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ALMOST MAXIMAL TOPOLOGIES ON SEMIGROUPS

YEVHEN ZELENYUK

(Communicated by Alexander N. Dranishnikov)

Abstract. A topology on a semigroup is left invariant if left translations are
continuous and open. We show that for every infinite cancellative semigroup
S and n ∈ N, there is a zero-dimensional Hausdorff left invariant topology on
S with exactly n nonprincipal ultrafilters converging to the same point, all of
them being uniform.

1. Introduction

A topological space is called maximal if it has no isolated point but it does have
an isolated point in any stronger topology. A Hausdorff space X is maximal if and
only if for every point x ∈ X, there is exactly one nonprincipal ultrafilter on X
converging to x. We say that a space X is almost maximal if it has no isolated
point and for every x ∈ X there are only finitely many nonprincipal ultrafilters
on X converging to x. A space X is homogeneous if for every x, y ∈ X there is a
homeomorphism f : X → X with f(x) = y. All topologies are assumed to satisfy
the T1 separation axiom.

A topology T on a semigroup S is left invariant if for each a ∈ S, the left
translation S � x �→ ax ∈ S is continuous and open in T . Equivalently, T is left
invariant if for each U ∈ T and a ∈ S, both aU ∈ T and a−1U ∈ T , where

a−1U = {x ∈ S : ax ∈ U}.
If S has identity 1, a left invariant topology on S is completely determined by the
neighborhood filter of 1. For each a ∈ S, the subsets aU , where U runs over a
neighborhood base at 1, form a neighborhood base at a. If S is commutative, we
say it is translation invariant instead of left invariant.

In this paper we study almost maximal left invariant topologies on semigroups.
We show that for every infinite cancellative semigroup S and n ∈ N, there is a
zero-dimensional left invariant topology on S with exactly n nonprincipal ultrafil-
ters on S converging to the same point, all of them being uniform. Recall that a
semigroup is cancellative if both left and right translations are injective. A topol-
ogy is zero-dimensional if it has a base of clopen sets. An ultrafilter p on S is
uniform if for every A ∈ p, |A| = |S|. Since a left invariant topology on a group is
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homogeneous, it follows that, for every infinite cardinal κ and n ∈ N, there exists a
homogeneous zero-dimensional space of cardinality κ with exactly n nonprincipal
ultrafilters converging to the same point, all of them being uniform.

The precise statement and the proof of the main result involve the Stone-Čech
compactification βS of a discrete semigroup S. We take the points of βS to be the
ultrafilters on S, the principal ultrafilters being identified with the points of S, and
we write S∗ and U(S) for the sets of nonprincipal and uniform ultrafilters on S,
respectively. The topology of βS is generated by taking as a base the subsets

A = {p ∈ βS : A ∈ p},

where A ⊆ S. For p, q ∈ βS, the ultrafilter pq has a base consisting of subsets
⋃

{xBx : x ∈ A},

where A ∈ p and Bx ∈ q. Under this operation, βS is a compact Hausdorff right
topological semigroup with S contained in its topological center. A semigroup T
endowed with a topology is right topological if for each p ∈ T , the right translation

T � x �→ xp ∈ T

is continuous. The topological center Λ(T ) of a right topological semigroup T
consists of all a ∈ T such that the left translation

T � x �→ ax ∈ T

is continuous. An elementary introduction to the semigroup βS can be found in
[3].

Now let S be a semigroup with identity 1 and let T be a left invariant topology
on S. Define Ult(T ) ⊆ S∗ by

Ult(T ) =
⋂

U∈N
U \ {1},

where N is the neighborhood filter of 1 in T , or equivalently,

Ult(T ) = {p ∈ S∗ : p converges to 1 in T }.

Then Ult(T ) is a closed subsemigroup of βS called the ultrafilter semigroup of T .
Not every closed subsemigroup in S∗ is the ultrafilter semigroup of a left invariant

topology. However, every finite subsemigroup is.

Lemma 1.1. For every finite semigroup F in S∗, there is a left invariant topology
T on S such that Ult(T ) = F .

Proof. Let F be the intersection of all ultrafilters from F so that
⋂

A∈F
A = F.

For every x ∈ S, let Nx denote the filter on S with a base consisting of subsets of
the form xA∪ {x}, where A ∈ F . We claim that {Nx : x ∈ S} is the neighborhood
system for a left invariant topology T on S. To show this, we have to verify that

(i) for every x ∈ S,
⋂
Nx = {x},

(ii) for every x ∈ S and U ∈ Nx, {y ∈ S : U ∈ Ny} ∈ Nx, and
(iii) for every x, y ∈ S, yNx is a base for Nyx.



ALMOST MAXIMAL TOPOLOGIES ON SEMIGROUPS 2259

Statements (i) and (iii) are obvious. To check (ii), let x ∈ S and U ∈ Nx.
Then x−1U ∈ F . For every p, q ∈ F , pick Ap,q ∈ p such that Ap,q ⊆ x−1U

and Ap,q · q ⊆ x−1U . Put A =
⋃

p∈F

⋂
q∈F Ap,q. Then A ∈ F , A ⊆ x−1U and

AF ⊆ x−1U , so xA ⊆ U and xAF ⊆ U . Define V ∈ Nx by V = xA ∪ {x}. We
claim that for every y ∈ V , there is Wy ∈ Ny such that Wy ⊆ U .

Indeed, if y = x, put Wy = V . Otherwise y ∈ xA. For every q ∈ F , pick By,q ∈ q
such that yBy,q ⊆ U . Put By =

⋃
q∈F By,q. Then By ∈ F and yBy ⊆ U . Define

Wy ∈ Ny by Wy = yBy ∪ {y}. �

Thus, there is a one-to-one correspondence between almost maximal left invariant
topologies on S and finite semigroups in S∗. Among the latter, the most common
are bands, that is, semigroups of idempotents. The simplest examples of bands are
left zero semigroups, defined by the identity xy = x, right zero semigroups, defined
by the identity xy = y, and chains of idempotents, with respect to the order x ≤ y
if and only if xy = yx = x. The direct product of a left zero semigroup and a right
zero semigroup is called a rectangular semigroup. Each band is a disjoint union of
its maximal rectangular subsemigroups called rectangular components, and these
are partially ordered by the relation P ≤ Q if and only if PQ ⊆ P , equivalently
QP ⊆ P [5, Theorem 1].

The aim of this paper is to show that

Theorem 1.2. For every infinite cancellative semigroup S with identity and for
every n ∈ N, there is a zero-dimensional left invariant topology T on S with Ult(T )
being a chain of n idempotents in U(S).

Note that ‘with identity’ in Theorem 1.2 is not a restriction. If S is cancellative,
so is S1 [1, Section 1.1, Exercise 2].

Theorem 1.2 has been previously proved in the following cases:

(a) S is a countably infinite group and n = 1 [7],
(b) S is a countably infinite group [11], and
(c) n = 1 [14].

The proof of Theorem 1.2 occupies the rest of the paper. Basically, it consists
of proving that there is a locally zero-dimensional translation invariant topology
on the Boolean group with the ultrafilter semigroup being a chain of n uniform
idempotents. A space is locally zero-dimensional if every point has a neighborhood
which is a zero-dimensional subspace. Theorem 1.2 is a consequence of this result
and the so-called Local Monomorphism Theorem [14, Theorem 6.4].

2. The ultrafilter semigroup

of an almost maximal left invariant topology

Throughout the rest of the paper, we will use the following notation.

Definition 2.1. Let κ be an infinite cardinal and let G =
⊕

κ Z2. For each α < κ,
let Gα = {x ∈ G : x(γ) = 0 for all γ < α}, and let G denote the group topology on
G with a neighborhood base at 0 consisting of subgroups Gα, where α < κ. The
semigroup Hκ is defined by Hκ = Ult(G).

The semigroup Hκ enjoys remarkable properties. In particular, every compact
right topological semigroup T containing a dense subset A such that |A| ≤ κ and
A ⊆ Λ(T ) is a continuous homomorphic image of Hκ [4, Theorem 2.5], and for
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every cancellative semigroup S of cardinality κ, there are copies of Hκ in S∗ [4,
Theorem 2.7]. In fact, the second result can be a little bit strengthened.

Theorem 2.2. Let S be an infinite cancellative semigroup with identity and let
|S| = κ. Then there is a zero-dimensional left invariant topology T on S such that
Ult(T ) ⊆ U(S) and Ult(T ) is topologically and algebraically isomorphic to Hκ.

The proof of Theorem 2.2 is based on the following lemma.

Lemma 2.3. Let S be an infinite cancellative semigroup with identity and let |S| =
κ. Then there are two κ-sequences (xα)1≤α<κ and (yα)α<κ in S with y0 = 1 such
that every element of S is uniquely representable in the form yα0

xα1
· · ·xαn

, where
n < ω and α0 < α1 < . . . < αn < κ.

Proof. Enumerate S as {sα : α < κ}. Put y0 = 1. Fix 0 < γ < κ and suppose that
we have constructed (xα)1≤α<γ and (yα)α<γ such that all products yα0

xα1
· · ·xαn

,
where n < ω and α0 < α1 < . . . < αn < γ, are different. Pick as yγ the first
element in the sequence (sα)α<κ not belonging to the subset

Sγ = {yα0
xα1

· · ·xαn
: n < ω and α0 < α1 < . . . < αn < γ}.

Then pick xγ ∈ S \ (S−1
γ Sγ). (Here, S−1

γ Sγ =
⋃

x∈Sγ
x−1Sγ .) This can be done

because |S−1
γ Sγ | ≤ |Sγ |2 < κ. Then whenever n < ω and α0 < α1 < . . . < αn = γ,

one has yα0
xα1

· · ·xαn
/∈ Sγ . Also if yα0

xα1
· · ·xαn

and yβ0
xβ1

· · ·xβm
are different

elements of Sγ , the elements yα0
xα1

· · ·xαn
xγ and yβ0

xβ1
· · ·xβm

xγ are different as
well. �
Proof of Theorem 2.2. Let (xα)1≤α<κ and (yα)α<κ be sequences guaranteed by
Lemma 2.3. Define ϕ : S → κ by

ϕ(yα0
xα1

· · ·xαn
) = αn,

where n < κ and α0 < α1 < . . . < αn < κ. Then for every x ∈ S and ϕ(x) < α < κ,
define B(x, α) ⊆ S by

B(x, α) = {xxα1
· · ·xαn

: n < ω, α ≤ α1 < . . . < αn < κ}.
The subsets B(x, α) possess the following properties:

(i) for every x ∈ S, (B(x, α))ϕ(x)<α<κ is a decreasing sequence of subsets of S
with

⋂
ϕ(x)<α<κ B(x, α) = {x};

(ii) whenever x, y ∈ S, x 	= y, ϕ(x) < α < κ and ϕ(y) < γ < κ, one has
B(y, γ) ⊆ B(x, α) if y ∈ B(x, α) and B(y, γ) ∩B(x, α) = ∅ otherwise;

(iii) whenever x, y ∈ S and max{ϕ(y), ϕ(xy)} < γ < κ, one has xB(y, γ) =
B(xy, γ).

It follows that {B(x, α) : x ∈ S, ϕ(x) < α < κ} is a base for a zero-dimensional left
invariant topology T on S.

Clearly Ult(T ) ⊆ U(S). To see that Ult(T ) is topologically and algebraically
isomorphic to Hκ, let B = B(1, 1). Define f : B → G by

supp(f(y0xα1
· · ·xαn

)) = {α1, . . . , αn},
where n < ω and 0 < α1 < . . . < αn < κ. As usual, for every z ∈ G,

supp(z) = {α < κ : z(α) 	= 0}.
Let f : c�βSB → βG denote the continuous extension of f . Then f |Ult(T ) :

Ult(T ) → Hκ is a topological and algebraic isomorphism. �
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Remark 2.4. It is easy to see that the condition ‘cancellative’ in Lemma 2.3 and
Theorem 2.2 may be replaced by the following weaker one: every system of < κ
inequalities over S of the form ax 	= b, where a, b ∈ S, or ax 	= bx, where a, b ∈ S
and a 	= b, has a solution in S.

Now we shall show how one can construct Hausdorff almost maximal left invari-
ant topologies.

We say that an object P in some category is an absolute coretract if for every
surjective morphism g : R → P there exists a morphism h : P → R such that
g ◦ h = idP . Let C denote the category of compact Hausdorff right topological
semigroups.

Theorem 2.5. Let S be an infinite cancellative semigroup with identity, let P be
a finite absolute coretract in C, and let F be a subsemigroup of P . Then there is a
left invariant Hausdorff topology T on S such that Ult(T ) ⊆ U(S) and Ult(T ) is
isomorphic to F .

Proof. By Theorem 2.2, there is a zero-dimensional left invariant topology T0 on S
such that Ult(T0) ⊆ U(S) and Ult(T0) is topologically and algebraically isomorphic
to Hκ. Let R = Ult(T0). Then there is a surjective continuous homomorphism
g : R → P . Consequently, there is an injective homomorphism h : P → R (such
that g ◦ h = idP ). Let Q = h(F ). Then there is a left invariant topology T on S
such that Ult(T ) = Q. We have that Ult(T ) ⊆ U(S), Ult(T ) is isomorphic to F
and T is Hausdorff, since T0 ⊆ T . �

To construct regular almost maximal left invariant topologies is much harder
than Hausdorff ones. First, we shall study their ultrafilter semigroups. This, in
turn, involves the notion of a local homomorphism.

Let S be a semigroup with identity, let T be a left invariant topology on S,
and let X be an open neighborhood of 1 in T . A mapping f : X → R of X
into a semigroup R is a local homomorphism if for every x ∈ X \ {1}, there is a
neighborhood U of 1 ∈ X such that f(xy) = f(x)f(y) for all y ∈ U \ {1}. If R
has identity, we require in addition that f(1S) = 1R. An injective (bijective) local
homomorphism is called a local monomorphism (a local isomorphism).

Local homomorphisms are important because of the following fact:
If f : X → T is a local homomorphism into a compact right topological semi-

group T such that f(X) ⊆ Λ(T ), f : c�βSX → T is the continuous extension of f

and f∗ = f |Ult(T ), then f∗ : Ult(T ) → T is a homomorphism [14, Lemma 2.12].

A remarkable property of local homomorphisms is contained in the next propo-
sition.

Proposition 2.6 ([12, Proposition 3.4]). Let T be any zero-dimensional left in-
variant topology on G such that G ⊆ T and let X be an open neighborhood of zero in
T . Then for every homomorphism g : R → Q of a semigroup R onto a semigroup
Q and for every local homomorphism f : X → Q, there is a local homomorphism
h : X → R such that f = g ◦ h.

Recall that an object P in some category is a projective if for every morphism
f : P → Q and for every surjective morphism g : R → Q, there exists a morphism
h : P → R such that g ◦ h = f . Obviously, each projective is an absolute coretract.
In many categories these notions coincide, but not in all. Let F denote the category
of finite semigroups.
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We use Proposition 2.6 to prove the following result.

Theorem 2.7. Let T be a zero-dimensional almost maximal left invariant topology
on G such that G ⊆ T . Then Ult(T ) is a projective in F.

Proof. Let P = Ult(T ), let R and Q be finite semigroups, let f : P → Q and
g : R → Q be homomorphisms, and let g be surjective.

For each p ∈ S, choose Ap ∈ p such that Ap ∩ Aq = ∅ if p 	= q. Then, for each

p ∈ S, choose Bp ∈ p such that Bp + q ⊆ Ap+q for all q ∈ S. This can be done,
since the mapping βG � x �→ x + q ∈ βG is continuous and S is finite. Choose
the subsets Bp in addition so that Bp ⊆ Ap and X =

⋃
p∈S Bp ∪ {0} is open in T .

Define f0 : X → Q putting for every p ∈ S and x ∈ Bp, f0(x) = f(p). The value
f0(0) does not matter. We claim that f0 is a local homomorphism and f∗

0 = f .
It suffices to check the first statement. Let x ∈ X \ {0}. Then x ∈ Bp for some

p ∈ S. For each q ∈ S, choose Dq ∈ q such that Dq ⊆ Aq and x + Dq ⊆ Ap+q.
Choose a neighborhood U of 0 ∈ X such that U ⊆

⋃
q∈S Dq ∪ {0} and x+ U ⊆ X.

Now let y ∈ U \ {0}. Then y ∈ Dq for some q ∈ S, so y ∈ Aq and then y ∈ Bq.
Hence f0(x)f0(y) = f(p)f(q). On the other hand, x+y ∈ Ap+q, then x+y ∈ Bp+q,
and so

f0(x+ y) = f(p+ q) = f(p)f(q).

Hence f0(x+ y) = f0(x)f0(y).
By Proposition 2.6, there is a local homomorphism h0 : X → R such that

f0 = g ◦ h0. Put h = h∗
0. Since

(g ◦ h0)
∗ = g ◦ h0|S = g ◦ h0|S = g ◦ h,

we obtain that

f = f∗
0 = (g ◦ h0)

∗ = g ◦ h.
�

We conclude this section by characterizing finite absolute coretracts in C and
projectives in F, following [9] and [10].

Let V denote the set of words of the form

i1i2 . . . ipλpλp−1 . . . λ1,

where p ∈ N and iq, λq ∈ ω for all q = 1, . . . , p. Define the operation on V as
follows:

i1 . . . ipλp . . . λ1 · j1 . . . jqρq . . . ρ1 =

⎧
⎪⎨

⎪⎩

i1 . . . ipρp . . . ρ1 if p = q,

i1 . . . ipλp . . . λq+1ρq . . . ρ1 if p > q,

i1 . . . ipjp+1 . . . jqρq . . . ρ1 if p < q.

Then V is a band being decomposed into a decreasing chain of its rectangular
components Vp whose elements are words of length 2p. For every subsemigroup W
of V , put Wp = W ∩ Vp.

If v = i1 . . . ipλp . . . λ1 ∈ Vp, let v′ = i1 . . . ip and v′′ = λp . . . λ1, and for every
q = 1, . . . , p, let v′q = iq and v′′q = λq.

Now let P denote the class of finite subsemigroups W of V such that for every
p ∈ N, the following conditions are satisfied:

(i) if v ∈ Wp, both v′p 	= 0 and v′′p 	= 0;
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(ii) if v ∈ Wp and v′q 	= 0 for some q < p, there exists w ∈ Wq such that w′ is the
initial segment of v′, and dually, if v ∈ Wp and v′′q 	= 0 for some q < p, there exists
w ∈ Wq such that w′′ is the final segment of v′′;

(iii) either v′p = 1 for all v ∈ Wq with q ≥ p or v′′q = 1 for all v ∈ Wq with q ≥ p.

To give a simple important example, let (mp)
l
p=1 and (np)

l
p=1 be two sequences

in N of the same finite length l such that for each p, either mp = 1 or np = 1.
Denote by W [(mp)

l
p=1, (np)

l
p=1] the subset of V consisting of all words of the form

i1i2 . . . ipλpλp−1 . . . λ1,

where p = 1, . . . , l, and for each q = 1, . . . , p, iq ∈ {1, . . . ,mp} and λq ∈ {1, . . . , np}.
It is easy to see that W [(mp)

l
p=1, (np)

l
p=1] is a semigroup from P. Note that ev-

ery finite subsemigroup of V can be isomorphically embedded into a semigroup
W [(mp)

l
p=1, (np)

l
p=1].

Theorem 2.8 ([10]). Let F be a finite semigroup. Then the following statements
are equivalent:

(1) F belongs to P.
(2) F is a projective in F.
(3) F is an absolute coretract in F.
(4) F is a projective in C.
(5) F is an absolute coretract in C.

Recall that Green’s relations R and L on a semigroup S are defined by

aRb ⇔ aS1 = bS1 and aLb ⇔ S1a = S1b.

Note that elements of a band are R-related (L-related) if and only if they belong
to the same rectangular component and to the same minimal right (left) ideal of
the component.

We shall need the following consequence of Theorem 2.8.

Proposition 2.9. Every projective P in F is a chain of rectangular bands satisfying
the following conditions:

(i) whenever x, y, z ∈ P and yRz, xy = xz implies y = z; and dually
(ii) whenever x, y, z ∈ P and yLz, yx = zx implies y = z.

3. The semigroup C(p)

Definition 3.1. Given a semigroup S and p ∈ S∗,

C(p) = {x ∈ S∗ : xp = p}.

Note that if S∗ is a subsemigroup of βS, then C(p) is a closed subsemigroup of S∗

if it is nonempty, and p ∈ C(p) if and only if p is an idempotent. If S has identity,
we use C1(p) to denote C(p) ∪ {1} ⊆ βS. If S has identity and is cancellative,
C1(p) = {x ∈ βS : xp = p} [14, Lemma 2.9]. Also note that for every p ∈ Hκ,
C(p) ⊆ Hκ.

The next lemma explains why this semigroup is important.

Lemma 3.2 ([6]). Let S be a group and let p ∈ S∗. Then there is a zero-dimensional
left invariant topology T on S with Ult(T ) = C(p).
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In [14], it was shown that there are idempotents p ∈ Hκ with finite C(p). Con-
sequently, by Lemma 3.2, there are zero-dimensional almost maximal translation
invariant topologies T on G with Ult(T ) ⊆ Hκ. To state the result from [14]
precisely, we need several more definitions.

There are standard right and left preorderings and order on idempotents of any
semigroup. These are defined by

x ≤R y ⇔ x = yx,

x ≤L y ⇔ x = xy, and

x ≤ y ⇔ x = yx = xy.

An idempotent p of a semigroup S is right maximal if for every idempotent q ∈ S,
p ≤R q implies q ≤R p. Every compact Hausdorff right topological semigroup has
a right maximal idempotent [8, Theorem 2.7].

An ultrafilter u on κ is countably complete if whenever {An : n < ω} is a partition
of κ, there is n < ω such that An ∈ u. A cardinal κ is Ulam-measurable if there is
a countably complete nonprincipal ultrafilter on κ. It is consistent with ZFC that
there is no Ulam-measurable cardinal. (See [2, Section 8].)

Define the functions θ, φ : G \ {0} → κ by

θ(x) = min supp(x) and φ(x) = max supp(x)

and let θ, φ : βG \ {0} → βκ be their continuous extensions. The main properties
of these functions are that for every x ∈ βG \ {0} and y ∈ Hκ,

θ(x+ y) = θ(x) and φ(x+ y) = φ(y).

Theorem 3.3 ([14, Theorem 5.1]). Let p be a right maximal idempotent in Hκ.
Then C(p) is a compact right zero semigroup, and if the ultrafilter θ(p) on κ is
countably incomplete, C(p) is finite.

It follows from Theorem 3.3 that, whenever κ is an infinite cardinal, there is a
right maximal idempotent p ∈ Hκ such that C(p) is a finite right zero semigroup,
and if κ is not Ulam-measurable, every right maximal idempotent p ∈ Hκ enjoys
this property.

Now we shall prove the following result.

Theorem 3.4. Let p ∈ Hκ and let C(p) be finite. Then

(1) C(p) is a projective in F, and
(2) C(p) is a chain of right zero semigroups.

(1) is immediate from Lemma 3.2 and Theorem 2.2. To prove (2), we need the
following lemma.

Lemma 3.5. Let p ∈ Hκ and let C(p) be finite. Then for every q, r ∈ βG, the
equality q + p = r + p implies that q ∈ r + C1 or r ∈ q + C1, where C1 = C1(p).

Proof. Assume the contrary. Then, since C1 is finite, there exist A ∈ q and B ∈ r
such that

A ∩ (B + C1) = ∅ and B ∩ (A+ C1) = ∅.
By Lemma 3.2, there is a left invariant topology T on G with Ult(T ) = C(p). It
follows that for every x ∈ A∪B, there exists a neighborhood U of 0 ∈ G in T such
that

A ∩ (x+ U) = ∅ if x ∈ B, and B ∩ (x+ U) = ∅ if x ∈ A.
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Since T is regular, the neighborhoods can be chosen to be closed.
Enumerate A ∪ B as {xα : α < κ} so that the sequence (φ(xα))α<κ is nonde-

creasing. For each α < κ, choose inductively a closed neighborhood Uα of 0 in T
so that the following conditions are satisfied:

(i) Uα ⊆ Gφ(xα)+1,
(ii) A ∩ (xα + Uα) = ∅ if xα ∈ B, and B ∩ (xα + Uα) = ∅ if xα ∈ A, and
(iii) (xα + Uα) ∩ (xγ + Uγ) = ∅ for all γ < α such that supp(xγ) ⊆ supp(xα)

and elements xα, xγ belong to different sets A,B.

To see that this can be done, fix α < κ and suppose that we have already chosen
Uγ for all γ < α satisfying (i)-(iii). Without loss of generality one may also suppose
that xα ∈ A. Let

F = {γ < α : supp(xγ) ⊆ supp(xα) and xγ ∈ B}.
It follows from (ii) that

xα /∈
⋃

γ∈F

(xγ + Uγ).

Since F is finite and each Uγ is closed, there is a neighborhood Uα of 0 (closed)
such that

(xα + Uα) ∩

⎛

⎝
⋃

γ∈F

(xγ + Uγ)

⎞

⎠ = ∅,

which means that (iii) is satisfied. Obviously, one can choose Uα to also satisfy (i)
and (ii).

We now claim that (xα + Uα) ∩ (xγ + Uγ) = ∅ whenever γ < α < κ and
elements xα, xγ belong to different sets A,B. Indeed, if supp(xγ) ⊆ supp(xα), then
(xα+Uα)∩(xγ+Uγ) = ∅ by (iii). If supp(xγ)\supp(xα) 	= ∅, then (xα+Gφ(xα)+1)∩
(xγ +Gφ(xγ)+1) = ∅, and consequently, (xα + Uα) ∩ (xγ + Uγ) = ∅ by (i).

Thus, we have that
(

⋃

xα∈A

(xα + Uα)

)
∩

⎛

⎝
⋃

xγ∈B

(xγ + Uγ)

⎞

⎠ = ∅,

so q + p 	= r + p, which is a contradiction. �

Given a semigroup C, let K(C) denote the smallest ideal of C, provided it
exists. Note that in the case where C is a finite chain of rectangular bands, say
that C1 > . . . > Cn, K(S) = Cn is the lowest component.

Proof of Theorem 3.4(2). Let C = C(p). By (1) and Proposition 2.9, C is a chain
of rectangular bands. We have to show that for every x, y ∈ C, xLy implies x = y.
Let K = K(C). Pick any z ∈ K. Then x+ z, y + z ∈ K and (x+ z)L(y + z). We
also have that x+ z+p = y+ z+p. It follows from this and Lemma 3.5 that either
x + z ∈ y + z + C1 or y + z ∈ x + z + C1, where C1 = C1(p). Both y + z + C1

and x+ z + C1 are R-classes of K. Therefore in any case, (x+ z)R(y + z). Since
also (x+ z)L(y+ z), we obtain that x+ z = y+ z and then, by Proposition 2.9(ii),
x = y. �

In the rest of this section, we shall show that for every n ∈ N, there is an
idempotent p ∈ Hκ such that C(p) is a chain of n finite right zero semigroups.

We start with the following consequence of Lemma 3.5.
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Lemma 3.6. Let p ∈ Hκ and let C(p) be finite. Then for every q ∈ G∗,

|{x ∈ βG : x+ p = q}| ≤ |C1(p)|.

Proof. Let X = {x ∈ βG : x + p = q} and let C1 = C1(p). Choose y ∈ X with
maximally possible |y + C1|. For every z ∈ C1, one has y + z + p = y + p = q, so
y + C1 ⊆ X. We claim that X = y + C1.

To see this, let x ∈ X. We have that x+ p = y + p. Then by Lemma 3.5, either
x ∈ y+C1 or y ∈ x+C1. The first possibility is what we wish to show. The second
implies that y+C1 ⊆ x+C1. Since |y+C1| is maximally possible, we obtain that
y + C1 = x+ C1, so again x ∈ y + C1.

It follows from X = y + C1 that |X| ≤ |C1|. �

Lemma 3.7. Let p, q ∈ Hκ and let C(p), C(q) be finite. Then

|C1(p+ q)| ≤ |C1(p)| · |C1(q)|.

Proof. We have that

C1(p+ q) = {x ∈ βG : x+ p+ q = p+ q}
= {x ∈ βG : x+ p ∈ {y ∈ βG : y + q = p+ q}}.

Let Y = {y ∈ βG : y + q = p + q}, and for each y ∈ Y , let X(y) = {x ∈ βG :
x+ p = y}. Then

C1(p+ q) =
⋃

y∈Y

X(y),

and, by Lemma 3.6, |Y | ≤ |C1(q)| and |X(y)| ≤ C1(p). �

Now we shall prove the following.

Proposition 3.8. For every idempotent p ∈ Hκ with finite C(p), there is a right
maximal idempotent q ∈ Hκ with finite C(q) such that for each x ∈ C(q), x <L p.

The proof of Proposition 3.8 involves some additional notions and results.
Let S be a group and let p ∈ S∗. Then there is a largest left invariant topology

T [p] on S in which p converges to 1. The open neighborhoods of an element a ∈ S
in T [p] are precisely the subsets of the form

[M ]a = {x0 · · ·xn : n < ω, x0 = a and xi+1 ∈ M(x0 · · ·xi) for all i < n},
where M : G → p [13, Proposition 2.2].

Lemma 3.9. Let p ∈ S∗ and let Q = Ult(T [p]). Then Q = (Qp) ∪ {p}.

Proof. Clearly (Qp)∪{p} ⊆ Q. We have to show that for every q ∈ S∗\((Qp)∪{p}),
one has q /∈ Q. Pick A ∈ q such that 1 /∈ A and A∩ ((Qp)∪ {p}) = ∅. It suffices to
construct a neighborhood U of 1 in T [p] such that U ∩ A = ∅.

Since A ∩ ((Qp) ∪ {p}) = ∅, there is an open neighborhood V of 1 in T [p] such
that A ∩ (V p) = ∅. For every x ∈ V , pick M(x) ∈ p such that xM(x) ⊆ V and
(xM(x)) ∩ A = ∅. Put U = [M ]1. Then U ⊆ {1} ∪

⋃
x∈V (xM(x)). It follows that

U ∩A = ∅. �

Lemma 3.10. For every p ∈ Hκ and q ∈ Ult(T [p]), one has θ(q) = θ(p).

Proof. Let A ∈ p. ChooseM : G → p such thatM(0) ⊆ A, and for every x ∈ G\{0}
and y ∈ M(x), φ(x) < θ(y). Then whenever 0 	= z ∈ [M ]0, θ(z) ∈ θ(A). �
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An ultrafilter p on S is right cancelable if whenever q, r ∈ βS, qp = rp implies
q = r. An ultrafilter p ∈ Hκ is right cancelable if and only if there is a mapping
M : G → p such that the subsets xM(x), where x ∈ G, are pairwise disjoint [14,
Theorem 4.2].

Proposition 3.11. For every right cancelable ultrafilter p ∈ Hκ, the topology T [p]
is zero-dimensional.

Proof. It is immediate from [14, Theorem 4.2] and [13, Theorem 3.2]. �

A subsemigroup Q ⊆ S∗ is left saturated (in βS) if for every x ∈ βS \ (Q∪ {1}),
one has xQ ∩Q = ∅.

For example, for every p ∈ S∗, C(p) is left saturated. Indeed, if xq = r for some
x ∈ βS and q, r ∈ C(p), then xqp = rp, so xp = p and x ∈ C1(p).

If T is a regular left invariant topology on S, then Ult(T ) is left saturated [14,
Lemma 2.5].

Thus, it follows from Proposition 3.11 that

Corollary 3.12. If p ∈ Hκ is right cancelable, then Ult(T [p]) is left saturated in
βG.

Note that if Q is a left saturated subsemigroup of G∗, then for every p ∈ Q,
C(p) ⊆ Q, and every idempotent right maximal in Q is right maximal in G∗.

Now we can prove Proposition 3.8.

Proof of Proposition 3.8. Pick any right cancelable ultrafilter r ∈ Hκ such that
φ(r) /∈ φ(C(p)) and θ(r) is countably incomplete.

This can be done, for example, as follows. Choose a partition {An : n < ω} of κ
such that |An| = κ for all n < ω and φ(C(p)) ⊆ A0. For each α < κ, let xα denote
the element of G with supp(xα) = {α}. Then any ultrafilter r on G extending the
family of subsets

Xα,n = {xγ : γ ≥ α and γ ∈ Am for some m ≥ n},
where α < κ and n < ω, is as required.

We claim that r + p is right cancelable and p /∈ (βG) + r + p.
To see that r+ p is right cancelable, suppose that u+ r+ p = v+ r+ p for some

u, v ∈ βG. Then by Lemma 3.5 either u + r ∈ v + r + C1 or v + r ∈ u + r + C1,
where C1 = C1(p). But

φ(u+ r) = φ(v + r) = φ(r),

and for every x ∈ C(p),

φ(u+ r + x) = φ(v + r + x) = φ(x) ∈ φ(C(p)).

It follows that u+ r = v + r and, since r is right cancelable, u = v.
To see that p /∈ (βG)+ r+p, assume on the contrary that p = u+ r+p for some

u ∈ βG. Then u + r ∈ C(p), which is a contradiction, since φ(u + r) = φ(r) and
φ(r) /∈ φ(C(p)).

Now let Q = Ult(T [r + p]). Pick any right maximal idempotent q ∈ Q. By
Corollary 3.12, Q is left saturated. Consequently, C(q) ⊂ Q and q is right maximal
in G∗. By Lemma 3.10, θ(q) = θ(r + p) = θ(r), so θ(q) is countably incomplete.
Then by Theorem 3.3, C(q) is finite. By Lemma 3.9, Q ⊆ (βG) + r + p. For every
x ∈ (βG) + r + p, one has x + p = p. Indeed, x = u + r + p for some u ∈ βG and
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then x + p = u + r + p + p = u + r + p = x. It follows that for every x ∈ C(q),
x+p = x, so x ≤L p. But p+x 	= p, since p+x ∈ (βG)+r+p and p /∈ (βG)+r+p.
Hence x <L p. �
Lemma 3.13. Let p ∈ Hκ be an idempotent with finite C(p), and let q ∈ Hκ be a
right maximal idempotent such that for each x ∈ C(q), x <L p. Then p + q is an
idempotent and p+ q < p. Furthermore, if C(q) is finite, then C(p+ q) \C(p) is a
finite right zero semigroup.

Proof. It follows from q ≤L p that p + q + p + q = p + q + q = p + q, so p + q is
an idempotent. Also p+ q + p = p + q and p + p+ q = p+ q, so p+ q ≤ p. Since
q <L p, p+ q 	= p, and consequently, p+ q < p.

Now let C(q) be finite. Then, by Lemma 3.7, C(pq) is finite as well. By Theo-
rem 3.4, C(p+ q) is a chain of right zero semigroups. Let r ∈ C(p+ q) \ C(p) and
let K = K(C(p+ q)). Clearly p+ q ∈ K. It suffices to show that r ∈ K.

We have that r + p + q = p + q. Then by Lemma 3.5, either r + p ∈ p+ C1(q)
or p ∈ r + p + C1(q). The second possibility cannot hold, since it implies that
r + p = p and then r ∈ C(p), which is a contradiction. Consequently, the first
possibility holds. Since r + p = p gives a contradiction, it follows that r + p ∈
p+ C(q). For every x ∈ C(q), we have that p+ x+ p+ q = p+ x+ q = p+ q and
p + q + p + x = p + q + x = p + x, so p + C(q) ⊆ K. Hence r + p ∈ K and then
r ∈ K. The latter follows from the fact that C(p+q) is a chain, and so C(p+q)\K
is a subsemigroup. �

We now come to the main result of this section.

Theorem 3.14. For every right maximal idempotent q ∈ Hκ with finite C(q) and
for every n ∈ N, there is an idempotent p ∈ Hκ such that q ∈ C(p) and C(p) is a
chain of n finite right zero semigroups.

Proof. If n = 1, put p = q. By Theorem 3.3, C(p) is a finite right zero semigroup.
Now let n > 1 and suppose that we have found an idempotent p′ ∈ Hκ such

that q ∈ C(p′) and C(p′) is a chain of n − 1 finite right zero semigroups, say
C1 > . . . > Cn−1. By Proposition 3.8, there is a right maximal idempotent q′ ∈ H

with finite C(q′) such that for each x ∈ C(q′), x <L p′. Put p = p′ + q′. By
Lemma 3.13, p is an idempotent, p < p′ and Cn = C(p) \C(p′) is a finite right zero
semigroup. It follows that C(p) is the chain C1 > . . . > Cn. �

4. Proof of Theorem 1.2

Having proved Theorem 3.14, we can show that

Theorem 4.1. For every n ∈ N, there is a locally zero-dimensional translation
invariant topology T on G such that G ⊆ T and Ult(T ) is a chain of n idempotents.

To prove Theorem 4.1, we need two more lemmas.

Lemma 4.2 ([14, Lemma 2.8]). Let S be a group, let Q be a finite left saturated
subsemigroup of S∗, let P be a subsemigroup of Q, and let T be a left invariant
topology on S with Ult(T ) = P . Then T is locally regular if and only if for every
q ∈ Q \ P , qP ∩ P 	= ∅ implies Pq ∩ P = ∅.

Recall that a space is extremally disconnected if the closure of an open set is
open.
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Lemma 4.3 ([14, Lemma 2.3]). Let T be a left invariant topology on S. If Ult(T )
has only one minimal right ideal, then T is extremally disconnected.

Now we are in a position to prove Theorem 4.1.

Proof of Theorem 4.1. By Theorem 3.14, there is an idempotent p ∈ Hκ such that
C(p) is a chain of n finite right zero semigroups, say C1 > . . . > Cn. Inductively
for each i = 1, . . . , n, pick qi ∈ Ci and define pi ∈ Ci by p1 = q1 and, for i > 1,

pi = pi−1 + qi + pi−1.

Then p1 > . . . > pn. Let C = C(p) and P = {p1, . . . , pn}. We claim that the
subsemigroup P ⊆ C possesses the following property:

For every q ∈ C \ P , (P + q) ∩ P = ∅.
Indeed, let q ∈ Ci. Then qRpi and q 	= pi. It follows that for every r ∈ C, one

has (r+q)R(r+pi) and, by Theorem 3.4(1) and Proposition 2.9(i), r+q 	= r+pi. If
r ∈ P , then r+pi ∈ P , so r+ q /∈ P , since no different elements of P are R-related.
Hence (P + q) ∩ P = ∅.

Now let T be the translation invariant topology on G such that Ult(T ) = P . It
follows from the property above and Lemma 4.2 that T is locally regular. Being a
chain of idempotents, P has only one minimal right ideal. Hence by Lemma 4.3,
T is extremally disconnected. Let X be a regular open neighborhood of 0 ∈ G
in T . Since extremal disconnectedness is preserved by open subsets and a regu-
lar extremally disconnected space is zero-dimensional, we obtain that X is zero-
dimensional. �

Now, using Theorem 4.1 and the Local Monomorphism Theorem [14, Theo-
rem 6.4], we prove Theorem 1.2.

Proof of Theorem 1.2. Let S be an infinite cancellative semigroup with identity,
let |S| = κ, and let n ∈ N. By Theorem 4.1, there is a locally zero-dimensional
translation invariant topology T on G such that G ⊆ T and Ult(T ) is a chain of
n idempotents. Pick an open zero-dimensional neighborhood X of 0 ∈ G. Every
local monomorphism f : X → S induces a left invariant topology T f on S with a
neighborhood base at 1 ∈ S consisting of subsets f(U), where U runs over neigh-
borhoods of 0 ∈ X [14, Lemma 2.13]. Clearly, Ult(T ) is a chain of n idempotents
in U(S). By the Local Monomorphism Theorem, there is a local monomorphism
f : X → S such that the topology T f is zero-dimensional. �

Remark 4.4. If S = G, the topology T in Theorem 1.2 can be chosen to be stronger
than G, and if S = R, stronger than the natural topology of the real line or even
the Sorgenfrey topology (see the proof of [14, Corollary 1.5]).

Topological properties of an almost maximal left topological group (S,T ) strongly
depend on its ultrafilter semigroup (see [11, Proposition 2.15]). In particular, if
Ult(T ) is a chain of n idempotents, then (S, T ) is extremally disconnected, ir-
resolvable, and contains nonclosed nowhere dense subsets if n > 1. Under MA,
for each projective P in F, there is a group topology T on the countably infinite
Boolean group with Ult(T ) isomorphic to P [11, Theorem 5.2]. We conclude the
paper with the following question.

Question. Is it true that for each projective P in F, there exists in ZFC a zero-
dimensional left invariant topology T on a group with Ult(T ) isomorphic to P?
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