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THE LINEAR DUAL OF THE DERIVED CATEGORY

OF A SCHEME

CARLOS SANCHO DE SALAS AND FERNANDO SANCHO DE SALAS

(Communicated by Lev Borisov)

Abstract. Let X → S be a projective morphism of schemes. We study the
category D(X/S)∗ of S-linear exact functors D(X) → D(S), and we study the
Fourier transform D(X) → D(X/S)∗.

Introduction

Let p : X → S be an S-scheme. Let D(X) = Dqc(X) be the derived category
of complexes of OX -modules with quasi-coherent cohomology. Given an object
K ∈ D(X), we define the functor

ωK : D(X) → D(S)

M �→ p∗(K ⊗M).

(Since we are dealing with derived categories all functors are assumed to be derived

and we use the abbreviated notation: p∗ = Rp∗, ⊗ =
L
⊗ , etc.). This functor

satisfies the following properties:
1) It is an additive, graded (i.e., commutes with translations) and is an exact

functor (i.e., takes exact triangles into exact triangles).
2) It is S-linear: One has a natural isomorphism ωK(M ⊗ p∗N) � ωK(M)⊗N ,

for any M ∈ D(X), N ∈ D(S). This follows by the projection formula.
An S-linear form on D(X) is a functor ω : D(X) → D(S) satisfying 1) and

endowed with an isomorphism such as 2). An S-linear morphism between S-linear
forms is defined in the obvious way. We shall denote by D(X/S)∗ the category
of S-linear forms and S-linear morphisms and call it the S-linear dual category of
D(X). An S-linear form of the type ωK , K ∈ D(X), is called an integral linear
form (of kernel K). We have a functor (which we call a Fourier transform)

Fourier : D(X) → D(X/S)∗

K �→ ωK .

An S-linear form ω : D(X) → D(S) is said to be bounded and coherent (resp.
perfect) if it maps Db

c(X) into Db
c(S) (resp. Dperf(X) into Dperf(S)). We shall

denote byD(X/S)∗bc (resp. D(X/S)∗perf) the faithful subcategory ofD(X/S)∗ whose
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objects are the bounded and coherent S-linear forms (resp. the perfect S-linear
forms).

Assume now for simplicity that S is regular and X → S is projective. The main
result of the paper is to prove that the Fourier transform induces equivalences

Db
c(X)

∼−→ D(X/S)∗perf, Dperf(X)
∼−→ D(X/S)∗bc.

In other words, every perfect S-linear form (resp. bounded and coherent S-linear
form) is integral and its kernel is a unique bounded and coherent (resp. perfect)
object of D(X). This is obtained in Theorem 1.14 and Corollary 1.16, where S
is not assumed to be regular. Indeed, the only hypothesis in Theorem 1.14 (resp.
Corollary 1.16) is the projectivity of the morphism X → S (resp. projectivity and
finite Tor-dimension). Even flatness is not required. Hence these results apply for
very general situations. We have also proved these results for the S-linear dual
categories of Db

c(X) and Dperf(X). See Theorems 1.23 and 1.26.
These results are connected with Orlov’s result about the integrality of exact

functors. Orlov proved in [6] that if X and Y are smooth projective varieties over
a field k and F : Db

c(X) → Db
c(Y ) is exact and fully faithful, then F is an integral

functor; i.e., there exists an object K ∈ Db
c(X × Y ) such that F � ΦK , where ΦK

is the integral functor with kernel K:

ΦK( ) = p∗(K ⊗ q∗( )), X × Y
p ��

q

��

Y

X.

This has been generalized to singular schemes in [7] and [2]. However, there are
many integral functors that are not fully faithful. It is widely believed that this
result should hold also without the faithfulness hypothesis: is any exact functor
integral? One could go further and state the integrality conjecture in a relative
setting: let X → S and Y → S be two projective S-schemes (and assume for
simplicity that all the schemes are regular) and let K be an object in Db

c(X ×S Y ).
One has a (relative) integral functor

ΦK : Db
c(X) → Db

c(Y )

M �→ p∗(K ⊗ q∗M),
X ×S Y

p ��

q

��

Y

X.

This functor is exact and S-linear. One could ask if any exact S-linear functor from
Db

c(X) to Db
c(Y ) is of this type. It is not difficult to find a counterexample if we do

not assume Y → S to be flat. Our result proves the conjecture in the case Y = S.
But in this case our result is not only an integrality result because it is also shown
that the morphisms between the kernels are the same as the S-linear morphisms
between the associated functors, which is known to fail in general (i.e. for Y �= S).

Regarding the general integrality conjecture, under the flatness assumption on
Y → S, we give a linear criterion for the integrality of a functor in Proposition 1.30.

Moreover, our results give new evidence of the validity of the integrality con-
jecture. If F : Db

c(X) → Db
c(Y ) is a (relative) integral functor with kernel K ∈

Db
c(X×SY ), then this same kernel defines a functor in the opposite direction. That
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is, a kernel K has two associated functors F : Db
c(X) → Db

c(Y ) and F ∗ : Db
c(Y ) →

Db
c(X), with the same kernel. Let us say that these are partners. Our results prove

that any exact S-linear functor F : Db
c(X) → Db

c(Y ) has a partner F ∗ : Db
c(Y ) →

Db
c(X), which is nothing but the “dual” functor.

1. Linear functors

We shall denote D(X) = Dqc(X) to be the derived category of complexes of
OX -modules with quasi-coherent cohomology. A functor F : D(X) → D(Y ) means
an additive, graded and exact functor, i.e., an additive functor that commutes with
the shift functor and takes exact triangles into exact triangles. For simplicity all
schemes are assumed to be quasi-compact, quasi-separated and of finite type over
a field k. Whenever one has a morphism of schemes f : X → Y , we still denote by
f the morphism X ×Y Y ′ → Y ′ induced after a base change Y ′ → Y .

Definition 1.1. Let p : X → S and q : Y → S be two S-schemes. An S-linear
functor F : D(X) → D(Y ) is a covariant functor endowed with a bi-additive and
bi-graded bi-functorial isomorphism θF (M,E) : F (M ⊗ p∗E) � F (M)⊗ q∗E. That
is, an S-linear functor is a pair (F, θF ), though we shall usually denote it by F .

An S-linear morphism φ : F → F ′ of S-linear functors is a morphism of functors
which is compatible with the θ’s, i.e., such that the diagram

F (M ⊗ p∗E)
∼ ��

φ(M⊗p∗E)

��

F (M)⊗ q∗E

φ(M)⊗1

��
F ′(M ⊗ p∗E)

∼ �� F ′(M)⊗ q∗E

is commutative.

Definition 1.2. Let X be an S-scheme. An S-linear form on D(X) is an S-linear
functor ω : D(X) → D(S). A morphism of S-linear forms is an S-linear morphism
of functors.

We shall denote by D(X/S)∗ the category of S-linear forms on D(X) and S-
linear morphisms.

Example. LetK ∈ D(X×SY ). Let us denote by p : X×SY → Y and q : X×SY →
X the natural projections. The functor ΦK : D(X) → D(Y ) defined by

ΦK(M) = p∗(q
∗M ⊗K)

is S-linear, with the θ provided by the projection formula. We say that ΦK is a
relative integral functor of kernel K. In particular, for each K ∈ D(X), we have
an S-linear form on D(X):

ωK : D(X) → D(S), M �→ p∗(M ⊗K).

We say that ωK is an integral S-linear form on D(X) of kernel K.

Definition 1.3. We say that a functor F : D(X) → D(Y ) is bounded and coherent
if it takes Db

c(X) into Db
c(Y ). We say that F is perfect if it takes Dperf(X) into

Dperf(Y ). We say that F is quasi-perfect if it takes Dperf(X) into Db
c(Y ).

Definition 1.4. A morphism f : X → Y is of finite Tor-dimension if f∗ : D(Y ) →
D(X) is bounded and coherent.
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1.1. Complexes of finite homological dimension over S.

Definition 1.5. Let p : X → S be an S-scheme. An object M ∈ D(X) is said to
be of finite homological dimension over S (fhd over S for short) if the functor

D(S) → D(X)

E �→ p∗E ⊗M

is bounded and coherent. We shall denote by Dfhd/S(X) the faithful subcategory
of D(X) whose objects are the complexes of finite homological dimension over S.

Remark 1.6. (1) If S is a regular scheme, then Dfhd/S(X) = Db
c(X).

(2) If f has finite Tor-dimension (for example f flat or S regular), thenDperf(X)
⊂ Dfhd/S(X).

(3) If f has finite Tor-dimension and X is regular, then Dperf(X) = Dfhd/S(X)

= Db
c(X).

(4) If X = S, then Dfhd/S(S) = Dperf(S).

We shall mention some properties of complexes of finite homological dimension
over S. They can be found in [4].

Proposition 1.7. Assume that p : X → S is projective and let OX(1) be a rela-
tively ample invertible sheaf on X. Let M ∈ D(X). The following conditions are
equivalent:

(1) M is fhd over S.
(2) p∗(M ⊗OX(n)) is perfect for any n.
(3) The functor RHom•

X(M,p!( )) : D(S) → D(X) is bounded coherent.

Two important properties of complexes of finite homological dimension over S
are the following:

Proposition 1.8. Assume that p : X → S is locally projective. Let us denote by
DX/S = p!OS the relative dualizing complex and for any M ∈ D(X) let us denote
by M∨ = RHom•

X(M,DX/S). If K ∈ Dfhd/S(X), then
(1) For any N ∈ D(S) one has an isomorphism

K∨ ⊗ p∗N
∼→ RHom•

X(K, p!N).

(2) K∨ is of finite homological dimension over S and the natural map K → K∨∨

is an isomorphism.

Definition 1.9. We say that a functor F : D(X) → D(Y ) is of finite homological
dimension over S (fhd over S for short) if it takes Dfhd/S(X) into Dfhd/S(Y ). We

say that F is quasi-fhd over S if it takes Dfhd/S(X) into Db
c(Y ).

Proposition 1.10. Assume that p : X → S is projective and let ωK : D(X) →
D(S) be an integral S-linear form. Then

(1) ωK is bounded and coherent ⇔ K is perfect.
(2) ωK is perfect ⇔ K is fhd over S.
(3) ωK is quasi-perfect ⇔ K is bounded and coherent.

Proof. (1) Assume that ωK is bounded and coherent. Let us see that K is perfect.
It suffices to see that K⊗N is bounded and coherent for any bounded and coherent
N . For this, it suffices to see that p∗(K ⊗N ⊗OX(n)) is bounded and coherent for
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any n (see [4, Lemma 2.5] and its following paragraph). Since p∗(K⊗N⊗OX(n)) =
ωK(N ⊗OX(n)), one concludes the proof of part (1). The converse is clear.

(2) Assume that ωK is perfect. Then ωK(OX(n)) is perfect for any n; i.e.,
p∗(K⊗OX(n)) is perfect and then K is fhd over S by Proposition 1.7. Conversely,
assume that K is fhd over S and let M ∈ Dperf(X). Then, for any N ∈ Db

c(S),
ωK(M)⊗N = ωK(M ⊗p∗N) = p∗(K⊗M ⊗p∗N) is bounded and coherent. Hence
ωK(M) is perfect.

(3) Assume that ωK is quasi-perfect. Then p∗(K ⊗ OX(n)) = ωK(OX(n)) is
bounded and coherent; henceK is bounded and coherent. The converse is clear. �

Proposition 1.11. Let F : D(X) → D(Y ) be an S-linear functor. If F is bounded
and coherent, then it is fhd over S.

Proof. Let P ∈ Dfhd/S(X). For any N ∈ Db
c(S), P ⊗ p∗N is bounded and coherent

and then F (P ⊗ p∗N) is bounded and coherent. Since F is S-linear, it follows that
F (P )⊗ q∗N is bounded and coherent. Hence F (P ) is fhd over S. �

Proposition 1.12. Assume that p : X → S is of finite Tor-dimension and let
ω : D(X) → D(S) be an S-linear form on D(X). Then

ω is fhd over S (resp. quasi-fhd over S) ⇒ ω is perfect (resp. quasi-perfect) .

Proof. Since p is of finite Tor-dimension, Dperf(X) ⊂ Dfhd/S(X). One concludes
the proof because Dfhd/S(S) = Dperf(S). �

Notation. Let p : X → S be an S-scheme. We shall denote by D(X/S)∗perf (resp.

D(X/S)∗bc, D(X/S)∗fhd/S , D(X/S)∗quasi-perf, D(X/S)∗quasi-fhd/S) the category of per-

fect (resp. bounded and coherent, fhd/S, quasi-perfect, quasi fhd/S) S-linear forms.

Proposition 1.13. Let p : X → S be a projective morphism. If ω : D(X) → D(S)
is an S-linear form, then it has a right adjoint.

Proof. Brown representability (see [5]) says that ω has a right adjoint if we assume
that ω commutes with infinite direct sums. But one can copy the proof, replacing
this condition by the S-linearity one. �

Theorem 1.14. Let p : X → S be a projective morphism. The functor

Dfhd/S(X) → D(X/S)∗perf
K �→ ωK

is an equivalence.

Proof. Sketch: We shall construct a quasi-inverse D(X/S)∗perf → Dfhd/S(X) in

the following way: let ω# : D(S) → D(X) be the right adjoint of ω, and define
Kω = RHom•

X(ω#(OS), DX/S), where DX/S is the relative dualizing complex of
X over S. We shall see that the correspondences K �→ ωK and ω �→ Kω give the
desired equivalence.

Now we give more details. By Proposition 1.13, ω has a right adjoint ω# : D(S) →
D(X). So one has

HomD(S)(ω(M), N) � HomD(X)(M,ω#(N)).

Let us see that this yields an isomorphism

RHom•
S(ω(M), N)

∼−→ p∗RHom•
X(M,ω#(N)).
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In fact, for any E ∈ D(S) one has

HomD(S)(E,RHom•
S(ω(M), N)) � HomD(S)(E ⊗ ω(M), N)

� HomD(S)(ω(p
∗E ⊗M), N)

� HomD(X)(p
∗E ⊗M,ω#(N))

� HomD(S)(E, p∗RHom•
X(M,ω#(N))).

If one takes M = OX(−n) one obtains

(1.1) RHom•
S(ω(OX(−n)), N) � p∗(ω

#(N)⊗OX(n)).

Assume that ω is perfect. Then, if N is perfect, ω#(N) is of finite homological
dimension over S: in fact, if N is perfect, then RHom•

S(ω(OX(−n)), N) is perfect,
because ω(OX(−n)) is perfect. Then p∗(ω

#(N) ⊗ OX(n)) is perfect for any n by
(1.1). By Proposition 1.7, ω#(N) is fhd over S.

Let us denote by DX/S = f !OS the relative dualizing complex and let M∨ =
RHom•

X(M,DX/S). Let us denote

Kω = ω#(OS)
∨.

By Proposition 1.8, Kω has finite homological dimension over S and ω#(OS)
∼−→

K∨
ω . Let us prove that

RHom•
X(Kω, p

!N) � ω#(N).

Let us first define a morphism RHom•
X(Kω, p

!N) → ω#(N). Since Kω has finite
homological dimension over S one has ω#(OS) ⊗ p∗N � RHom•

X(Kω, p
!N). So

one has to define a morphism ω#(OS) ⊗ p∗N → ω#(N). The unit morphism
(ω ◦ ω#)(OS) → OS induces a morphism (ω ◦ ω#)(OS) ⊗ N → N . By the S-
linearity of ω one has a morphism ω(ω#(OS) ⊗ p∗N) → N and then a morphism
ω#(OS)⊗ p∗N → ω#(N). Now let us see that it is an isomorphism. It suffices to
see that it is an isomorphism after tensoring by OX(n) and taking the direct image
p∗. But

p∗(ω
#(OS)⊗ p∗N ⊗OX(n)) � p∗(ω

#(OS)⊗OX(n))⊗N

(1.1)
� RHom•

S(ω(OX(−n)),OX)⊗N

� RHom•
S(ω(OX(−n)), N)

(1.1)
� p∗(ω

#(N)⊗OX(n)).

We have then proved that ω# � RHom•
X(Kω, p

!( )). Taking left adjoints one
concludes that ω � ωKω

. Moreover Kω is fhd over S. The uniqueness of Kω follows
from the construction.

Conversely, if K is fhd over S, then ωK is perfect by Proposition 1.10 and
KωK

� K. Indeed, the right adjoint of ωK is

(1.2) ω#
K( ) = RHom•

S(K, p!( )) � K∨ ⊗ p∗( )

by Proposition 1.8 and then KωK
= ω#

K(OS)
∨ � K∨∨ � K by (2) of Proposi-

tion 1.8.
The correspondences ω �→ Kω and K �→ ωK are clearly functorial. To conclude,

we have to see that a morphism K → L in Dfhd/S(X) is equivalent to an S-
linear morphism of functors ωK → ωL. Giving an S-linear morphism ωK → ωL is
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equivalent to giving an S-linear morphism ω#
L → ω#

K . By (1.2), this is equivalent
to giving a morphism L∨ → K∨. One concludes by (2) of Proposition 1.8. �

Remark 1.15. (1) In the proof of the theorem it has been shown that one can
relax the hypothesis of ω being perfect and replace it by the weaker hy-
pothesis: ω(OX(i)) is perfect for any i.

(2) The kernel Kω associated to an S-linear form ω does not depend on the
S-linear structure of ω, since it was defined as ω#(OS)

∨, with ω# the
right adjoint of ω. The S-linear structure of ω is used to construct the
isomorphism ω � ωKω

. One deduces that the S-linear structure of ω is
essentially unique: assume that (ω, θ) and (ω, θ′) are two S-linear structures
on ω. Since K(ω,θ) = K(ω,θ′), one obtains an S-linear isomorphism (ω, θ) �
(ω, θ′).

Corollary 1.16. Let p : X → S be a projective morphism of finite Tor-dimension.
The functor

Dperf(X) → D(X/S)∗bc
K �→ ωK

is an equivalence.

Proof. Let ω be a bounded and coherent S-linear form on D(X). By Proposi-
tion 1.11, ω is fhd over S, and hence it is perfect by Proposition 1.12. By The-
orem 1.14, ω is isomorphic to ωK , with K ∈ Dfhd/S(X). Finally K is perfect by
Proposition 1.10. �

Corollary 1.17. Let p : X → S be a projective morphism and assume that S is
regular. Then

D(X/S)∗quasi-perf = D(X/S)∗perf � Db
c(X) = Dfhd/S(X)

and

D(X/S)∗fhd/S = D(X/S)∗bc � Dperf(X).

Proof. Since S is regular, Dperf(S) = Db
c(S) and then D(X/S)∗quasi-perf =

D(X/S)∗perf. By Theorem 1.14, D(X/S)∗perf � Dfhd/S(X). Finally Db
c(X) =

Dfhd/S(X) because S is regular.

For the second part, D(X/S)∗fhd/S = D(X/S)∗bc because Db
c(X) = Dfhd/S(X)

and Db
c(S) = Dfhd/S(S). Finally, D(X/S)∗bc � Dperf(X) by Corollary 1.16.

�

Corollary 1.18. Let p : X → S be a projective morphism of finite Tor-dimension
and assume that X is regular. Then

Db
c(X) = Dperf(X) = Dfhd/S(X)

and

D(X/S)∗quasi-perf = D(X/S)∗perf = D(X/S)∗fhd/S = D(X/S)∗bc

= D(X/S)∗quasi-fhd/S � Db
c(X).

Proof. Db
c(X) = Dperf(X) because X is regular, and Db

c(X) = Dfhd/S(X) be-
cause f has finite Tor-dimension and X is regular. It follows that D(X/S)∗fhd/S =

D(X/S)∗perf and D(X/S)∗bc = D(X/S)∗quasi-fhd/S = D(X/S)∗quasi-perf. Now
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D(X/S)∗perf � Dfhd/S(X) by Theorem 1.14, and D(X/S)∗bc � Dperf(X) by Corol-
lary 1.16. �

As an immediate consequence of Theorem 1.14 and Corollary 1.16 one obtains
the “partner” of a functor:

Corollary 1.19. Let X and Y be two projective S-schemes and let F : D(X) →
D(Y ) be a perfect S-linear functor. Then it induces a functor:

F ∗ : Dfhd/S(Y ) → Dfhd/S(X).

Corollary 1.20. Let X and Y be two projective S-schemes of finite Tor-dimension
over S and let F : D(X) → D(Y ) be a bounded and coherent S-linear functor. Then
it induces a functor:

F ∗ : Dperf(Y ) → Dperf(X).

Of course, if F is both perfect and bounded and coherent, the partners F ∗ of
Corollaries 1.19 and 1.20 coincide.

Remark 1.21. If F : D(X) → D(Y ) is a (relative) integral functor of kernel K ∈
D(X ×S Y ), then F ∗ is also an integral functor with the same kernel.

1.2. Dual categories of Dperf(X) and Db
c(X). In this subsection we shall repro-

duce the results of the previous one for the categories Dperf(X) and Db
c(X). That

is, we want to study the categories of S-linear functors Dperf(X) → Dperf(S) and
Db

c(X) → Db
c(S).

We shall study first the linear dual of Dperf(X).

Definition 1.22. Let p : X → S be an S-scheme. An S-linear form on Dperf(X)
is a functor ω : Dperf(X) → Dperf(S) endowed with a bi-additive, bi-graded and
bi-functorial isomorphism ω(M ⊗ p∗E) � ω(M) ⊗ E, with M ∈ Dperf(X), E ∈
Dperf(S). An S-linear morphism between S-linear forms is defined as in §1.1.

We shall denote by Dperf(X)∗ the category of S-linear forms on Dperf(X) and S-
linear morphisms. One has a natural restriction functor D(X/S)∗perf → Dperf(X)∗.

By Proposition 1.10, if K is an object of D(X) of finite homological dimension
over S, then ωK : D(X) → D(S) takes perfect complexes into perfect complexes.
Then one has a functor

Dfhd/S(X) → Dperf(X)∗.

Theorem 1.23. Assume that X and S are projective schemes over a field k. The
functor

Dfhd/S(X) → Dperf(X)∗

K �→ ωK

is an equivalence.

Proof. The proof is similar to that of Theorem 1.14. Instead of Brown repre-
sentability we need the following result: It is proved in [3] that any contravariant
cohomological functor of finite type over Dperf(X) (X a projective scheme over k)
is representable by a bounded complex with coherent homology. Moreover, one has
an equivalence between Db

c(X) and the category of contravariant cohomological
functors of finite type over Dperf(X) (see [1]). We shall refer to this result as the
locally finite duality on Dperf(X).
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It follows that if ω : Dperf(X) → Dperf(S) is an S-linear form, it has a “right
adjoint” ω# : Db

c(S) → Db
c(X); that is, one has

HomD(S)(ω(P ), N) � HomD(X)(P, ω
#(N))

for any P ∈ Dperf(X), N ∈ Db
c(S). Now, the S-linearity of ω yields that ω#(E) �

ω#(OS)⊗ p∗E for any E ∈ Dperf(S). Indeed, for any P ∈ Dperf(X), E ∈ Dperf(S)
one has

HomD(S)(P, ω
#(E)) � HomD(X)(ω(P ), E) � HomD(X)(ω(P )⊗ E∗,OS)

� HomD(X)(ω(P⊗p∗E∗),OS)�HomD(S)(P⊗p∗E∗, ω#(OS))

� HomD(S)(P, ω
#(OS)⊗ p∗E),

where E∗ = RHom•
S(E,OS). One concludes that ω#(E) � ω#(OS)⊗ p∗E by the

locally finite duality on Dperf(X).
Let us now see that ω#(OS) has finite homological dimension over S. Let us

denote L = ω#(OS). For any P ∈ Dperf(X), E ∈ Dperf(S) one has

HomD(S)(E,ω(P )∗) � HomD(S)(E ⊗ ω(P ),OS)

� HomD(S)(ω(p
∗E ⊗ P ),OS)

� HomD(X)(p
∗E ⊗ P,L)

� HomD(S)(E, p∗RHom•
X(P,L))

� HomD(S)(E,ωL(P
∗)).

By the locally finite duality on Dperf(X) one obtains ω(P )∗ � ωL(P
∗). By Propo-

sition 1.10, L has finite homological dimension over S.
Let us denote K = L∨ and let us prove that ω � ωK . For any P ∈ Dperf(X),

E ∈ Dperf(S) one has

HomD(S)(ω(P ), E) � HomD(X)(P, ω
#(E)) � HomD(X)(P,L⊗ p∗E)

� HomD(X)(P,K
∨ ⊗ p∗E) � HomD(X)(P,RHom•

X(K, p!E))

� HomD(S)(p∗(P ⊗K), E)

and then ω � ωK . The rest of the proof is as in Theorem 1.14. �
Corollary 1.24. Under the same hypothesis, the natural restriction functor

D(X/S)∗perf → Dperf(X)∗

is an equivalence.

Now we shall study the linear dual of Db
c(X).

Definition 1.25. An S-linear form on Db
c(X) is a functor ω : Db

c(X) → Db
c(S)

endowed with a bi-additive, bi-graded and bi-functorial isomorphism

ω(M ⊗ p∗E) � ω(M)⊗ E

for any M ∈ Db
c(X), E ∈ Dperf(S).

Theorem 1.26. Assume that X and S are projective schemes over a field k. Then
the functor

Dperf(X) → Db
c(X)∗

K �→ ωK

is an equivalence.
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Proof. Let ω : Db
c(X) → Db

c(S) be an S-linear form. It is proved in [8] that any
locally-finite homological functor on Db

c(X) (X a projective scheme over a field k)
is representable by an object of Dperf(X). It follows (see [2, Prop. 2.2]) that the
category of locally-finite homological functors on Db

c(X) is equivalent to Dperf(X).
Hence ω has a “left adjoint” ω̃ : Dperf(S) → Dperf(X); that is, one has

HomD(S)(E,ω(M)) � HomD(X)(ω̃(E),M)

for any E ∈ Dperf(S), M ∈ Db
c(X). Now the S-linearity of ω yields that ω̃(E) �

ω̃(OS)⊗ p∗E. Indeed,

HomD(X)(ω̃(E),M) � HomD(S)(E,ω(M)) � HomD(S)(OS , E
∗ ⊗ ω(M))

� HomD(S)(OS , ω(p
∗E∗⊗M))�HomD(X)(ω̃(OS), p

∗E∗⊗M)

� HomD(X)(ω̃(OS)⊗ p∗E,M).

Let us denote K = ω̃(OS)
∗. Since ω̃( ) � ω̃(OS) ⊗ p∗( ), one deduces, by

“adjointness”, that ω( ) � p∗(K ⊗ ). That is, ω � ωK . �

Corollary 1.27. Assume also that p : X → S has finite Tor-dimension. The
natural restriction functor

D(X/S)∗bc → Db
c(X)∗

is an equivalence.

1.3. A linear criterion for integrality. Let p : X → S and q : Y → S be two
S-schemes. For any base change S′ → S we denote XS′ = X ×S S′ and we still
denote by p : XS′ → S′ the morphism induced by p : X → S under base change.

Definition 1.28. Let F : D(X) → D(Y ) be an S-linear functor and f : S′ → S
a base change. We say that F extends to S′ if there exists an S′-linear functor
FS′ : D(XS′) → D(YS′) such that the diagram

D(XS′)
FS′ ��

f∗

��

D(YS′)

f∗

��
D(X)

F �� D(Y )

is commutative, i.e., f∗ ◦ FS′ � F ◦ f∗.

Definition 1.29. An S-linear functor F : D(X) → D(Y ) is said to be geometric if
it extends to any base change S′ → S.

Proposition 1.30. Assume that q : Y → S is flat. Let F : D(X) → D(Y ) be an
S-linear functor. Then F is integral if and only if F is geometric.

Proof. Assume that F = ΦK is an integral functor of kernel K ∈ D(X ×S Y ). Let
f : S′ → S be a base change and KS′ = f∗K ∈ D(XS′ ×S′ YS′). By the projection
formula and flat base change it follows easily that

ΦK(f∗M) � f∗ΦKS′ (M), M ∈ D(XS′).

This means that ΦK extends to S′, an extension being ΦKS′ .
Assume now that F is geometric. Let us take S′ = X, f = p. By hypothesis there

exists an S′-linear functor FS′ : D(X ×S S′) → D(Y ×S S′) such that F (f∗M) �
f∗FS′(M), for any M ∈ D(X ×S S′). Let us denote by OΔ ∈ D(X ×S S′) the
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structure sheaf of the diagonal subscheme. For any N ∈ D(X) one has N �
f∗(OΔ ⊗ p∗N). Then, by the S′-linearity of FS′ ,

F (N) � F (f∗(OΔ ⊗ p∗N)) � f∗FS′(OΔ ⊗ p∗N) � f∗(FS′(OΔ)⊗ q∗N).

This proves that F is an integral functor of kernel FS′(OΔ). �
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