniform lattice of Nil is isomorphic to
some Γk.

In what follows, we fix an (ordered) basis

x =

⎡

⎣
1 1 0

k
0 1 0
0 0 1

⎤

⎦ , y =

⎡

⎣
1 0 0

k
0 1 1
0 0 1

⎤

⎦ , z =

⎡

⎣
1 0 1

k
0 1 0
0 0 1

⎤

⎦
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for Γk. Under the logarithmic diffeomorphism log : Nil → nil, this basis is mapped
to a preferred basis of the vector space nil. This basis is

logx =

⎡

⎣
0 1 0

k
0 0 0
0 0 0

⎤

⎦ , logy =

⎡

⎣
0 0 0

k
0 0 1
0 0 0

⎤

⎦ , log z =

⎡

⎣
0 0 1

k
0 0 0
0 0 0

⎤

⎦ .

Let f, g : Z3\R3 → Γk\Nil be maps. Using the construction exposed at the end
of Section 2, we may assume that f has a lift F : R3 → Nil that is a morphism of Lie
groups so that F (Z3) ⊂ Γk and that g has a lift G : R3 → Nil that is a morphism
of Lie groups so that G(Z3) ⊂ Γk. Denote by ϕ : Z3 → Γk the restriction of F . We
find all the possible homomorphisms ϕ : Z3 → Γk. To do so, choose e1 = (1, 0, 0),
e2 = (0, 1, 0) and e3 = (0, 0, 1) as a preferred basis for Z3. Let F∗ : R3 → nil be the
morphism of Lie algebras induced by F : R3 → Nil. For i = 1, 2, 3, write

F∗(ei) = ai logx+ bi logy + ci log z.

Then

F (ei) = exp(F∗(log(ei))) = exp(F∗(ei)) = exp(ai logx+ bi logy + ci log z)

= exp

⎛

⎝

⎡

⎣
0 ai

ci
k

0 0 bi
0 0 0

⎤

⎦

⎞

⎠ =

⎡

⎣
1 ai

ci
k + aibi

2
0 1 bi
0 0 1

⎤

⎦ .

Because F (ei) ∈ Γk, we have that ai, bi ∈ Z and ci+k aibi
2 ∈ Z. Write zi = ci+k aibi

2 .

Then zi ∈ Z and ci = zi − k aibi
2 .

Because F∗ is a morphism of Lie algebras,

0 = F∗([e1, e2]) = [F∗(e1), F∗(e2)]

= [a1 logx+ b1 logy + c1 log z, a2 logx+ b2 logy + c2 log z]

= k(a1b2 − a2b1) log z.

Hence (a1, b1) and (a2, b2) are linearly dependent. One shows that (a1, b1), (a2, b2)
and (a3, b3) are linearly dependent. Let V be the subspace of R2 spanned by (a1, b1),
(a2, b2) and (a3, b3) and let (a, b) be a generator of the group V ∩Z

2 which is cyclic.
Then there exist d1, d2, d3 ∈ Z such that ai = dia and bi = dib. We see that there
exist a, b, d1, d2, d3, z1, z2, z3 ∈ Z such that for i = 1, 2, 3,

F∗(ei) = dia logx+ dib logy +

(
zi − k

d2i ab

2
log z

)
.

Hence with respect to the preferred bases {e1, e2, e3} of R3 and {logx, logy, log z}
of nil, the matrix of F∗ is given by

F∗ =

⎡

⎣
d1a d2a d3a
d1b d2b d3b

z1 − k
d2
1ab
2 z2 − k

d2
2ab
2 z3 − k

d2
3ab
2

⎤

⎦ ,

where a, b, d1, d2, d3, z1, z2, z3 ∈ Z. Conversely, one can show that any such matrix
corresponds to a morphism of Lie groups F : R3 → nil that restricts to a morphism
ϕ : Z3 → Γk.

Therefore, by Theorem 3.1, the Lefschetz coincidence number of f, g is given by

L(f, g) = det(G∗ − F∗),
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where F∗ is a matrix as described above and G∗ is similar.

Example 4.2. The solvable Lie group Sol is also one of the eight geometries. One
can describe Sol as a semi-direct product R2

�ϕ R where t ∈ R acts on R
2 via the

map

ϕ(t) =

[
et 0
0 e−t

]
.

Its Lie algebra sol is given as sol = R
2
�σ R, where

σ(t) =

[
t 0
0 −t

]
.

The Lie group Sol can be embedded into Aff(3) as

⎡

⎢⎢⎣

et 0 0 x
0 e−t 0 y
0 0 1 t
0 0 0 1

⎤

⎥⎥⎦ ,

where x, y and t are real numbers, and hence its Lie algebra sol is isomorphic to
the algebra of matrices

⎡

⎢⎢⎣

t 0 0 a
0 −t 0 b
0 0 0 t
0 0 0 0

⎤

⎥⎥⎦ .

Note that Sol is of type (R). Let

Γ = 〈a, b, s | [a, b] = 1, sas−1 = a�11b�21 , sbs−1 = a�12b�22〉

be a lattice of Sol. By [13, Corollary 2.2], there are linearly independent vectors
(x1, y1), (x2, y2) in R

2 and a nonzero number t0 ∈ R so that they satisfy

[
x1 x2

y1 y2

]−1 [
et0 0
0 e−t0

]
=

[
	11 	12
	21 	22

] [
x1 x2

y1 y2

]−1

.

In this case, Γ is embedded in Sol as follows:

a =

⎡

⎢⎢⎣

1 0 0 x1

0 1 0 y1
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦ , b =

⎡

⎢⎢⎣

1 0 0 x2

0 1 0 y2
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦ , s =

⎡

⎢⎢⎣

et0 0 0 0
0 e−t0 0 0
0 0 1 t0
0 0 0 1

⎤

⎥⎥⎦ .

Let F : Sol → Sol be a Lie group homomorphism of Sol sending Γ into Γ itself.
Then by [13, Theorem 2.4], F is one of the following:

F (a) = aub
�21
�12

v
, F (b) = avb

u+
�22−�11

�12
v
, F (s) = apbqs;(I)

F (a) = a−ubv, F (b) = a
�11−�22

�21
u− �12

�21
v
bu, F (s) = apbqs−1;(II)

F (a) = 1, F (b) = 1, F (s) = apbqsm with m �= ±1,(III)
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for some integer powers. This F induces a map φF : Γ\Sol → Γ\Sol so that the
following diagram commutes:

Sol
F−−−−→ Sol

⏐⏐�
⏐⏐�

Γ\Sol φF−−−−→ Γ\Sol
Write e1 = log a, e2 = log b, e3 = log s. Then {e1, e2, e3} is a preferred basis of sol;
they are

e1 =

⎡

⎢⎢⎣

0 0 0 x1

0 0 0 y1
0 0 0 0
0 0 0 0

⎤

⎥⎥⎦ , e2 =

⎡

⎢⎢⎣

0 0 0 x2

0 0 0 y2
0 0 0 0
0 0 0 0

⎤

⎥⎥⎦ , e3 =

⎡

⎢⎢⎣

t0 0 0 0
0 −t0 0 0
0 0 0 t0
0 0 0 0

⎤

⎥⎥⎦ .

With respect to this basis, the induced differential F∗ : sol → sol can be expressed
by

⎡

⎣
u v ∗

�21
�12

v u+ �22−�11
�12

v ∗
0 0 1

⎤

⎦ ;(I)

⎡

⎣
−u �11−�22

�21
u− �12

�21
v ∗

v u ∗
0 0 −1

⎤

⎦ ;(II)

⎡

⎣
0 0 ∗
0 0 ∗
0 0 m

⎤

⎦ .(III)

Therefore by Theorem 3.1, the Lefschetz coincidence number and the Nielsen coin-
cidence number of the maps φF , φG : Γ\Sol → Γ\Sol are

L(φF , φG) = det(G∗ − F∗), N(φF , φG) = | det(G∗ − F∗)|,

where F∗, G∗ are the matrices of types (I), (II), or (III) according to whether φF , φG

are of types (I), (II), or (III).
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