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OPTIMAL ESTIMATES FROM BELOW

FOR BIHARMONIC GREEN FUNCTIONS

HANS-CHRISTOPH GRUNAU, FRÉDÉRIC ROBERT, AND GUIDO SWEERS

(Communicated by Walter Craig)

Abstract. Optimal pointwise estimates are derived for the biharmonic Green
function under Dirichlet boundary conditions in arbitrary C4,γ -smooth do-
mains. Maximum principles do not exist for fourth order elliptic equations,
and the Green function may change sign. The lack of a maximum principle
prevents using a Harnack inequality as for second order problems and hence
complicates the derivation of optimal estimates. The present estimate is ob-
tained by an asymptotic analysis. The estimate shows that this Green function
is positive near the singularity and that a possible negative part is small in
the sense that it is bounded by the product of the squared distances to the
boundary.

1. Introduction

It is well-known that the Green function G(x, y) for second order elliptic equa-
tions on bounded domains can be estimated from above and from below by positive
multiples of the same (positive) function, which is explicitly given in terms of the
distances to the boundary, d(x), d(y), and the distance |x− y|. See for example [3].
The behaviour of the biharmonic Green function for Dirichlet boundary conditions
should be somehow similar but will have two crucial distinctions. The singularity
of course is of lower order, namely n − 4 instead of n − 2 with n the dimension,
but a more serious distinction is the fact that the biharmonic Green function is
not everywhere positive for most domains. Indeed, the few known domains with
a biharmonic Green function of a fixed positive sign are balls in arbitrary dimen-
sions, small perturbations of those balls and of some limaçons in 2 dimensions. See
respectively [2, 11, 10] and [6, 7]. The results in [7] extend and correct [13].

It has been observed numerically on domains with a sign changing biharmonic
Green function that the negative part is rather small and that it is also not located
near the singularity. The aim of this paper is to give optimal estimates from below.
Previous results concerning smallness of the negative part have been obtained in
[10] for n ≥ 3 and [4] for n = 2. With the estimates for the absolute value of that
Green function in [5], these previously known estimates are, when n > 4, as follows:

(1) −c d(x)2d(y)2 ≤ GΩ(x, y) ≤ c∗ |x− y|4−n min

(
1,

d(x)2d(y)2

|x− y|4

)
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for all x, y ∈ Ω ⊂ R
n and where c, c∗ are some positive constants only depending

on the domain. The distance of x to the boundary ∂Ω is defined by

d(x) := inf {|x− x∗| ;x∗ ∈ ∂Ω} ,
and GΩ denotes the said Green function. Let us remind the reader that the bihar-
monic Green function GΩ is such that

u(x) =

∫
Ω

GΩ(x, y) f(y) dy

solves

(2)

{
Δ2u = f in Ω,

u = |∇u| = 0 on ∂Ω.

In (1) the dimension is restricted to n > 4. As has been shown in [10] for n = 3, 4
and in [4] for n = 2, the estimate from below in (1) holds in all dimensions. An
estimate from above has also been proved for n ≤ 4, but the formula for that
estimate is different from (1). Those estimates can be found in [5] and contain the
function HΩ in (4).

The main result is the estimate from below in the following theorem. For the
sake of completeness we include the estimate from above.

Theorem 1. Let Ω ⊂ R
n (n ≥ 2) be a bounded C4,γ-smooth domain. Let GΩ

denote the biharmonic Green function in Ω for (2). Then there exist constants
c1 ≥ 0, c2 > 0, depending on the domain Ω, such that we have the following Green
function estimate:

(3) c−1
2 HΩ(x, y) ≤ GΩ(x, y) + c1d(x)2d(y)2 ≤ c2 HΩ(x, y)

for all x, y ∈ Ω, where

(4) HΩ(x, y) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|x− y|4−n min

{
1,

d(x)2d(y)2

|x− y|4

}
if n > 4,

log

(
1 +

d(x)2d(y)2

|x− y|4

)
if n = 4,

d(x)2−n/2d(y)2−n/2 min

{
1,

d(x)n/2d(y)n/2

|x− y|n

}
if n = 2, 3.

The estimate from above follows from [5, 15, 16] so that only the estimate from
below has to be proved here. One should observe that GΩ(x, y) + c1d(x)2d(y)2 ≥ 0
was proved for some suitable c1 ≥ 0 in [10]. The preceding result may be considered
as an extension of the estimates in [10], showing that close to the pole the posi-
tive singular behaviour of the fundamental solution can also be seen in the Green
function.

Due to the different behaviour of the Green function we need to distinguish
between n ≥ 3 and n = 2 in proving Theorem 1. Finally we should remark that the
lack of a maximum principle not only results in sign changing Green functions but
also complicates the proof of these estimates in the fourth order case. The proof
in the second order case heavily depends on the Harnack inequality, which in turn
depends on the maximum principle.
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An interesting consequence of Theorem 1 is a uniform local positivity result.
When n ≥ 3 this was proved in [10], while for n = 2 we refer to [9, Theorem 6.15].
Here the emphasis is on the interplay between Theorem 1 and the following result.
Moreover, we provide a proof for n = 2 which is much simpler than the previous
one and in the same spirit as the proof for n ≥ 3.

Theorem 2. Let Ω ⊂ R
n (n ≥ 2) be a bounded C4,γ-smooth domain. Let GΩ

denote the biharmonic Green function in Ω for (2). Then there exists a constant
rΩ > 0 such that

(5) GΩ(x, y) > 0 for all x, y ∈ Ω with |x− y| < rΩ.

2. Some auxiliary results for n ≥ 3

A careful inspection of the proofs in Nehari [17] and Grunau-Sweers [12] shows
the following local estimate for the biharmonic Green function from below.

Proposition 3. Let n ≥ 3. Then there exist constants δn > 0 and c3 > 0, which
depend only on the dimension n, such that the following holds true.

Assume Ω ⊂ R
n to be a C4,γ-smooth bounded domain and let GΩ := GΔ2,Ω

denote the Green function for the biharmonic operator under Dirichlet boundary
conditions. If

(6) |x− y| ≤ δn max{d(x), d(y)},
then we have

GΩ(x, y) >

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

c3 |x− y|4−n if n > 4,

c3 log

(
1 +

1

|x− y|4

)
if n = 4,

c3 d(x)1/2d(y)1/2 if n = 3.

For the constant δn, one may achieve that δn ≥ 0.5.

In dimension n = 2 it seems impossible to achieve a global linear dependence of
the radius of a ball of guaranteed positivity on the boundary distance; see Lemma 7
and [17]. In other words, the best result seems δ2 = δ2(Ω), which strictly depends
on Ω.

y

n ≥ 4 

Ω

x→GΩ(x,y)

→→

Figure 1. The dashed curve gives the typical behaviour of GΩ;
the shaded area describes the band given by (3).
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Due to Proposition 3 and using the same constants δn > 0 as there, we may
restrict ourselves in what follows to x, y such that

(7) x, y ∈ Ω, x �= y, |x− y| > δn max{d(x), d(y)}.

Lemma 4. Suppose that n ≥ 3 and that Ω ⊂ R
n is a bounded C4,γ-smooth domain.

Then for each x0 ∈ Ω there exist a radius r = rx0
> 0 and a constant C = Cx0

> 0
such that for all x, y ∈ Ωx0,r := Ω ∩Br(x0) subject to condition (7) one has

(8) GΩ(x, y) ≥ C|x− y|−nd(x)2d(y)2.

Proof. We only need to discuss x0 ∈ ∂Ω since for interior points x0 one may choose
r = rx0

> 0 so small that condition (7) becomes void.
We assume by contradiction that there exist xk, yk ∈ Ωx0,1/k = Ω ∩ B1/k(x0)

subject to (7) such that

(9) GΩ(xk, yk) <
1

k
|xk − yk|−nd(xk)

2d(yk)
2.

In particular we have xk → x0, yk → x0, d(xk), d(yk) → 0, |xk − yk| → 0. Without
loss of generality we may assume that x0 = 0 and that the first unit vector �e1 is
the exterior unit normal to ∂Ω at x0.

Figure 2. Ω and subdomain Ωx0,1/k for x0 ∈ ∂Ω.

For k large enough, we may define x̃k ∈ ∂Ω as the closest boundary point to xk.
We introduce the rescaled biharmonic Green functions

Gk(ξ, η) := |xk − yk|n−4GΩ(x̃k + |xk − yk|ξ, x̃k + |xk − yk|η)
for

ξ, η ∈ Ωk :=
1

|xk − yk|
(−x̃k + Ω) .

Since x̃k → 0, the exterior unit normal at ∂Ω converges to the first unit vector, and
so we conclude that

Ωk → H := {x : x1 < 0} locally uniformly for k → ∞.

It was proved in [10, Lemma 7] that locally uniformly in H×H \ {(ξ, ξ); ξ ∈ H}

Gk(ξ, η) → GH(ξ, η) =
1

4nen
|ξ − η|4−n

∫ |ξ∗−η|/|ξ−η|

1

(v2 − 1)v1−n dv,
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where ξ∗ = (−ξ1, ξ2, . . . , ξn) and en is the n−dimensional volume of B1(0) ⊂ R
n.

We remark that this step and in particular the required uniqueness proof for GH
were carried out in Grunau-Robert [10] using the assumption n ≥ 3. The neces-
sary modifications for n = 2 are emphasized in the proofs of Lemmata 7 and 6.
Assumption (9) gives

(10) Gk(ξk, ηk) = |xk − yk|n−4GΩ(xk, yk) <
1

k
|xk − yk|−4d(xk)

2d(yk)
2,

where

ξk =
1

|xk − yk|
(xk − x̃k), ηk =

1

|xk − yk|
(yk − x̃k),

|ξk| =
d(xk)

|xk − yk|
≤ 1

δn
, |ξk − ηk| = 1.

After passing to a further subsequence we find ξ, η ∈ H with ξ = limk→∞ ξk,
η = limk→∞ ηk. In view of the local smooth convergence of Gk to the biharmonic
Green function GH in the half space H, Boggio’s formula and |ξ − η| = 1, there
exists a positive constant σ > 0 such that for k large enough,

Gk(ξk, ηk) ≥ σd(ξk)
2d(ηk)

2 = σ

(
d(xk)

|xk − yk|

)2 (
d(yk)

|xk − yk|

)2

= σ|xk − yk|−4d(xk)
2d(yk)

2.

This contradicts (10), and the proof of the lemma is complete. �

3. Proof of the main estimate for n ≥ 3

Supposing that (6) holds, i.e. |x − y| ≤ δn max{d(x), d(y)}, one finds that even
(1 − δn)|x− y| ≤ δn min{d(x), d(y)}, and hence

d(x)d(y)

|x− y|2 ≥ 1 − δn
δ2n

.

Therefore, in that case the estimate from below in Theorem 1 follows directly from
Proposition 3. Hence, we may assume from now on, again, that x, y are subject to
condition (7). Applying a compactness argument to

Ω =
⋃

x0∈Ω

Ωx0,rx0
/2

we see that there exist positive numbers r > 0, c4 > 0, such that |x−y| ≤ r implies
that GΩ(x, y) ≥ c4|x− y|−nd(x)2d(y)2. If |x− y| ≥ r, we take from [5] (cf. also [9])
that GΩ(x, y) ≥ −c5|x− y|−nd(x)2d(y)2 so that

GΩ(x, y) + 2c5|x− y|−nd(x)2d(y)2 ≥ c5|x− y|−nd(x)2d(y)2.

Since |x− y|−n ≤ r−n we end up with

GΩ(x, y) + c6d(x)2d(y)2 ≥ c5|x− y|−nd(x)2d(y)2

and positive constants c5, c6 > 0 in this case. The proof of Theorem 1 for n ≥ 3 is
complete. �
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4. Auxiliary results for n = 2

Lemma 5. Let H = {x ∈ R
2 : x1 < 0} and let G̃ ∈ C4(H×H \ {(x, x) : x ∈ H})

be a biharmonic Green function with Dirichlet boundary condition. That is,∫
H
G̃(x, . )Δ2ϕdy = ϕ(x) +

∫
∂H

(
ΔG̃(x, . )∂νϕ− ϕ∂νΔG̃(x, . )

)
dσ

for all ϕ ∈ C4
c (H) and x ∈ Ω. Moreover, we assume that G̃(x, y) = G̃(y, x) for all

x �= y and that a growth condition holds at infinity:

(11) |G̃(x, y)| ≤ C
(
1 + |x|2 + |y|2

) (
1 + (log |x|)+ + (log |y|)+

)
.

Then G̃ is uniquely determined and given by Boggio’s formula [2]:

G̃(x, y) = GH(x, y) =
1

8π
|x− y|2

∫ |x∗−y|/|x−y|

1

v2 − 1

v
dv

with x∗ = (−x1, x2).

Proof. We choose some arbitrary x ∈ H and keep it fixed in what follows. We write

G̃(x, y) = GH(x, y) + H(x, y),

where H is a regular function in H × H and Δ2
yH(x, . ) ≡ 0 in H, and where

H(x, y) = ∂y1
H(x, y) = 0 for y1 = 0. According to [8, 14], or by checking directly,

with y∗ = (−y1, y2),

H∗(x, y) :=

⎧⎨
⎩

H(x, y) if y1 ≤ 0,

−H(x, y∗) − 2y1

(
∂H

∂y1

)
(x, y∗) − y21 (ΔyH) (x, y∗) if y1 > 0

satisfies H∗(x, . ) ∈ C4
(
R

2
)

and is biharmonic on R
2. Since GH(x, y) satisfies (11),

so does H(x, y). So we have

|H(x, y)| ≤ Cx

(
1 + |y|2 (log |y|)+

)
.

Using local elliptic estimates and their scaling behaviour for biharmonic functions
satisfying Dirichlet boundary conditions on ∂H, that is,

‖DαH(x, . )‖L∞(BR∩H) ≤
C

R|α| ‖H(x, . )‖L∞(B2R∩H) ,

we find that

|∇yH(x, y)| ≤ Cx

(
1 + |y| (log |y|)+

)
, |∇2

yH(x, y)| ≤ Cx

(
1 + (log |y|)+

)
.

Having these estimates for H(x, y) and these first two derivatives, we have an
estimate for H∗(x, y) and may repeat the above arguments to find similar estimates
for the derivatives of H∗(x, y) and even

|∇3
yH

∗(x, y)| ≤ Cx

(
1 + (log |y|)+

)
1 + |y| .

The maximum principle applied to the harmonic function ∇yΔyH
∗(x, . ) shows that

‖∇yΔyH
∗(x, . )‖C0(BR(0)) ≤ C

(1 + |log |R||)
1 + |R| .

Letting R → ∞ yields

∇yΔyH
∗(x, . ) ≡ 0, ΔyH

∗(x, . ) = a(x)
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with a suitable function a(. ). This shows that any ∇3
yH

∗(x, . ) is harmonic and,

as shown above, ∇3
yH

∗(x, y) → 0 as y → ∞. Hence, any ∇3
yH

∗(x, . ) ≡ 0, and by
Taylor’s formula and observing the boundary data we conclude that

H∗(x, y) = b(x)y21

with a suitable function b(. ). By symmetry H(x, y) = H(y, x), and so H(x, y) =
b(y)x2

1 = b(x)y21 = bx2
1y

2
1 , where b ∈ R is a suitable constant. Finally, the growth

condition leads to b = 0, H(x, . ) ≡ 0, and G̃ = GH. �

Lemma 6 (Estimates near the boundary). Suppose that n = 2 and that Ω ⊂ R
2

is a bounded C4,γ-smooth domain. Then for each x0 ∈ ∂Ω there exist a radius
r = rx0

> 0 and a constant C = Cx0
> 0 such that for all x, y ∈ Ωx0,r := Ω∩Br(x0)

one has

(12) GΩ(x, y) ≥ Cd(x)d(y) min

{
1,

d(x)d(y)

|x− y|2

}
.

Proof. We assume by contradiction that there exist xk, yk ∈ Ωx0,1/k = Ω∩B1/k(x0)
such that

(13) GΩ(xk, yk) <
1

k
d(xk)d(yk) min

{
1,

d(xk)d(yk)

|xk − yk|2

}
.

In particular we have xk → x0, yk → x0, d(xk), d(yk) → 0, |xk − yk| → 0. Without
loss of generality we may assume that x0 = 0 and that the first unit vector �e1 is
the exterior unit normal to ∂Ω at x0. After possibly passing to a subsequence, it is
enough to consider one of the following two cases.

First case: |xk−yk| ≥ 1
2 max{d(xk), d(yk)}. This proof is the same as for Lemma 4;

only proving the required uniform bounds for Gk is slightly more involved. The
arguments are sketched below in the second case. Thanks to Lemma 5 the conver-
gence proof of [10, Lemma 7] can be extended to n = 2. One should observe that
also the symmetry carries over to the limit.

Second case: |xk − yk| < 1
2 max{d(xk), d(yk)}. Observe that in this case

d(xk) < 2d(yk) < 4d(xk)

and

|xk − yk| < min{d(xk), d(yk)}.
The assumption gives the fact that

(14) GΩ(xk, yk) <
1

k
d(xk)d(yk).

In this case we rescale differently; however, x̃k ∈ ∂Ω again denotes the closest
boundary point to xk. We introduce the rescaled biharmonic Green functions

Gk(ξ, η) := d(xk)
−2GΩ(x̃k + d(xk)ξ, x̃k + d(xk)η)

for

ξ, η ∈ Ωk :=
1

d(xk)
(−x̃k + Ω) .

Since x̃k → 0, the exterior unit normal at ∂Ω converges to the first unit vector, and
so we conclude that

Ωk → H := {x : x1 < 0} locally uniformly for k → ∞.
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For

ξk =
1

d(xk)
(xk − x̃k), ηk =

1

d(xk)
(yk − x̃k),

the assumption (14) transforms into

(15) Gk(ξk, ηk) <
1

k
dk(ξk)dk(ηk) <

2

k
,

where dk := d( . , ∂Ωk). Since ξk, ηk are bounded and their boundary distances are
uniformly bounded from below by 1/2, we find after passing to a further subse-
quence that ξk → ξ∞ ∈ H, ηk → η∞ ∈ H. We claim that we have local uniform
convergence in H×H (including the diagonal) of Gk to GH, since we are in dimen-
sion n = 2. To see this we observe first that Krasovskĭı-type estimates (see [15, 16]
and also [9, Theorem 4.20]) yield at a first instance useful information only for the
third derivatives. We have

|∇3
ξ,ηGk(ξ, η)| ≤

C

|ξ − η| uniformly in k.

Making use of

∀ξ ∈ ∂Ωk, η ∈ Ωk : ∇ξ∇ηGk(ξ, η) = 0, ∇2
ηGk(ξ, η) = 0

and of

∀ξ ∈ Ωk, η ∈ ∂Ωk : ∇ξ∇ηGk(ξ, η) = 0, ∇2
ξGk(ξ, η) = 0,

we obtain upon integration that

|∇2
ξ,ηGk(ξ, η)| ≤ C(1 + (log |ξ|)+ + (log |η|)+ + | log |ξ − η||) uniformly in k

and further that

|∇ξ,ηGk(ξ, η)| ≤ C(1 + (log |ξ|)+ + (log |η|)+)(1 + |ξ| + |η|) uniformly in k,

|Gk(ξ, η)| ≤ C(1 + (log |ξ|)+ + (log |η|)+)(1 + |ξ|2 + |η|2) uniformly in k.

Now, one may proceed further as in [10, Lemma 7]. So, (15) yields GH(ξ∞, η∞) ≤ 0,
while Boggio’s formula shows that GH(ξ, η) > 0 (even if ξ = η), since ξ, η ∈ H are
interior points. �

Lemma 7 (Estimates in the interior). Suppose that n = 2 and that Ω ⊂ R
2 is a

bounded C4,γ-smooth domain. Then for each x0 ∈ Ω there exist a radius r = rx0
> 0

and a constant C = Cx0
> 0 such that for all x, y ∈ Ωx0,r := Ω ∩Br(x0) one has

(16) GΩ(x, y) ≥ Cd(x)d(y) min

{
1,

d(x)d(y)

|x− y|2

}
.

Proof. Since x0 ∈ Ω, we have that GΩ(x0, x0) > 0 (see [17, p. 115]). Since GΩ

is continuous, there exists r, c > 0 such that Br(x0) � Ω and GΩ(x, y) > c for all
x, y ∈ Br(x0). This yields (16) since Ω is bounded. �

5. Proof of the main estimate for n = 2

Combining Lemmas 6 and 7 and applying a compactness argument to

Ω =
⋃

x0∈Ω

Ωx0,rx0
/2,

we find:
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Corollary 8. Suppose that n = 2 and that Ω ⊂ R
2 is a bounded C4,γ-smooth

domain. Then there exist a radius r > 0 and a constant C > 0 such that for all
x0 ∈ Ω and for all x, y ∈ Ωx0,r := Ω ∩Br(x0) one has

(17) GΩ(x, y) ≥ Cd(x)d(y) min

{
1,

d(x)d(y)

|x− y|2

}
.

This step provides in particular a different and simpler proof for the local pos-
itivity statement from [9, Theorem 6.15] which was proved first by Dall’Acqua,
Meister, and Sweers [4].

Proof of Theorem 1. If |x − y| ≥ r we take from [5] (see also [9]) that GΩ(x, y) ≥
−c8|x− y|−2d(x)2d(y)2 so that

GΩ(x, y) + 2c8|x− y|−2d(x)2d(y)2 ≥ c8|x− y|−2d(x)2d(y)2

≥ c8d(x)d(y) min

{
1,

d(x)d(y)

|x− y|2

}
.

Since |x− y|−2 ≤ r−2 we end up with

GΩ(x, y) + c9d(x)2d(y)2 ≥ c8d(x)d(y) min

{
1,

d(x)d(y)

|x− y|2

}

and positive constants c8, c9 > 0 in this case. The proof of Theorem 1 is now
complete also for n = 2 using Corollary 8. �

6. Proof of Theorem 2

This theorem was proved in [10] when n ≥ 3 and in [9, Theorem 6.15] when n = 2.
The latter proof is quite involved and based on the extensive use of conformal maps
and explicit Green functions in certain limaçons. Here we provide an alternate proof
which uses the same techniques for n = 2 as for n ≥ 3.

Case I: d(x)d(y) ≤ |x− y|2. For this situation we have

(18) HΩ(x, y) =

⎧⎪⎨
⎪⎩

|x− y|−nd(x)2d(y)2 if n �= 4,

log

(
1 +

d(x)2d(y)2

|x− y|4

)
if n = 4.

Then there is c > 0 such that we find c−1
2 HΩ(x, y) ≥ c1d(x)2d(y)2 for |x− y| < c.

Case II: d(x)d(y) > |x− y|2. Now we have

(19) HΩ(x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|x− y|4−n if n > 4,

log

(
1 +

d(x)2d(y)2

|x− y|4

)
if n = 4,

d(x)2−n/2d(y)2−n/2 if n = 2, 3.
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Since d(x)d(y) is bounded on Ω one finds for n ≥ 4 the existence of c > 0 such
that c−1

2 HΩ(x, y) ≥ c1d(x)2d(y)2 for |x− y| < c. For dimension n = 3 the argu-

ment is more subtle. We fix δn as in Proposition 3. Taking d(x)d(y) < ε2 1+δn
2 for

ε > 0 but sufficiently small, we find that c−1
2 HΩ(x, y) ≥ c1d(x)2d(y)2. It remains

to consider d(x)d(y) ≥ 1+δn
2 ε2. Assume first that |x− y| < δn

2 ε and d(x) < 1
2ε.

Then d(x)d(y) < 1+δn
2 ε2, and we are in the situation just considered. So we are left

with |x− y| < δn
2 ε and d(x) ≥ 1

2ε. Then we may apply Theorem 1 of [12] (see also

Proposition 3) to find that for |x− y| < 1
2δnε ≤ δn max(d(x), d(y)) it follows that

GΩ(x, y) > 0. For dimension n = 2 the result follows directly from Corollary 8.
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