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A NOTE ON PROJECTIVE NORMALITY

HUAH CHU, SHOU-JEN HU, AND MING-CHANG KANG

(Communicated by Ted Chinburg)

Abstract. Let G be any finite group, G → GL(V ) be a representation of G,
where V is a finite-dimensional vector space over an algebraically closed field
k. Theorem. Assume that either char k = 0 or char k = p > 0 with p � |G|.
Then the quotient variety P(V )/G is projectively normal with respect to the
line bundle L, where L is the descent of O(1)⊗m from P(V ) with m = |G|!.
This partially solves a question raised in the paper of Kannan, Pattanayak and
Sardar [Proc. Amer. Math. Soc. 137 (2009), 863–867].

1. Introduction

Let k be an algebraically closed field, G be a finite group, G → GL(V ) be a
representation of G to GL(V ), where V is a finite-dimensional vector space over k.
Then G acts on V and P(V ) (which is the projective space Pr−1 if dimk V = r).
Thus O(1)⊗|G| descends to the quotient variety P(V )/G, and so O(1)⊗|G|! also
descends to the quotient variety (see [KKV] for details). In [KPS], the projective
normality of P(V )/G with respect to the descent of O(1)⊗|G| is considered. The
following result is proved there.

Theorem 1.1 (Kannan, Pattanayak and Sardar [KPS, Theorem 3.1]). Let L be the
line bundle on P(V )/G which is the descent of O(1)⊗m from P(V ), where m = |G|.
Assume that either char k = 0 or char k = p > 0 with p � |G|. If G is a solvable
group or a pseudo-reflection group, then P(V )/G is projectively normal with respect
to L.

The reader is referred to [KP] for progress made on this question for Weyl group
representations. What we will prove in this article is the following theorem, which
holds for any finite group.

Theorem 1.2. For any finite group G, let L be the line bundle on P(V )/G which
is the descent of O⊗m from P(V ), where m = |G|!. Assume that either char k = 0
or char k = p > 0 with p � |G|. Then P(V )/G is projectively normal with respect to
L.

Before stating a key lemma for proving Theorem 1.2, we give the definition of
the “restricted product”.
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Definition 1.3. Let a1, . . . , an be positive integers (it is allowed that ai = aj for
some i �= j). The usual product is simply a1a2 · · · an (for short,

∏
i ai). We will

define
∏′

i ai, the restricted product, as
∏′

i ai =
∏

1≤j≤e bj if {a1, a2, . . . , an} =

{b1, b2, . . . , be}, where bi �= bj if i �= j.

Lemma 1.4. Let k be a field, A = A0 ⊕ A1 ⊕ · · · ⊕ Al ⊕ · · · be a commutative
graded algebra, where A0 = k and Al is the k-vector space of homogeneous elements
of degree l in A. Let A = k[f1, . . . , fn] for some homogeneous elements f1, . . . , fn
with deg fi = ai ≥ 1. Define m =

∏′
i ai to be the restricted product of a1, a2, . . . , an.

Then k[Am] = A0 ⊕ Am ⊕ A2m ⊕ · · · ⊕ Adm ⊕ · · · , where k[Am] = k[g1, . . . , gr] if
Am =

∑
1≤j≤r k · gj.

We remark that the above lemma was known to Zariski when A is the integral
closure of some graded k-algebra B = B0 ⊕B1 ⊕ · · · ⊕Bl ⊕ · · · (with B0 = k) such
that Proj(B) is a normal variety and B is generated by B1 over k (see [Za]; [La],
Proposition 11, p. 141; [Ha], Exercise 5.14, p. 126).

2. Proof

We will denote by N the set of all positive integers, and by N≥0 the set N∪ {0}.
Let a1, a2, . . . , an be positive integers (it is allowed that ai = aj for some i �= j).

Define

Nd = {λ = (λ1, . . . , λn) ∈ Nn
≥0 : λ1a1 + λ2a2 + · · ·+ λnan = d}.

By Nd +Ne, we mean the set {λ+ μ : λ ∈ Nd, μ ∈ Ne}. Thus 2Nd = Nd +Nd.
Similarly lNd = Nd + · · ·+Nd (the sum of l copies of Nd). Recall a result in [KPS]
which will be used in the proof of Lemma 1.4.

Lemma 2.1 ([KPS, Lemma 2.1]). Define m =
∏

1≤i≤n ai. Then Ndm = dNm.

Proof of Lemma 1.4. Recall that m =
∏′

i ai is the restricted product of a1, . . . , an.
Write {a1, . . . , an} = {b1, . . . , be}, where bi �= bj if i �= j. We may arrange

a1, . . . , an so that a1 ≤ a2 ≤ · · · ≤ an and b1 < b2 < · · · < be. Moreover, find
integers l(1), . . . , l(e) such that 1 ≤ l(1) < l(2) < · · · < l(e) = n and a1 = a2 =
· · · = al(1) = b1, al(1)+1 = al(1)+2 = · · · = al(2) = b2, . . ., al(e−1)+1 = al(e−1)+2 =
· · · = al(e) = be.

In order to prove that k[Am] = A0 ⊕ Am ⊕ · · · ⊕ Adm ⊕ · · · , we will prove by
induction that Adm = Ad

m, where Ad
m is the k-vector space generated by elements

of the form h1h2 · · ·hd with each hj ∈ Am for 1 ≤ j ≤ d.

Each element in Adm is a linear combination of monomials of the form fλ1
1 fλ2

2 · · ·
fλn
n , where λ1a1 + · · ·+ λnan = dm (note that fj ∈ Aaj

for 1 ≤ j ≤ n). It suffices

to show that these monomials fλ1
1 · · · fλn

n ∈ Ad
m.

For a monomial f = fλ1
1 fλ2

2 · · · fλn
n with λ1a1 + · · · + λnan = dm, define λ =

(λ1, . . . , λn) ∈ Nn
≥0. Define μ = (μ1, . . . , μe) ∈ Ne

≥0 by

(1) μi =
∑

l(i−1)+1≤j≤l(i)

λj

for 1 ≤ i ≤ e, where it is understood that l(0) = 0.
Define

N ′
d = {η = (η1, . . . , ηe) ∈ Ne

≥0 : η1b1 + · · ·+ ηebe = d}.
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It follows that μ ∈ N ′
dm. Apply Lemma 2.1 to N ′

dm. We find there μ = ν(1) +

ν(2) + · · ·+ ν(d) for some ν(1), . . . , ν(d) ∈ N ′
m.

Write ν = ν(1) = (ν1, ν2, . . . , νe). It follows that μi ≥ νi for 1 ≤ i ≤ e. By
Formula (1), we find that

∑
l(i−1)+1≤j≤l(i) λj ≥ νi for 1 ≤ i ≤ e. Hence it is possible

to find λ′
1, . . . , λ

′
n ∈ N≥0 satisfying the conditions (i) λ′

j ≤ λj for 1 ≤ j ≤ n, and
(ii) νi =

∑
l(i−1)+1≤j≤l(i) λ

′
j for 1 ≤ i ≤ e.

Define g ∈ Am and h ∈ A(d−1)m by

g =
∏

1≤j≤n

f
λ′
j

j , h =
∏

1≤j≤n

f
λj−λ′

j

j .

We find that f = g · h. Since h ∈ A(d−1)m = Ad−1
m by induction, we find that

f ∈ Ad
m. �

Before proving Theorem 1.2, we recall a theorem about Noether’s bound due to
Fleischmann and Fogarty independently.

Theorem 2.2 (Fleischmann, Fogarty [Fl], [Fo]). Let G be a finite group, k be a
field, and V be an r-dimensional vector space over k. Suppose that G → GL(V ) is
a representation of G. Let x1, . . . , xr be a basis of the dual space V ∗ of V such that
k[V ]G is a k-subalgebra of the graded algebra k[V ] = k[x1, . . . , xr], where each xi is
of degree one.

Assume that either char k = 0 or char k = p > 0 with p � |G|. Then k[V ]G is
generated over k by invariant polynomials of degree less than or equal to |G|.

Proof of Theorem 1.2. Apply Theorem 2.2 to get a set of generators of A = k[V ]G

and then use Lemma 1.4.
If there is a non-zero invariant homogeneous polynomial of degree d for all 1 ≤

d ≤ |G|, then apply Theorem 2.2 and Lemma 1.4. Note that the integer m in
Lemma 1.4 is

∏
1≤d≤r d = |G|!. Hence we get k[Am] = A0 ⊕Am ⊕ · · · ⊕Adm ⊕ · · · .

Suppose that there is no non-zero invariant homogeneous polynomial of degree
d for some d with 1 ≤ d ≤ |G|. We just throw away these integers d and proceed as
above. Thus we get an integer m′ such that k[Am′ ] = A0 ⊕Am′ ⊕ · · · ⊕Adm′ ⊕ · · · .
Since |G|! is a multiple ofm′, it is easy to see that k[Am] = A0⊕Am⊕· · ·⊕Adm⊕· · ·
if we define m = |G|!.

The remaining proof is the same as the proof of Theorem 3.1 in [KPS]. �
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