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THE DIHEDRAL GROUP D5 AS A GROUP OF SYMPLECTIC

AUTOMORPHISMS ON K3 SURFACES

ALICE GARBAGNATI

(Communicated by Ted Chinburg)

Abstract. We prove that if a K3 surface X admits Z/5Z as a group of sym-
plectic automorphisms, then it actually admits D5 as a group of symplectic

automorphisms. The orthogonal complement to the D5-invariants in the sec-
ond cohomology group of X is a rank 16 lattice, L. It is known that L does
not depend on X: we prove that it is isometric to a lattice recently described
by R. L. Griess Jr. and C. H. Lam. We also give an elementary construction
of L.

1. Introduction

A finite group of symplectic automorphisms on a K3 surface X has the property
that the desingularization of the quotient of X by this group is again a K3 surface.
In [Nik1] the finite abelian groups of symplectic automorphisms on a K3 surface
are classified. The main result of Nikulin in [Nik1] is that the isometries induced
by finite abelian groups of symplectic automorphisms on the second cohomology
group of a K3 surface are essentially unique. The uniqueness of the isometries
induced by G on H2(X,Z) implies that the lattice ΩG := (H2(X,Z)G)⊥ does not
depend on X. Thanks to this result it is possible to associate the lattice ΩG to
each finite abelian group G of symplectic automorphisms on a K3 surface. From
this one obtains information on the coarse moduli space of K3 surfaces admitting
G as a group of symplectic automorphisms (cf. [Nik1], [GS1], [GS2]). In [GS1] and
[GS2] the lattices ΩG are computed for each finite abelian group G of symplectic
automorphisms on a K3 surface.

In [Mu] and [X] the finite (not necessary abelian) groups of symplectic auto-
morphisms on a K3 surface are classified. Under some conditions (cf. Section 2)
Nikulin’s result on the uniqueness of the isometries induced by finite groups of
symplectic automorphisms on the second cohomology group of the K3 surfaces can
be extended to finite (not necessary abelian) groups (cf. [W]). As a consequence
one can attach the lattice ΩG := (H2(X,Z)G)⊥, which depends only on G, also to
some finite nonabelian groups G of symplectic automorphisms on a K3 surface X.

Let us consider a pair of finite groups (G,H) such that G acts symplectically on
a K3 surface and H is a subgroup of G. It is evident that the K3 surfaces admitting
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G as a group of symplectic automorphisms also admits H as a group of symplectic
automorphisms. It is more surprising that for certain pairs of groups (G,H) the
converse also holds. Indeed, for certain pairs (G,H) the condition “a K3 surface X
admits G as a group of symplectic automorphisms” is equivalent to the condition
“X admits H as a group of symplectic automorphisms”. For these pairs the lattices
ΩG and ΩH coincide. The aim of this paper is to describe this situation and to
give explicitly one pair (G,H). We observe that in order to find (G,H) with the
described property, one has to consider nonabelian groups acting symplectically on
K3 surfaces. Indeed, the lattices ΩK associated to abelian groups K are completely
described in [GS1], [GS2], and one can check that ΩG and ΩH never coincide if
both G and H are abelian and G �= H.

In Section 2 we describe some known results on symplectic automorphisms over
kählerian K3 surfaces and prove our main results (Proposition 2.14 and Corol-
lary 2.15). In Proposition 2.14 we give sufficient conditions on G and H to prove
that a K3 surface admits G as a group of symplectic automorphisms if and only
if it admits H as a group of symplectic automorphisms. Applying this proposition
we prove (Corollary 2.15) that a K3 surface admits Z/5Z as a group of symplectic
automorphisms if and only if it admits D5 (the dihedral group of order 10) as a
group of symplectic automorphisms. In particular we prove that ΩZ/5Z � ΩD5

In [GS1] the isometry induced on ΩZ/5Z by a symplectic automorphism of order
5 is described. Since we prove that ΩZ/5Z � ΩD5

, there is also an involution acting
on this lattice. In order to describe both the isometry of order 5 and the involution
generating D5 on ΩD5

, in Section 3 we give a different description of this lattice: it
is an overlattice of A4(−2)⊕4 (the isometry of order 5 is induced by the natural one
on A4). In the proof of Corollary 3.5 also the action of the involution is described.
Moreover, we show that the lattice ΩZ/5Z (computed in [GS1]) is isometric to a
lattice describe by Griess and Lam in [GL].

In Section 4 we consider algebraic K3 surfaces and in particular 3-dimensional
families of K3 surfaces admitting a symplectic automorphism of order 5, σ5, and a
polarization, invariant under σ5. It follows from the results of Section 2 that the
K3 surfaces in these families also admit an involution ι, generating together with
σ5 the dihedral group D5. For each of these families we exhibit the automorphism
σ5 and find the automorphism ι.

2. Symplectic automorphisms on K3 surfaces

Definition 2.1. Let X be a smooth compact complex surface. The surface X
is a K3 surface if the canonical bundle of X is trivial and the irregularity of X,
q(X) := h1,0(X), is 0.

The second cohomology group of a K3 surface, equipped with the cup product,
is isometric to a lattice, which is the unique, up to isometries, even unimodular
lattice with signature (3, 19). This lattice will be denoted by ΛK3 and is isometric
to U ⊕U ⊕U ⊕E8(−1)⊕E8(−1), where U is the unimodular lattice with bilinear

form

[
0 1
1 0

]
and E8(−1) is the lattice obtained by multiplying by −1 the lattice

associated to the Dynkin diagram E8.
The Néron-Severi group of a K3 surface X, NS(X), coincides with its Pi-

card group. The transcendental lattice of X, TX , is the orthogonal to NS(X)
in H2(X,Z).
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Definition 2.2. An isometry α of H2(X,Z) is an effective isometry if it preserves
the Kähler cone of X. An isometry α of H2(X,Z) is a Hodge isometry if its C-linear
extension to H2(X,C) preserves the Hodge decomposition of H2(X,C).

Theorem 2.3 ([BR]). Let X be a K3 surface and g be an automorphism of X. Then
g∗ is an effective Hodge isometry of H2(X,Z). Conversely, let f be an effective
Hodge isometry of H2(X,Z). Then f is induced by an automorphism of X.

Definition 2.4. An automorphism σ on a K3 surface X is symplectic if σ∗ acts as
the identity on H2,0(X); that is, σ∗(ωX) = ωX , where ωX is a nowhere vanishing
holomorphic two form on X.

Equivalently, σ is symplectic if the isometry induced by σ∗ on the transcendental
lattice is the identity.

Remark 2.5. Let σ be an automorphism of finite order on a K3 surface. The
desingularization of X/σ is a K3 surface if and only if σ is symplectic.

In [Nik1] the finite abelian groups acting symplectically on a kählerian K3 surface
are analyzed. Now it is known that every K3 surface is a Kähler variety, [S], so
there are no restrictions on the K3 surfaces analyzed in [Nik1].

From now on we always assume that G is a finite group of symplectic automor-
phisms on the K3 surface X.

Definition 2.6. Let the K3 surface Y be the minimal desingularization of the
quotient X/G. Let Mj be the curves arising from the desingularization of the
singularities of X/G.

The singularities of the quotientX/G are computed by Nikulin ([Nik1, Section 6])
if G is an abelian group and by Xiao ([X, Table 2]) for all the other finite groups.
If either G = Q8 (binary dihedral group of order 8) or G = T24 (binary tetrahedral
group of order 24), then there are two possible configurations for the singularities
of X/G, and hence for the exceptional curve Mj on Y . For all the other groups the
number and the type of the singularities of X/G are determined by G.

Definition 2.7. Let us assume that G �= Q8, G �= T24. The minimal primitive
sublattice of NS(Y ) containing the curves Mj does not depend on X (cf. [Nik1],
[X]). It will be denoted by MG.

The lattice MG is computed by Nikulin ([Nik1, Section 7]) for each abelian group
G and by Xiao ([X, Table 2]) for the all the other groups G.

Remark 2.8. For G = Z/2Z, the lattice MZ/2Z (called a Nikulin lattice) is an even

overlattice of index 2 of A1(−1)⊕8. Its discriminant group is (Z/2Z)6 (cf. [Nik1]),
and its discriminant form is the same as U(2)⊕3 (cf. [Mo]).

Definition 2.9 ([Nik1, Definition 4.6]). We say that G has a unique action on
ΛK3 if, given two embeddings i : G ↪→ Aut(X), i′ : G ↪→ Aut(X ′) such that G is a
group of symplectic automorphisms on the K3 surfaces X and X ′, there exists an
isometry φ : H2(X,Z) → H2(X ′,Z) such that i′(g)∗ = φ ◦ i(g) ◦ φ−1 for all g ∈ G.

Theorem 2.10 ([Nik1, Theorem 4.7], [W, Corollary 3.0.1]). Let G be a finite group
acting symplectically on a K3 surface, G �= Q8, G �= T24. If MG admits a unique
primitive embedding in ΛK3, then G has a unique action on ΛK3.

Definition 2.11. Under the assumptions of Theorem 2.10 the lattice (ΛG
K3)

⊥ is
uniquely determined by G, up to isometry. It will be called ΩG.
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Remark 2.12. By [Nik1, (8,12)], it follows that rank(ΩG) = rank(MG).

Theorem 2.13 ([Nik1, Theorem 4.15]). Let G be a finite group acting symplecti-
cally on a K3 surface, such that G has a unique action on ΛK3. A K3 surface X
admits G as a group of symplectic automorphisms if and only if the lattice ΩG is
primitively embedded in NS(X).

Nikulin proved that for each abelian group acting symplectically on a K3 surface,
the hypothesis of Theorem 2.10 (and hence the ones of Theorem 2.13) are satisfied.

Proposition 2.14. Let G be a finite group acting symplectically on a K3 surface
and let H be a subgroup of G. Let us assume that both G and H are neither Q8

nor T24. We assume that both MH and MG admit a unique primitive embedding in
ΛK3 and rank(MG) = rank(MH). Then ΩH � ΩG, and so a K3 surface X admits
G as a group of symplectic automorphisms if and only if X admits H as a group
of symplectic automorphisms.

Proof. Since H is a subgroup of G, ΩH is a sublattice of ΩG. Moreover, rank(ΩG)
= rank(ΩH) by Remark 2.12 and the condition on the rank of the lattices MG and
MH . This implies that ΩH ↪→ ΩG with a finite index. Let X be a K3 admitting
G as a group of symplectic automorphisms. Then both ΩG and ΩH(↪→ ΩG) are
primitively embedded in NS(X); hence the index of the inclusion ΩH ↪→ ΩG is 1,
i.e. ΩG � ΩH .

The K3 surface X admits G as a group of symplectic automorphisms if and only
if ΩG is primitively embedded in NS(X). By the isometry ΩH � ΩG this condition
is equivalent to requiring that ΩH be primitively embedded in NS(X), which holds
if and only if X admits H as a group of symplectic automorphisms. �

Corollary 2.15. A K3 surface admits Z/5Z as a group of symplectic automor-
phisms if and only if it admits D5 as a group of symplectic automorphisms.

Proof. The lattice MZ/5Z is computed in [Nik1], where it is proved that it admits
a unique primitive embedding in ΛK3 and that its rank is 16. The lattice MD5

is
described in [X] as an overlattice of index 2 of the lattice A4(−1)⊕2 ⊕ A1(−1)⊕8.
In particular, rank(MD5

) = 16 and MD5
� A4(−1)⊕2 ⊕MZ/2Z, where MZ/2Z is the

Nikulin lattice (see Remark 2.8). Thus the discriminant group of MD5
is (Z/5Z)2⊕

(Z/2Z)6. By [Nik2, Theorem 1.14.4], MD5
admits a unique primitive embedding in

ΛK3. The corollary immediately follows from Proposition 2.14. �

Remark 2.16. We proved that if a K3 surface admits a symplectic automorphism of
order five, σ5; hence it also admits a symplectic involution generating D5 together
with σ5. This result cannot be improved; i.e., it is not true that if a K3 surface X
admits D5 = 〈σ5, ι〉 as a group of symplectic automorphisms, then it also admits
a symplectic automorphism α such that J := 〈α, σ5, ι〉 ⊃�= D5 is a finite group. By

contradiction assuming there exists such an α, then D5 ⊂
�=

J and ΩD5
� ΩJ . In

particular, rankΩJ = rankΩD5
= 16, but there are no finite groups J of symplectic

automorphisms on a K3 surface such that D5 ⊂
�=

J and rankMJ (=rankΩJ) = 16

(cf. [X, Table 2]).
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3. Construction of ΩZ/5Z � ΩD5

The aim of this section is to construct the lattice ΩZ/5Z as an overlattice of

A4(−2)⊕4 and to describe the action of D5 on this lattice. The automorphism of
order five on ΩZ/5Z will be induced by the automorphism of order five on each copy
of A4(−2).

We will add some rational linear combinations of the elements of A4(−2)⊕4 to
obtain an even overlattice of A4(−2)⊕4. The main point is that we would like to
extend the automorphism of A4(−2)⊕4 to the lattice ΩZ/5Z, so if we add an element

to A4(−2)⊕4 we have to add all elements in its orbit.
We recall that the standard basis of A4 is expressed in terms of the standard

basis {εi} of R5 in the following way: αi = εi−εi+1, hence α5 = −α1−α2−α3−α4.
The cyclic permutation of the basis vectors of R5 induces the automorphism γ on
A4 (γ(αi) = αi+1).

Proposition 3.1. Let us consider the lattice A4(−2)⊕4 and the automorphism
g := (γ, γ, γ, γ) (acting as γ on each copy of A4(−2)). Let aj,i, j, i = 1, 2, 3, 4, be
the element αi in the j-copy of A4(−2). Let

μ :=
1

2
(a1,1 + a2,1 + a3,1 + a4,1), ν :=

1

2
(a2,1 + a3,3 + a3,4 + a4,1 + a4,3 + a4,4).

Then:

• The lattice

L := A4(−2)⊕4 + 〈gi(μ), gi(ν)〉i=0,1,2,3,

generated by A4(−2)⊕4 and the eight vectors gi(μ), gi(ν), for i = 0, 1, 2, 3,
is an even overlattice of A4(−2)⊕4 of rank 16.

• The index of A4(−2)⊕4 in L is 28.
• There are no vectors of length −2 in L.

Proof. Since μ has an integer intersection with the basis {ai,j} of A4(−2)⊕4 and has
self intersection −4, we can add the element μ to the lattice A4(−2)⊕4 obtaining an
even overlattice. All the elements gi(μ) in the orbit of μ have an integer intersection
with this basis of A4(−2)⊕4 and gi(μ)gj(μ) ∈ Z for all i, j = 0, 1, 2, 3. Thus we can
add the four vectors μ, g(μ), g2(μ), g3(μ) to the lattice A4(−2)⊕4.

It is easy to show that the vectors gi(ν), i = 0, 1, 2, 3, have an integer intersection
pairing with all the vectors in A4(−2)⊕4 and that gi(ν)gj(ν) ∈ Z, (gi(ν))2 ∈ 2Z
(indeed these are properties of all the vectors of type vi,j,k,h,l,m = 1

2 (0, εi−εi+1, εj−
εj+2, εk − εh + εl − εm), k < h < l < m and ν = v1,3,1,2,3,5).

Moreover gi(ν)gj(μ) ∈ Z, i, j ∈ {0, 1, 2, 3} (indeed this is a property of the
vectors of type vi,j,k,h,l,m such that {i, i + 1} ∩ {j, j + 2} = ∅ and {k, h, l,m} =
{i, i+ 1, j, j + 2}).

Thus adding the vectors in the orbit of ν and of μ to A4(−2)⊕4 we construct
an even overlattice L of A4(−2)⊕4. By the computation of the discriminant of
this lattice, it follows that A4(−2)⊕4 has index 28 in L (indeed, to construct L we
add to A4(−2)⊕4 exactly eight vectors of type 1

2v, v ∈ A4(−2)⊕4, and they are
independent over Z).
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Now we prove that there are no vectors with length−2 in L. Let y =
∑3

i=0 big
i(μ)

+
∑3

i=0 cig
i(ν), bi, ci ∈ Z. In A4(−2)⊕4 ⊗Q we have

y :=
1

2

(
3∑

i=0

biαi+1,

3∑
i=0

biαi+1 +

3∑
i=0

ciαi+1,

3∑
i=0

biαi+1 + (−c1 + c3)α1 + (−c1 − c2 + c3)α2 + (c0 − c1 − c2)α3 + (c0 − c2)α4,

3∑
i=0

biαi+1 + (c0 − c1 + c3)α1 + (−c2 + c3)α2 + (c0 − c1)α3 + (c0 − c2 + c3)α4

)
.

If we require that at least two components of y are equal to zero, we obtain that
bi = ci = 0 for all i. So if y �= 0, then y has at most one component equal to zero.

Each vector w in L is of the form y + z with y as above, bi, ci ∈ {0, 1}, and
z ∈ A4(−2)⊕4; moreover, such y and z are uniquely determined by w.

If y = (0, 0, 0, 0), w ∈ A4(−2)⊕4, and hence w2 ≤ −4.
If y �= (0, 0, 0, 0), then w = 1

2 (w1, w2, w3, w4) with wi ∈ A4(−2) and at most one

of wi = 0. Since w2
i ≤ −4 and wi ·wj = 0 if i �= j, we get w2 ≤ 3

4 (−4). Hence there
are no vectors of length −2 in L. �

Proposition 3.2. The lattice L is isometric to the lattice ΩZ/5Z = ΩD5
.

Proof. By uniqueness of ΩZ/5Z, to prove the proposition it suffices to show that there
exists a K3 surface S such that G = Z/5Z is a group of symplectic automorphisms
on S and (H2(S,Z)G)⊥ � L.

By construction L admits an automorphism of order 5, g, acting trivially on the
discriminant group. Moreover L is negative definite and its discriminant group is
(Z/5Z)4. Hence it admits a primitive embedding in ΛK3 ([Nik2, Theorem 1.14.4]).
Since g acts trivially on the discriminant group, G := 〈g〉 extends to a group of
isometries on ΛK3 which acts as the identity on L⊥ΛK3 .

Let S be a K3 surface such that L ⊂ NS(S) (such a K3 surface exists by the
surjectivity of the period map). By Proposition 3.1, L does not contain elements
of length −2. This is enough to prove that the isometries of G defined above (if
necessary, composed with a reflection in the Weil group) are effective isometries for
S (the proof of this fact is essentially given in [Nik1, Theorem 4.3]; see also [GS1,
Step 4, proof of Proposition 5.2]). By construction, these are Hodge isometries (cf.
[Nik1, Theorem 4.3]), so they are induced by automorphisms on S (by the Torelli
theorem; cf. [BR]). Since these automorphisms act as the identity on TS ⊂ L⊥ΛK3 ,
they are symplectic. By construction of the isometries of G, L � (H2(S,Z)G)⊥,
and so L � ΩZ/5Z. �

Since ΩD5
� L, the dihedral group and in particular an involution acts on L.

This implies that the lattice ΩZ/2Z � E8(−2) (cf. [Mo]) is primitively embedded
in L and there exists an involution on L acting as −1 on this lattice and as the
identity on its orthogonal. In the following remark we give an embedding of E8(−2)
in L, and in the proof of the Corollary 3.5 we describe the involution associated to
this embedding.

Remark 3.3. The vectors

e1 := μ e2 := g2(μ) + g3(μ) e3 := ν e4 := μ+ g2(μ) + g3(μ)− g2(ν)− g3(ν)
e5 := a1,1 e6 := a1,3 + a1,4 e7 := a2,1 e8 := a2,3 + a2,4
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generate of a copy of E8(−2) embedded in L. Indeed, the lattice generated by ei
is such that multiplying its bilinear form by 1

2 one obtains a negative definite even
unimodular lattice of rank 8, i.e. a copy of E8(−1).

Remark 3.4. Let fi+8 = g(ei), i = 1, . . . , 8, where {ei}i=1,...,8 is the basis of E8(−2)
defined in Remark 3.3. Since g is an isometry of the lattice it is clear that fi,
i = 9, . . . , 16, generate a copy of E8(−2) embedded in L. A direct computation
shows that the classes ei, fi+8, i = 1, . . . , 8, generate a lattice of rank 16 and
discriminant 54 embedded in L and so they are a Z-basis for L.

The paper [GL] classifies positive definite lattices which have dihedral groups Dn

(for n = 2, 3, 4, 5, 6) in the group of the isometries and which have the properties:

• the lattices are rootless (i.e. there are no elements of length 2),
• they are the sum of two copies of E8(2),
• there are two involutions in Dn acting as minus the identity on each copy
of E8(2).

In [GL, Section 7] it is proved that there is a unique lattice with all these properties
and admitting D5 in the group of isometries, called DIH10(16).

Corollary 3.5. The lattice DIH10(16) described in [GL] is isometric to the lattice
L(−1) � ΩD5

(−1).

Proof. The even lattice L has no vectors of length −2 (Proposition 3.1).
On L there is an isometry of order 5, g (Proposition 3.1).
Let us define a map h on the lattice L which acts as −1 on the copy of E8(−2)

generated by ei, i = 1, . . . , 8 (cf. Remark 3.3) and as the identity on the orthog-
onal complement. Since h acts trivially on the discriminant group of E8(−2) �
〈ei〉i=1,...,8, h is an isometry of L and in particular an involution. One can directly
check that its action on the basis of A4(−2)⊕4 is h(ai,1) = −ai,1, h(ai,2) = −ai,5,
h(ai,3) = −ai,4, h(ai,4) = −ai,3, i = 1, 2, 3, 4. This action extends to a Z-basis of
L.

The group 〈g, h〉 is D5. The involutions h and g2◦h are two involutions generating
the group D5. By construction h and g2 ◦ h act as minus the identity respectively
on the lattice E8(−2) � 〈ei〉i=1,...,8 and on the lattice E8(−2) � 〈fi〉i=9,...,16. These
two copies of E8(−2) generate L (by Remark 3.4). So L(−1) satisfies the conditions
which define DIH10(16) and hence DIH10(16) � L(−1) � ΩD5

(−1).

4. Examples: Algebraic K3 surfaces

with a polarization of a low degree

Here we give some very explicit examples of families of K3 surfaces admitting
Z/5Z, and hence D5, as a group of symplectic automorphisms. In particular, in
this section we consider algebraic K3 surfaces.

We recall that a polarization L, with L2 = 2d, on a K3 surface X defines a map
φL : X → P

d+1. In this section we consider K3 surfaces with a polarization L such
that φL(X) is a complete intersection in a certain projective space and K3 surfaces
with a polarization of degree 2, which exhibits the K3 surfaces as double covers of
the plane.

LetX be a general member of a family of K3 surfaces admitting an automorphism
of order 5, σ5, and a polarization, L, invariant under σ5. In [GS1, Proposition 5.1]
the possible Néron–Severi groups ofX are computed. In particular, if L2 = 2d < 10,
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one obtains that NS(X) � ZL ⊕ ΩZ/5Z =: L2d. This lattice admits a unique
primitive embedding in ΛK3. The family of K3 surfaces with a polarization L of
degree L2 < 10, invariant under a symplectic automorphism of order 5, is then
the family of the L2d-polarized K3 surfaces. In particular, for each d < 5 we find
a 3-dimensional family of K3 with such a polarization L, and hence we have the
following possibilities:

• φL : X
2:1→ P

2, so X is a double cover of P2 branched along a plane sextic
curve: in this case NS(X) � L2;

• φL(X) is a quartic in P
3: in this case NS(X) � L4;

• φL(X) is the complete intersection of a quadric and a cubic in P
4: in this

case NS(X) � L6;
• φL(X) is the complete intersection of three quadrics in P

5: in this case
NS(X) � L8.

Now we construct a general member of each of these families and show that it
also admits a symplectic involution ι generating, together with σ5, the group D5.
Since the automorphisms ι and σ5 leave invariant the polarization, both these
automorphisms can be extended to automorphisms of the ambient projective space.

We will denote by ω a primitive 5-th root of unity.

4.1. L2 = 4. This polarization gives a map to P3, where the K3 surfaces are realized
as quartic surfaces. Let us consider the automorphism

σP3 : (x0 : x1 : x2 : x3) → (x0 : ω3x1 : ωx2 : ω2x3).

The quartic surfaces in P
3, defined as

(4.1) V (ax3
0x2 + bx2

0x
2
1 + cx0x

3
3 + dx0x1x2x3 + ex3

1x3 + fx1x
3
2 + gx2

2x
2
3),

are invariant for σP3 . Hence the restriction of σP3 to K3 surfaces with equation
(4.1) is an automorphism σ5 of the surfaces. To show that this automorphism is
symplectic it suffices to apply σ5 to the following holomorphic two-form in local
coordinates x = x1/x0, y = x2/x0, z = x3/x0:(

∂f

∂z

)−1

dx ∧ dy,

where f denotes the equation of the quartic in the local coordinate x, y, z.
Equation (4.1) depends on 7 parameters. The automorphisms of P3 commuting

with σP3 are diag(α, β, γ, δ) (which is a four-dimensional group); hence this family
of σP3-invariant quartics has

(7− 1)− (4− 1) = 3

moduli. So the family of K3 surfaces given by equation (4.1) is the family of K3
surfaces admitting an automorphism of order 5, leaving invariant a polarization of
degree 4.

Up to a projectivity, commuting with σP3 , equation (4.1) becomes

(4.2) a′x3
0x2 + b′x2

0x
2
1 + c′x0x

3
3 + d′x0x1x2x3 + a′x3

1x3 + c′x1x
3
2 + g′x2

2x
2
3 = 0.

Let us define an involution of P3:

ιP3 : (x0 : x1 : x2 : x3) → (x1 : x0 : x3 : x2).
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Equation (4.2) is invariant under ιP3 , hence ιP3 induces an automorphism of the
quartic surfaces with equation (4.2). We call this automorphism ι. The fixed point
set of ιP3 in P

3 is the union of the lines

l1 =

{
x0 = x1,
x2 = x3,

l2 =

{
x0 = −x1,
x2 = −x3.

Hence ι fixes eight points on the quartics (4.2): the intersection of the quartics
with l1 and l2. This is enough to show that ι is a symplectic involution. Indeed
the involutions which are not symplectic are either fixed point free or fix some
curves [Z, Theorem 1]. Hence the quartics given in (4.2) (and hence, up to a
projectivity, in (4.1)) admit both the automorphisms σ5 and ι. It is easy to check
that 〈σP3 , ιP3〉 = D5 and hence 〈σ5, ι〉 = D5. So the family of smooth quartic
surfaces in P

3 admitting the symplectic automorphism σ5 also admits a symplectic
involution ι and in fact the group D5 = 〈σ5, ι〉.

4.2. L2 = 6. This polarization gives a map to P4, where the K3 surfaces are realized
as complete intersections of a cubic and a quadric.

Let us consider the automorphism

σP4 : (x0 : x1 : x2 : x3 : x4) → (x0 : ωx1 : ω2x2 : ω3x3 : ω4x4).

Let

Q := V (ax2
0 + bx1x4 + cx2x3);

C := V (dx3
0 + ex0x1x4 + fx0x2x3 + gx2

1x3 + hx2x
2
4 + lx1x

2
2 +mx2

3x4).
(4.3)

Then Q and C are σP4-invariant hypersurfaces in P
4. We observe that the complete

intersection of these two hypersurfaces is generically smooth and thus it is a K3
surface.

The complete intersection of Q and C is also the complete intersection of Q and
C+λx0Q. Hence there is a 1-dimensional family of invariant cubics giving the same
complete intersection: the cubics giving different complete intersections depend on
7 − 1 = 6 parameters. The automorphisms of P4 which commute with σP4 are of
the form diag(α, β, γ, δ, ε). So the family of complete intersections of a cubic and a
quadric invariant under the automorphism σP4 has (3− 1) + (6− 1)− (5− 1) = 3
moduli.

Let X be the complete intersection of Q and C. The automorphism σP4 induces
a symplectic automorphism on X (this can be shown as in case L2 = 4 considering
the two holomorphic form, in local coordinates x, y, z, t, (dx ∧ dy)/(QzCt −CtQz),
where Fx is the partial derivative of F w.r.t. x).

Up to the action of the projectivities commuting with σP4 , we can assume that
g = h and l = m in the equation of C in (4.3). Hence the involution

ιP4 : (x0 : x1 : x2 : x3 : x4) → (x0 : x4 : x3 : x2 : x1)

fixes Q and C. So its restriction to X is an involution, ι, of X. Moreover, ι has
eight fixed points (six on the plane x1 = x4, x2 = x3 and two on the lines x0 = 0,
x1 + x4 = 0, x2 + x3 = 0). Thus σ5 and ι are symplectic automorphisms of the K3
surface X and they generate the group D5.
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4.3. L2 = 8. This polarization gives a map to P5, where the K3 surfaces are realized
as complete intersection three quadrics.

Let us consider the map

σP5 : (x0 : x1 : x2 : x3 : x4 : x5) → (x0 : x1 : ωx2 : ω2x3 : ω3x4 : ω4x5)

and the complete intersection of the quadrics

Q′
1 := V (ax2

0 + bx0x1 + cx2
1 + dx2x5 + ex3x4),

Q′
2 := V (fx0x2 + gx1x2 + hx3x5 + lx2

4),
Q′

3 := V (mx0x5 + nx1x5 + ox2x4 + px2
3).

The group of automorphisms of P5 commuting with σP5 is (GL(2)×GL(1)4)/GL(1),
which has dimension 7 = 8 − 1. So these complete intersections in P

5 have (5 −
1)+ (4− 1)+ (4− 1)− (8− 1) = 3 moduli. Up to automorphisms of P5 commuting
with σP5 we can assume that the quadrics have the following equation:

Q1 := V (x2
0 + bx0x1 + x2

1 + dx2x5 + ex3x4),
Q2 := V (x0x2 + x1x2 + x3x5 + x2

4),
Q3 := V (x0x5 + x1x5 + x2x4 + x2

3),

and in fact they depend on 3 parameters.
The complete intersection X of the quadrics Q1, Q2, Q3 is smooth for a generic

choice of the parameters b, d, e (one can check it directly by putting e = b = 0,
d = 1). Moreover X is invariant under the automorphism σP5 , so σP5 induces an
automorphism σ5 on X and σ5 is symplectic (this can be shown as in the case
L2 = 6).

The involution

ιP5 : (x0 : x1 : x2 : x3 : x4 : x5) → (x0 : x1 : x5 : x4 : x3 : x2)

fixes the quadric Q1 and switches the quadrics Q2 and Q3. So its restriction to the
K3 surface X is an involution, ι, of the surface X. Moreover ι has eight fixed points
on the space x2 = x5, x3 = x4. Thus σ5 and ι are symplectic automorphisms of
the K3 surface X and they generate the group D5.

4.4. L2 = 2. This polarization gives a 2 : 1 map to P
2, and the K3 surfaces are

realized as double cover of P2 branched along a sextic plane curve.
The map

σP2 : (x0 : x1 : x2) → (x0 : ωx1 : ω4x2)

is an automorphism of P
2. Up to projectivity of P

2 commuting with σP2 , the
invariant sextics for σP2 are

C6 := V (x6
0 + x0x

5
1 + x0x

5
2 + ax4

0x1x2 + bx2
0x

2
1x

2
2 + cx3

1x
3
2).

Let X be the double cover of P2 branched along C6, i.e. X is V (u2 − (x6
0 + x0x

5
1 +

x0x
5
2+ax4

0x1x2+ bx2
0x

2
1x

2
2+ cx3

1x
3
2)) in the weighted projective space PW(3, 1, 1, 1).

The automorphism σP2 lifts to a symplectic automorphism σ5 : (u : x0 : x1 : x2) →
(u : x0 : ωx1 : ω4x2) of X. So we constructed the 3-dimensional family of K3
surfaces which are double covers of P

2 and have a symplectic automorphism of
order 5 which leaves invariant the polarization.

The involution
αP2 : (x0 : x1 : x2) → (x0 : x2 : x1)

leaves the curve C6 invariant, so it lifts to an involution αX : (u : x0 : x1 : x2) →
(u : x0 : x2 : x1) of the surface X. The involution αX fixes a curve (the pullback
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of the line x1 = x2 in P
2), so it is not symplectic. Let i : (u : x0 : x1 : x2) →

(−u : x0 : x1 : x2) be the covering involution on X. It is a nonsymplectic involution
(indeed the quotient X/ι is rational) and it commutes both with αX and σ5. The
involution ι = αX ◦ i is a symplectic involution on X (because it is the composition
of two commuting nonsymplectic involutions). Moreover one has ι ◦ σ5 = σ−1

5 ◦ ι,
and hence D5 = 〈σ5, ι〉 acts symplectically on X.
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