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SPECIAL SYSTEMS THROUGH DOUBLE POINTS

ON AN ALGEBRAIC SURFACE

ANTONIO LAFACE

(Communicated by Ted Chinburg)

Abstract. Let S be a smooth projective algebraic surface satisfying the fol-
lowing property: Hi(S,B) = 0 for i > 0, for any irreducible and reduced curve
B of S. The aim of this paper is to provide a characterization of special linear
systems on S which are singular along a set of double points in very general
position. As an application, the dimension of such systems is evaluated in case

S is a simple Abelian surface, a K3 surface which does not contain elliptic
curves or an anticanonical rational surface.

Introduction

In what follows S will be a smooth projective algebraic surface defined over the
complex numbers.

Let H be an integral divisor of S. The problem of determining the dimension
of the non-complete linear subsystem of |H| made by curves through r + 1 double
points, i.e. singular at those points, in very general position on S is strictly con-
nected with the problem of evaluating the dimension of the r-secant variety of S
by Terracini’s Lemma [14, Lemma 3.4.28]. The subject and its generalizations have
been studied by many authors (see for example [4, 5, 7, 16]), and the main results
are about classifying the defective surfaces, i.e. surfaces whose r-secant variety does
not have the expected dimension. In this case H is assumed to be very ample, and
even under this hypothesis it is not easy to determine the numerical characters of
the special pairs (S,H). Trying to fill this gap, this paper is mainly devoted to the
study of linear systems through double points on those surfaces S which have the
following property:

(0.1) Hi(S,B) = 0 for i > 0

for any integral curve B of S. As an application a complete characterization of
special linear systems of this type on simple abelian surfaces, K3 surfaces which do
not contain elliptic curves and anticanonical rational surfaces is given.

The paper is organized as follows: in Section 1 we introduce some preliminary
material about linear systems and in Proposition 1.4 give a partial classification of
surfaces satisfying (0.1). Section 2 deals with the main part of the paper, where the
characterization of these special systems is stated and proved. As an application, in
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Section 3, special linear systems on simple abelian surfaces and K3 surfaces which
do not contain elliptic curves are completely classified. As a consequence none of
these surfaces is defective. Finally, Section 4 focuses on the proof of the Gimigliano-
Harbourne-Hirschowitz-Segre conjecture [9, 11, 13, 15] for linear systems of P2 with
nine points of any multiplicity and r double points. The complete list of defective
blow-ups of P2 at most nine very general points is given.

1. Notation and preliminaries

In what follows S will be a smooth algebraic surface defined over C with canonical
bundle KS . A divisor L and its associated line bundle will be denoted by the
same letter. We adopt the notation hi(L) := dimHi(S,L) for the dimension of
the cohomology groups. A compact notation like the one used in the formula
χ = pg − q + 1 will be adopted in what follows for denoting the main invariants
of a surface. The arithmetic genus of a curve B of S will be denoted by pa(B) :=
1
2 (B

2 + B · KS) + 1. We recall that by Riemann-Roch, the Euler characteristic

χ(B) := h0(B)− h1(B) + h2(B) of the line bundle OS(B) is equal to

(1.1) χ(B) =
1

2
(B2 −B ·KS) + χ(OS).

See [1, 3] for the main properties of these invariants. The base locus of a linear
system |L| is denoted by Bs |L|. A divisor L is special if

h0(L) · h1(L) > 0.

Let p1, . . . , pr be points in very general position on S and let |H −
∑

i 2pi| be the
linear systems of divisors of |H| which are singular at all the pi’s. We say that the
linear system |H −

∑
i 2pi| is special if

dim |H −
∑

i

2pi| > max{−1, dim |H| − 3r}.

Proposition 1.2. Let φ : Sr → S be the blow-up at all the pi’s with exceptional
divisors Ei. If hl(H) = 0 for l > 0, then Lr := φ∗H −

∑
i 2Ei is special if and only

if |H −
∑

i 2pi| is special.

Proof. Since φ has connected fibers, then φ∗OSr
= OS by the Zariski connectedness

theorem. This, the projection formula [12, II, Exercise 5.1 (d)] and Rlφ∗φ
∗H = 0

for l > 0 imply the equalities hl(φ∗H) = hl(H) for any l. Since φ∗H ·Ei = 0 for all
i and χ(2Ei) = −3, the Riemann-Roch theorem and what was proved before give

χ(Lr) = χ(φ∗H)− 3r = χ(H)− 3r = h0(H)− 3r,

where the last equality is by hypothesis. Let E :=
∑

i 2Ei and consider the exact
sequence of sheaves:

0 ��OSr
(D − Ei) ��OSr

(D) ��OEi
(D) ��0.

If D · Ei ≥ 0 and h2(D) = 0, then taking cohomology of the exact sequence and
using h1(D|Ei

) = 0, we deduce that h2(D − Ei) = 0. Taking D to be φ∗H, φ∗H −
E1, φ

∗H−2E1, . . . , φ
∗H−

∑
i 2Ei = Lr we deduce that h2(Lr) = 0. Thus, by what

was proved before, Lr is special if and only if h0(Lr) > max{0, h0(H) − 3r}. We
conclude by observing that an element of |Lr| is the strict transform of an element
of |H −

∑
i 2pi| so that the dimensions of the two linear systems are equal. �
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We recall that an abelian surface S is simple if it does not contain 1-dimensional
subgroups. In particular S is simple if it does not contain elliptic curves.

Definition 1.3. In what follows a neat surface is a smooth algebraic projective
surface which satisfies property (0.1).

Proposition 1.4. If S is a neat surface, then it is one of the following:

pg q χ Type of surface

0 0 1
1 0 2 K3
1 2 0 Simple abelian

Proof. Assume that KS is effective. Then either KS ∼ OS or KS − C is effective
for some integral curve C of S. In the second case by Serre duality h2(C) =
h0(KS − C) > 0, which is a contradiction. This implies that KS ∼ OS , so by [1,
Theorem VIII.2] S is either a K3 or an abelian surface. If S is abelian and C is an
elliptic curve on it, then C2 = 0 by adjunction, so h0(C)−h1(C) = χ(C) = 0 gives
h1(C) > 0, which is a contradiction. This implies that S is simple.

Now assume KS is not effective, hence pg = 0. If q(S) > 0, then by [1, Propo-
sition V.15] the Albanese morphism α : S → Alb(S) has connected 1-dimensional
fibers. By [3, Theorem 20.1] the general fiber F of α is smooth. The Riemann-Roch
theorem and F 2 = 0 give

pa(F ) + q − 1 =
1

2
(F ·KS) + q = 1− χ(F ) ≤ 0,

where the last inequality is due to hi(F ) = 0 for i > 0 and h0(F ) > 0. This leaves
us with the case pa(F ) = 0 and q = 1. By [1, Chapter VI] the minimal model of
S is a ruled surface Smin whose basis B = α(S) is a smooth elliptic curve. Let
α = φ ◦ αmin, where αmin : Smin → B is obtained by blowing down all the (−1)-
curves contained in the fibers of α. By [12, Proposition 2.9], αmin has a section C

with C2 ≤ 0. Let C̃ ⊂ S be the strict transform of C through φ. Thus C̃2 ≤ C2 ≤ 0.
Taking the exact sequence of C̃,

0 ��OS
��OS(C̃) ��OC̃(C̃) ��0,

one obtains that h1(C̃) > 0, which is a contradiction. So if pg(S) = 0, then
q(S) = 0. �

Proposition 1.5. Let S be a neat surface and let B be an integral curve such that
h0(B) ≥ 2. Then either h1(2B) = 0 or S is a K3 surface, h1(2B) = 1 and B2 = 0.

Proof. If pg = 0, consider the exact sequence

0 ��OS((n− 1)B) ��OS(nB) ��OB(nB) ��0.

When n = 1 the equalities h1(B) = h2(OS) = 0 imply that h1(B|B) = 0, so that

h1(nB|B) = 0 for any positive n. Taking n = 2 we deduce that h1(2B) = 0.

If pg > 0, then KS ∼ OS by Proposition 1.4. If B2 > 0, then 2B is a nef and
big divisor so that h1(2B) = 0 by Kawamata-Viehweg vanishing. If B2 = 0, then
χ(OS) = χ(B) = h0(B) ≥ 2, where the first equality is due to the Riemann-Roch
theorem and the second to the hypothesis. Thus S is a K3 surface and χ(OS) = 2,
by Proposition 1.4. Since χ(2B) = 2 and h0(2B) = 3, by Riemann-Roch we deduce
h1(2B) = 1. �
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2. Linear systems through double points on surfaces

Let S be a neat surface and let φ : Sr → S be the blow-up map at r points in
very general position. Let H be an integral curve of S and

(2.1) Lr := φ∗H − 2E1 − · · · − 2Er,

where Ei = φ−1(pi) are the exceptional divisors.

Proposition 2.2. Let S be a neat surface and let Lr be as in (2.1). If Lr is
non-special and Lr+1 is special, then

Lr ∼ F + nD,

where F is the fixed part of |Lr| and H0(nD) = Symn H0(D), where n > 1.

Proof. By hypothesis h1(Lr) = 0, so by Proposition 1.2 and the fact that Lr+1 is
special, we have dim |Lr − 2p| > max{−1, dim |Lr| − 3} for a point p ∈ Sr in very
general position. Let Lr ∼ F +M , where F is the fixed part of |Lr|. Since p can
be chosen to lie outside F , then

(2.3) dim |M − 2p| > max{−1, dim |M | − 3}.
Let ϕ : S ��� P

N be the rational map defined by the linear system |M |, let C :=
ϕ(S) and let q := ϕ(p). Observe that a hyperplane H of PN contains the tangent
space TqC if and only if ϕ−1(H) ∈ |M | is singular at p. Thus the elements of
|M −2p| are in one to one correspondence with hyperplanes H such that H ⊃ TqC.
From (2.3) we deduce that TqC imposes less than 3 conditions on the hyperplanes
containing it, and this implies that dim TqC < 2. If dimTqC = 0, i.e. C is a point,
then dim |M | = 1 so that dim |M − 2p| = −1, a contradiction. Thus dimTqC = 1
and C is a curve. Consider the following diagram of maps:

Sr

ϕ

���
�
� S̃r

π��

ϕ̃
��

β

���
��

��
��

�

C C̃
η

�� B
ρ

��

where π is a blow-up map, η is a normalization map, ϕ̃ is the lifting of the resolution
of indeterminacy of ϕ to C̃ and ρ ◦ β is the Stein factorization of ϕ̃, i.e. β has
connected fibers and ρ is a finite map. Observe that on the bottom line of the
diagram we have curves and on the top line we have surfaces.

Assume that B is non-rational and let E be a (−1)-curve of S̃r. Since E is
rational, β(E) is a point. Thus β descends to a morphism βS : S → B which pulls
back all the non-trivial holomorphic 1-forms of B to corresponding 1-forms on S so
that q(S) > 0. Then S is an abelian surface by Proposition 1.4. If Cq := β−1

S (q) for
some q ∈ B, then C2

q = 0 so that h0(Cq)− h1(Cq) = χ(Cq) = 0 by Riemann-Roch,

Serre’s duality and KS ∼ OS . Thus h1(Cq) > 0, which is a contradiction. We

proved that B is rational so that if D̃ is a fiber of β, then

H0(aD̃) ∼= Syma H0(D̃).

A general element Z of |M | is the closure of ϕ−1(H∩C), where H is a hyperplane of

P
N which avoids the singularities of C. Thus Z = π(nD̃), where n = deg(ρ) deg(C).

This implies that H0(M) = Symn H0(D), where D := π(D̃). �
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Following the lines of the last proof, it is easy to observe that even if S does
not satisfy property (0.1), the fixed part of system |Lr − 2p| contains a double
curve through p. That is why we have the following well-known result (see [8,
Theorem 4.1] or [16]).

Corollary 2.4. Let S be a smooth projective algebraic surface and let Lk be defined
as in (2.1). If Lk is special, then the fixed part of |Lk| contains a double curve.

The following definition will be adopted in what follows.

Definition 2.5. A divisor Lr of the blow-up Sr of S at r points in very general
position is pre-special if it is of the form (2.1), it is non-special and Lr+1 is special
on Sr+1.

We begin by investigating the fixed part of the linear system defined in Propo-
sition 2.2.

Lemma 2.6. Let S be a neat surface and let Lr and the Ei’s be as in (2.1). If
Lr ∼ F +M , where F is the fixed part of |Lr|, then Ei · F ≥ 0 for any i.

Proof. Suppose that Er is a component of F , so that h0(Lr) = h0(Lr − Er). If
π : Sr → Sr−1 is the blow-up of Er and p := π(Er), then the preceding equality
is equivalent to |Lr−1 − 2p| = |Lr−1 − 3p|. Since the point p is in very general
position on Sr−1, then by [5, Proposition 2.3] we get a contradiction. Since Er is
not a component of F , then Er · F ≥ 0 and the same argument applies to Ei for
any i. �
Lemma 2.7. Let S be a neat surface and let Lr be a pre-special divisor of Sr.
If Lr ∼ F + nD, where F is the fixed part of |Lr|, then h1(D) = 0. Moreover,
h1(2D) = 0 unless or D = π∗B, where B is an integral curve with B2 = 0 on a K3
surface S, in which case h1(2D) = 1.

Proof. From 2 = Ei · F + n Ei ·D and Ei · F ≥ 0 by Lemma 2.6, we deduce that
0 ≤ D · Ei ≤ 1 because n > 1, by Proposition 2.2. Thus

D ∼ φ∗B −
∑

i∈I

Ei,

where I is the set of all the i’s such that D ·Ei = 1 and B is an integral curve of S
so that h1(B) = 0. Observe that h0(D) = h0(B)− |I| because each Ei imposes one
independent condition since it corresponds to a simple point of S in very general
position. This gives h1(D) = 0.

We now want to determine the possible values of h1(2D). If |I| > 0, then
B2 > 0 so that h1(2B) = 0 by Proposition 1.5. Since |2D| is fixed component
free, then by Corollary 2.4 we have h1(2D) = 0. If |I| = 0, then D = φ∗B so that
h1(2D) = h1(2B). By Proposition 1.5 we conclude that h1(2B) = 0 unless S is a
K3 surface and B2 = 0 in which case h1(2B) = 1. �

The preceding lemma allows one to find the numerical characters of the curve D
by means of the Riemann-Roch theorem.

Proposition 2.8. Let S be a neat surface and let Lr be a pre-special divisor of Sr.
If Lr ∼ F + nD, where F is the fixed part of |Lr|, then the general element of |D|
is a smooth curve with either

D2 = χ(OS)− 1, D ·KSr
= 3χ(OS)− 5,
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or D = π∗B, where B is an integral curve with B2 = 0 on a K3 surface S.

Proof. We know that h0(nD) = n + 1 for n = 1, 2 by Proposition 2.2. Moreover,
Lemma 2.7 gives h1(D) = 0. Suppose now that h1(2D) = 0. Then we get

χ(D) = 2, χ(2D) = 3.

By Riemann-Roch one obtains D2 = χ(OS) − 1 and D · KSr
= 3χ(OS) − 5. If

h1(2D) > 0, then by Lemma 2.7 we get the remaining case.
To prove that the general element of |D| is smooth, observe that χ(OS) ≤ 2 by

Proposition 1.4. This implies D2 ≤ 1 by what was said before, so |D| has at most
one base point p. By Bertini’s second theorem [2] the general element of |D| is
smooth away from p. It has to be smooth also at p, since otherwise two elements
of |D| would have a bigger intersection at that point. �
Corollary 2.9. Let S be a neat surface with pg = q = 0. If Lk, defined as in (2.1),
is special, then S is a rational surface.

Proof. Let r be such that Lr is non-special but Lr+1 is special and let Lr ∼ F +nD
be the decomposition given in Proposition 2.2. We know that |D| is a pencil of
smooth curves on Sr with D2 = 0 and D · KSr

= −2, so that D is rational
and |D| has empty base locus. The morphism φ|D| : Sr → P

1 is a P
1-fibration.

Blowing-down the (−1)-curves which are contained in the fibers of φ|D| we obtain

a P
1-bundle over P1, which is a rational ruled surface (see [1]). This implies that S

is also rational. �
Now we wish to investigate the numerical properties of integral curves of the

base locus of |Lr| when Lr is pre-special.

Lemma 2.10. Let S be a neat surface and let Lr be a pre-special divisor of Sr. Let
Lr ∼ F +nD, where F is the fixed part of |Lr|, and let C be an integral component
of F . Then χ(C + sD) ≤ s+ 1 for any s ≤ n.

Proof. By hypothesis F is the fixed part of |Lr|, so we get

h0(C + nD) ≤ h0(F + nD) = h0(nD),

which implies that C is a fixed component of |C + nD|. Observe that since |D|
does not have fixed components, then also |kD| is a fixed component free for any
k > 0. This and the equality C + nD = (C + sD) + (n − s)D imply that C is a
fixed component of |C + sD|. By Serre’s duality we have that h2(C + sD) = 0, so
from h0(C + sD) = h0(sD) = s+ 1 we get the thesis. �
Proposition 2.11. Let S be a neat surface with Lr as in (2.1). If C is an integral
fixed component of |Lr|, then χ(C) = 1. Moreover, if Lr is pre-special and D is
defined as in (2.2), then either

C ·D ≤ 1

2
(χ(OS)− 1)

or S is a K3 surface, D = φ∗B with B2 = 0 and C ·D ≤ 1.

Proof. Since Z := φ(C) is integral, hi(Z) = 0 for i > 0. Observe that Z is a fixed
component of |H−

∑
i 2pi|, for some integral H. By [5, Proposition 2.3] the general

element of the last system has multiplicity 2 at each pi, so that Z has multiplicity
at most 2 at each pi. Thus h1(C) = 0 by Corollary 2.4. By Serre’s duality and
Proposition 1.4 we have h2(C) = 0, so that χ(C) = 1.
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Assume now that Lr is pre-special. By Lemma 2.10 we have χ(C + 2D) ≤ 3.
Consider the equality

χ(C + 2D) = χ(C) + χ(2D) + 2C ·D − χ(OS).

By Lemma 2.7 and Serre’s duality, either χ(2D) = h0(2D) = 3 or S is a K3 surface,
D = φ∗B with B2 = 0 so that χ(2D) = 2. In both the cases we get the thesis. �

3. Applications to some non-rational surfaces

The aim of this section is to apply the results of Section 2 to two classes of
smooth projective complex surfaces S. Recall that we denote by φ : Sk → S the
blow-up map at k very general points of S with exceptional divisors E1, . . . , Es.

A K3 surface S is a smooth simply connected compact complex surface with
KS ∼ OS . In what follows we will restrict our attention to the class of projective
K3 surfaces.

Lemma 3.1. A projective K3 surface S is neat.

Proof. Let B be an integral curve on S. If B2 > 0, then B is nef and big so that
h1(KS+B) = 0, and thus h1(B) = 0 since KS ∼ OS . If B

2 ≤ 0, then by adjunction
B2 = −2, 0. Taking cohomology of 0 → OS → OS(B) → OB(B) → 0 and using
KB ∼ OB(B) gives the result. �
Theorem 3.2. Let φ : Sk → S be the blow-up of a projective K3 surface which does
not contain elliptic curves at k very general points and let Lk := φ∗H −

∑
i 2Ei

with H integral. Then Lk is special if and only if k = 2 and H ∼ 2B with B2 = 2.

Proof. If H is an integral divisor on S with H2 > 0, then H is nef and big because
h0(H) ≥ χ(H) > 2 by Serre’s duality and the Riemann-Roch theorem. If H ∼ 2B,
then also B is nef and big, so by Kawamata-Viehweg vanishing and B2 = 2 we get
h0(H) = 6 and h0(B) = 3. We expect |L2| to be empty, but 1

2L2 = φ∗B−E1 −E2

is effective, so L2 is special.
Let r := k − 1 and suppose now that Lr is pre-special. By Proposition 2.2 we

have Lr ∼ F +nD, where F is the fixed part of |Lr| and |D| is a linear pencil with
D · KSr

= 1, by Proposition 2.8. The last equality together with KSr
∼

∑
i Ei

imply that D ∼ φ∗B − E1 for some integral curve B of S. If C is an integral
component F , then C · D = 0 by Proposition 2.11; thus F · D = 0. Since n ≥ 2
and 2 = Lr · E1 = F · E1 + nD · E1, by Lemma 2.6 we conclude F · E1 = 0. Thus
F · φ∗B = 0 so that φ(F ) ·B = 0, which implies that φ(Lr) = H is not connected,
which is absurd. Hence F = 0 and Lr ∼ 2D, so that r = 1. By Proposition 2.8
we have D2 = 1 so that B2 = 2. Since h0(L2) = 1, by imposing one more general
point we get h0(L3) = 0, so L3 is non-special. Thus there are no more special
divisors. �
Remark 3.3. The hypothesis of Theorem 3.2 is automatically satisfied if Pic(S) ∼= Z.
It is still possible to classify special linear systems of type Lk on K3 surfaces S with
Picard groups of higher rank, but a careful study of the non-reduced fibers of the
elliptic fibrations of S has to be performed. Due to the length of this analysis we
do not include more results in this direction here.

We recall that an abelian surface is a complex torus admitting a holomorphic
line bundle Θ such that φ|Θ| is an embedding into a projective space. An abelian
surface is simple if it does not contain 1-dimensional subgroups.
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Lemma 3.4. A simple abelian surface S is neat.

Proof. First of all observe that S does not contain integral curves B with B2 ≤ 0.
We prove the statement by contradiction. If B is such a curve and p, q ∈ B, let
τ ∈ Aut(S) be the translation with τ (p) = q. Since τ (B) · B = B2 ≤ 0 and
q ∈ τ (B) ∩ B, we deduce that τ (B) = B. This implies that B is isomorphic to
a 1-dimensional subgroup of S, which is a contradiction. If B is an integral curve
with B2 > 0, then hi(B) = hi(KS + B) = 0 for i > 0 by Kawamata-Viehweg
vanishing. This implies that S is neat. �

Theorem 3.5. Let Sr be the blow-up of a simple abelian surface S at points in
very general position. If Lr is as in (2.1), then it is non-special.

Proof. If Lr is pre-special, let Lr ∼ F + nD, with D as in Proposition 2.2. Then
D2 < 0 by Proposition 2.8, which is a contradiction. �

4. Applications to some anticanonical rational surfaces

In this section Sn will be the blow-up of P2 at n points in very general position.
If n ≤ 9, then it is known (see [6, Theorem 5.1]) that an effective divisor D on Sn

is special if and only if D ·E ≤ −2 for some (−1)-curve E of Sn. If this is the case,
then in particular E is a fixed component of |D| so that the general element of |D|
is reducible or non-reduced. Thus hi(D) = 0 if D is integral and i > 0 so that Sn

is neat for n ≤ 9.
We intend to prove two theorems here:

1. The Harbourne-Hirschowitz conjecture (see [6, Conjecture 4.8]) for linear
systems of P2 through nine points of any multiplicity and through an arbi-
trary number of additional double points.

2. The classification of the defective secant varieties of Sn for 0 ≤ n ≤ 9.

A divisor L of Sr is (−1)-special if h0(L) > 0 and there exists a (−1)-curve E
such that E ·L ≤ −2. If L is (−1)-special and a := −E ·L, then the exact sequence

H1(L− E) ��H1(L) ��H1(OP1(−a)) ��0

implies that h1(L) > 0 so that L is special.
Let φ : Sr+9 → S9 be the blow-up map with exceptional divisors E1, . . . , Er and

let H be a divisor of S9. In this section we will adopt the following notation:

(4.1) Lr := φ∗H − 2E1 − · · · − 2Er.

Lemma 4.2. Let Lr be a divisor on Sr+9 defined as in (4.1). If C1, C2 are integral
fixed components of |Lr|, then C1 · C2 ≤ 0.

Proof. By Proposition 2.11 we have χ(Ci) = 1. Since C1 + C2 is contained in the
base locus of |Lr|, then h0(C1 + C2) = 1. This gives χ(C1 + C2) ≤ 1; thus we get
χ(C1 + C2) = χ(C1) + χ(C2) + C1 · C2 − 1 = 1 + C1 · C2. �

Theorem 4.3. Let Lr be a divisor on Sr+9 defined as in (4.1). Then Lr is special
if and only if it is (−1)-special.

Proof. One implication has already been proved. Suppose now that Lr is special.
If h1(H) > 0, then by [11] there exists a (−1)-curve E of S9 such that E ·H ≤ −2.
Since the points are in very general position, they do not lie on E so that φ∗E is a
(−1)-curve of Sr+9 and φ∗E · Lr = E ·H ≤ −2.
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If h1(H) = 0, then the system |H −
∑

i 2pi| is special because Lr is special and
by Proposition 1.2. Let

H ∼ B +H ′,

where B is the fixed part of |H|. We have that |H ′ −
∑

i 2pi| is special because the
points are in very general position, so that they can be chosen outside B. Moreover,
h1(H ′) = 0 since |H ′| does not have fixed components (see the introduction of this
section). We deduce that L′

r = φ∗H ′ −
∑

i 2Ei is special by Proposition 1.2.
If the general element of |H ′| is irreducible, then let φs : Sr+9 → Ss+9 be the

blow-up map. Let 0 ≤ s < r be the biggest integer such that the divisor L′
s of Ss+9

is non-special. By Proposition 2.2 we have

L′
s ∼ F + nD,

where F is the fixed part of |L′
s| and |D| is a pencil of smooth rational curves with

D2 = 0 by Proposition 2.8. If C is an integral component of F , then C ·D = 0 by
Proposition 2.11, so that D · L′

s = 0. Observe that

(φ∗
sD − Es+1) · L′

r = D · L′
s − Es+1 · L′

r = −2,

where φ∗
sD − Es+1 is a (−1)-curve. This implies that L′

r is (−1)-special.
If the general element of |H ′| is reducible, then by [11, Lemma II.6] we deduce

that H ′ ∼ aD, where |D| is a linear pencil with D2 = 0 and −KS9
·D = 0, 2. The

case −KS9
·D = 0 can be excluded because of [6, Theorem 5.1], since in this case

h0(aD) = 1 so that |L′
r| would be empty and thus non-special. If −KS9

· D = 2,
then pa(D) = 0 so that the general element of |D| is rational and, by Bertini’s
second theorem, is smooth. In this case φ∗D − E1 is a (−1)-curve, and from

(φ∗D − E1) · L′
r = (φ∗D − E1) · (φ∗H ′ −

r∑

i=1

2Ei) = −2

we deduce that L′
r is (−1)-special if r ≥ 1.

We proved that there exists a (−1)-curve E of Sr+9 such that E ·L′
r ≤ −2. Thus

E is a fixed component of |L′
r|, and consequently it is a fixed component of |Lr|.

Thus, by Lemma 4.2 and the fact that φ∗B is a fixed curve of |Lr|, we get

E · Lr = E · (φ∗B + L′
r) ≤ E · L′

r ≤ −2,

so that Lr is (−1)-special. �
As an application of Theorem 4.3, we find the dimension of the secant variety of

any projective embedding of Sr with r ≤ 9.

Lemma 4.4. If H is an ample and integral divisor of Sn, with 2 ≤ n ≤ 9, then
pa(H) > 0.

Proof. We prove the statement by contradiction. Assume that H is ample and
pa(H) = 0. If n ≥ 3, since H is ample, then, by [10, Theorem 1.1], we have that H
is linearly equivalent to a non-negative sum of the classes E0, E0−E1, 2E0−E1−E2,
−Ki := 3E0 − E1 − · · · − Ei, where E0 is the pull-back of a line and the Ei, with
0 < i ≤ n, are the exceptional divisors. Since H is ample, then H · En > 0, so
that H +KSn

is effective. Thus we get H2 = H · (H +KSn
−KSn

) ≥ −H ·KSn
.

Since pa(H) = 0, we have H2 = −H ·KSn
− 2; hence H2 < −H ·KSn

, which is a
contradiction.

If n = 2, let H = dE0−m1E1−m2E2. Then −2 = 2pa(H)−2 = d2−3d−m2
1+

m1−m2
2+m2.On the other hand we have d > m1+m2 becauseH ·(E0−E1−E2) > 0.
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By substituting d = m1 +m2 + 1 in the right hand side of the equation we obtain
the non-negative number 2m1m2 − 2, which is a contradiction. �

Theorem 4.5. Let H be a very ample divisor of Sn, with 0 ≤ n ≤ 9. The r-secant
variety of φ|H|(Sn) is defective if and only if (H,n, r) is one of the following:

(OP2(2), 0, 1), (OP2(4), 0, 4), (φ∗OP2(2a)− (2a− 2)E1, 1, 2a− 1).

Proof. By Terracini’s lemma, the r-secant variety of φ|H|(Sn) is defective if and
only if Lr+1 := φ∗H − 2E1 − · · · − 2Er+1 is special; see [6, Lemma 7.4].

If Lr is non-special and Lr+1 is special, then we are in the hypothesis of Propo-
sition 2.2, so we get Lr ∼ F +mD, where F is the fixed part of |Lr|, m > 1 and
|D| is a linear pencil. By Proposition 2.8 the general element of |D| is a smooth
rational curve with D2 = 0. Moreover, D · F = 0 by Proposition 2.11, so that
D · Lr = 0.

If D · Ei = 0 for any i, then D = φ∗D′, where D′ = φ(D), so that 0 = D · Lr =
D′ ·H, which is a contradiction since H is ample. Thus we deduce that D ·Ei > 0
for some i, and this gives 2 = Lr ·Ei = (F +mD) ·Ei ≥ m(D ·Ei), where the last
inequality is due to Lemma 2.6. Since m > 1 we deduce that D · Ei = 1, m = 2
and F · Ei = 0.

Suppose now that D · Ek = 0 and let Dk := D + Ei − Ek. The general element
of |Dk| is irreducible and D2

k = 0, because the same is true for |D| and we are just
exchanging the role of the points pi and pk, which are in very general position. In
particular Dk is a nef divisor. Observe that Dk ·Lr = D ·Lr = 0, so Dk ·(F+mD) =
0. Since Dk is nef, we get Dk ·D = 0, which is a contradiction.

We proved that D · Ei = 1 for all i so that D = φ∗D′ −
∑

i Ei and F = φ∗F ′,
because F · Ei = 0 for any i. This implies that D′ · F ′ = D · F = 0. Since
H ∼ 2D′ + F ′ is very ample, it is connected, so that F ′ ∼ OSn

and consequently
Lr ∼ 2D. Since D′ is ample and pa(D

′) = 0, because pa(D) = 0, we get n = 0, 1
by Lemma 4.4. In the first case D′ is linearly equivalent to either OP2(1) or OP2(2),
while in the second it is linearly equivalent to φ∗OP2(a)− (a−1)E1 for some a ≥ 2.

Since D2 = 0, then r = D′2. This allows us to determine Lr. In any such case
we get that h0(Lr+1) = 1 so that Lr+2 is non-special because h0(Lr+2) = 0. �
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