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ON DISPLACEMENT INTERPOLATION OF MEASURES

INVOLVED IN BRENIER’S THEOREM

NICOLAS JUILLET

(Communicated by Mario Bonk)

Abstract. We prove that in the Wasserstein space built over Rd the subset of

measures that does not charge the non-differentiability set of convex functions
is not displacement convex. This completes the study of Gigli on the geometric
structure of measures meeting the sharp hypothesis of the refined version of
Brenier’s Theorem.

Optimal transport is nowadays a central tool in many fields of analysis, differ-
ential geometry and probability theory (see e.g. the books by Villani [11, 12]). It
takes its origin in the problem of Monge, asking for the shortest way to displace an
amount of soil from one place of the Euclidean space to a heap of soil at another
place. This problem induces a very natural distance between probability mea-
sures – the Wasserstein distance – where the measures represent the heaps of soil.
Wasserstein distance is somewhat complementary with the Lebesgue Lp norms be-
cause it corresponds to a “horizontal” displacement: in the first approximation, for
two localized probability measures on R

d, the Wasserstein distance is the distance
between their barycenters.

Brenier’s Theorem [4] on monotone rearrangement of maps of Rd has become
the very core of the theory of optimal transport. It gives a representation of the
optimal transport map in terms of gradient of convex functions. A very enlighten-
ing heuristic on (P2(R

d),W2) is proposed in [7], where it appears with an infinite
differential structure and the Wasserstein distance is seen as a Riemannian-like
distance. This point of view has created many developments, among which is the
gradient flow theory presented in [2]. In [6], Gigli explores the Riemannian-like
structure and proposes to think of the measures meeting the hypothesis of a refined
version of Brenier’s Theorem as the regular points of the Wasserstein space. In this
paper we show that the set of those transport-regular measures is not geodesically
convex (Theorems 2.2 and 2.5). It is quite surprising because it is well-known that
the subset made of absolutely continuous measures (the most notorious transport-
regular measures) is geodesically convex. It answers a question suggested by Gigli
[6, Remark 2.12].

The paper is organized as follows: we first recall some main results on the qua-
dratic Monge(-Kantorovich) problem. The key idea of our result can be found in
Lemma 1.6, while Proposition 1.8 provides a way, together with Proposition 1.7,
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to characterize transport-regular measures. In the second (and last) part, we prove
the main theorem (Theorem 2.2) and its generalization (Theorem 2.5), thanks to
explicit constructions.

Remark 0.1. After the paper was submitted, Shin-Ichi Ohta explained to the author
that Theorem 2.2, together with [6, Corollary 6.6], shows that on (P2(R

d),W2),
which is a non-negatively curved space (see [12, Bibliographic notes of Chapter
26]), there is a geodesic curve γ such that γ(0), γ(1) are regular and the mid-point
γ(1/2) is non-regular in the sense of Alexandrov spaces. This phenomenon can
only occur in infinite dimensional spaces. Indeed it was proven in [10, Corollary of
Theorem 1.2(A), p. 132] that in finite dimensional Alexandrov spaces with curvature
bounded below the set of regular points (i.e., those with a Euclidean space as tangent
cone) is geodesically convex.

1. The quadratic Monge-Kantorovich problem in R
d

1.1. The problem. We denote by P2(R
d) the Wasserstein space on R

d, i.e., the
space of Borel probability measures μ on R

d such that
∫
|x|2dμ(x) < ∞. Let

μ0, μ1 ∈ P2(R
d). We consider

(1.1) C(π) =

∫∫
Rd×Rd

|p− q|2dπ(p, q),

where π ∈ P2(R
d ×R

d) has first marginal e0#π = μ0 and second marginal e1#π =
μ1. Here e0 ⊗ e1 = IdRd×Rd . We say that π is a transport plan (or a coupling) be-
tween μ0 and μ1 if it satisfies the conditions on marginals. The Monge-Kantorovich
problem that we consider here consists in minimizing C(π) among all transport
plans (see [12] or [2] for generalizations of this problem). The minimizers in (1.1)
are called optimal transport plans. In this setting, it is well-known that there exists
at least one optimal transport plan (see e.g. [11, Proposition 2.1]). The Wasserstein

distance between μ0 and μ1 is then W2(μ0, μ1) =
√
C(π), where π is a minimizer.

Among the questions of interest are the uniqueness and the properties of the opti-
mal transport plans. These questions are correlated. Actually, if we can prove some
special property for minimizers of (1.1), we can restrict the set of candidates and
may obtain uniqueness. A key feature of an optimal transport plan is the cyclical
monotonicity of its support (which actually is a property that characterizes opti-
mal plans). It will be described in subsection 1.2. Continuing the analysis of the
support of optimal π’s can lead to deterministic couplings, the so-called transport
maps presented in subsection 1.3.

1.2. Cyclical monotonicity. We first review some basic results. The problem
(1.1) can be somewhat discretized by introducing the cyclically monotone sets.

Definition 1.1. A set S ⊂ R
d × R

d is said to be cyclically monotone if and only
if for any n ∈ N

∗ and any permutation σ ∈ Σn,

(1.2)

n∑
i=1

|xk − yk|2 ≤
n∑

k=1

|xk − yσ(k)|2,

where (xk, yk) ∈ S for k = 1, . . . , n is arbitrary.

The next result provides a geometric characterization of optimal transport plans.
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Proposition 1.2. Let π ∈ P2(R
d × R

d). Then π is an optimal transport plan
between μ0 = e0#π and μ1 = e1#π if and only if Spt(π) is cyclically monotone.

A proof can be founded in [2, Theorem 6.1.4]. See also the comments in Chapter 5
of [12] for different general assumptions.

Note that it is not easy to check whether a particular transport plan is cyclically
monotone. One can sometimes identify that it is not, thanks to the next classical
fact.

Corollary 1.3 (Cycles of length 2). Let π ∈ P2(R
d × R

d) be an optimal transport
plan. Then for any (x, y) and (x′, y′) in Spt(π) we have

(1.3) 〈
−→
xx′,

−→
yy′〉 ≥ 0.

Proof. Let (x, y) and (x′, y′) be in Spt(π). Proposition 1.2 indicates that |x− y|2 +
|x′ − y′|2 ≤ |x − y′|2 + |x′ − y|2. Writing y′ − x = (y′ − y) + (y − x) as well as
y′ − x′ = (y′ − y) + (y − x) we obtain

(1.4)

{
2〈y′ − y, y − x〉 = |y′ − x|2 − |y′ − y|2 − |y − x|2,

2〈y′ − y′, y − x′〉 = |y′ − x′|2 − |y′ − y|2 − |y − x′|2.
The result comes from the difference of these relations. �

We will say that a measure π ∈ P(Rd × R
d) is order-preserving if (1.3) is

satisfied for any (x, y) and (x′, y′) in Spt(π).

1.2.1. Application of Corollary 1.3 to d = 1. The next lemma is a variation of
the well-known theory of optimal transport in dimension 1. It will be useful in
the proof of Lemma 1.6, which is the main innovation of this paper. Note that a
measure on R × R is order preserving if and only if x < x′ ⇒ y ≤ y′ for every
(x, y), (x′, y′) ∈ Spt(π).

Lemma 1.4. For two measures μ0 and μ1 in P2(R), there is a unique order-
preserving transport plan. It is uniquely determined by

π(]−∞, x]×]−∞, y]) = min(F0(x), F1(y)),

where Fi(t) = μi(]−∞, t]) is the cumulative distribution of μi for i ∈ {1, 2}.
Remark 1.5. Thanks to Corollary 1.3, the optimal transport plans must be π.

Proof. It is an easy exercise to see that π is the law of the random vector (X,Y )
with X = F−1

0 (U), Y = F−1
1 (U), where U is uniform on [0, 1] and F−1

i is the
generalized inverse of Fi for i ∈ {0, 1}. Let us recall that

F−1
i (u) = inf{t ∈ R | F (t) ≥ u}.

Hence, as F0 and F1 are non-decreasing, π is order-preserving.
Now let π′ be an a priori different optimal transport plan for the same Monge-

Kantorovich problem and let H(s, t) = π′(] − ∞, s]×] − ∞, t]). We have to prove
that H(s, t) = min(F0(s), F1(t)). The inequality ≤ is obvious because F0(s) =
π′(]−∞, s]×R) and F1(t) = π′(R×]−∞, t]). For the other estimation it is enough to
prove (F0(s) > H(s, t)) ⇒ (F1(t) ≤ H(s, t)). Indeed one can treat F1(t) > H(s, t)
in the same way. So we assume F0(s) > H(s, t), i.e., π′(]−∞, s]×]t,+∞[) > 0. Let
(x, y) ∈ Spt(π′) so that x ≤ s and y > t. Then because of Corollary 1.3, Spt(π′) does
not meet ]x,+∞[×] −∞, y[⊃]s,+∞[×] −∞, t] =: R. Therefore F1(t) −H(s, t) =
π′(R) = 0. �
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1.2.2. Application of Corollary 1.3 to measures concentrated on curves. Let �u be a
unit vector of Rd. We define a partial order on R

d by p 
 q if and only if

〈�u,−→pq〉 > |q − p| cos π
4

or p = q.

Actually {q ∈ R
d | p 
 q} is a half-cone directed by �u, with edge p and opening

angle π
4 . It is easy to check that 
 is transitive and antisymmetric. We note that

p ≺ q if p 
 q and p �= q. As in subsection 1.2.1 we can reinterpret (1.3): let μ0, μ1

be two measures of Rd such that 
 is a total order on Spt(μi) for i = 0, 1 and
(x, y), (x′, y′) ∈ Spt(μ0)× Spt(μ1). If x ≺ x′ we have

(1.5) 〈
−→
xx′,

−→
yy′〉

⎧⎪⎨
⎪⎩
> 0 if y ≺ y′,

< 0 if y′ ≺ y,

= 0 if y = y′.

Therefore, a transport plan π between μ0 and μ1 is order-preserving if and only if
x ≺ x′ ⇒ y 
 y′ on Spt(π). Note that (1.5) is easy to check. For instance, in the
case y ≺ y′ the angle between the vectors is smaller than π

2 = π
4 +

π
4 (see Figure 1).

Figure 1. Totally ordered sets.

Lemma 1.6. Let �u be a unit vector of Rd. Assume that Spt(μ0) and Spt(μ1) are
totally ordered with respect to �u. There is a unique order-preserving transport plan
π between μ0 and μ1. Therefore, thanks to Corollary 1.3, any optimal transport
plan between μ0 and μ1 is π.

Proof. Let π be an order-preserving transport plan between the μi’s. Let p be the
orthogonal projection on L�u, the vectorial line directed by �u. The projection p from
(Rd,
) to (L�u,
) is strictly increasing so that because of Lemma 1.4, ω = (p⊗p)#π
is an order-preserving transport plan between p#μ0 and p#μ1 and it is the unique
one. In fact, (L�u,
, dRd) and (R,≤, dR) are isomorphic. But for i ∈ {0, 1} the
projection p is one-to-one from Spt(μi) to its image so that we can deduce π from
ω. Explicitly π = (q0⊗ q1)#ω, where qi is the inverse map of p : Spt(μi) → L�u. �
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Under the hypothesis of Lemma 1.6, with the notation above we have

π{(x, y) | 〈�u, �x〉 ≤ s; 〈�u, �y〉 ≤ t} = min (μ0{〈�u, �x〉 ≤ s}, μ1{〈�u, �y〉 ≤ t}) ,
and this expression determines uniquely π. This can be seen easily from Lemmas 1.4
and 1.6 and their proofs.

1.3. Necessary and sufficient condition for a Brenier map. The transport
maps from μ0 to μ1 are maps T : Rd → R

d such that T#μ0 = μ1. They are as-
sociated to a transport plan by πT = (Id⊗T )#μ0. If πT is a minimizer of (1.1),
T is called an optimal transport map or Brenier map. The well-known theorem
of Brenier ensures the existence of optimal maps under the assumption that μ0

is absolutely continuous w.r.t. the Lebesgue measure. In [5] this assumption has
been weakened to μ0 gives 0 mass to Lipschitz hypersurfaces (also see the discussion
below). The recent work by Gigli explores the sharpness of the hypothesis on μ0

permitting an optimal transport map for any μ1. Analytic and geometric charac-
terizations for these measures are given in [6]. We will see in Theorems 2.2 and 2.5
that contrary to absolutely continuous measures, this set of measures is not stable
under displacement interpolation.

The next result, especially implication (2)⇒(1), is part of [6]. In what follows,
all convex functions are real-valued.

Proposition 1.7 (Refined version of Brenier’s Theorem). Let μ0 ∈ P2(R
d). Then

the following statements on μ0 are equivalent:

(1) Any convex function φ defined on a convex open U ⊂ R
d is μ0-a.e. differ-

entiable.
(2) For any measure μ1 ∈ P2(R

d), there exists a unique solution π to the
Monge-Kantorovich problem, and it is induced by a transport map T .

We’ll call μ0 satisfying one of these statements a transport-regular measure
(or simply a regular measure as in [6]). The map T can be written as ∇φ for some
convex function φ.

Statement (1) can be replaced by (1′): Any convex function φ defined on R
d is

μ0-a.e. differentiable. Assuming (1′), let φ be a convex function defined on U . We
can cover U by countably many open balls Bk where the slope of φ is bounded.
Then

φk = sup{l(x)| l is linear and l ≤ φ on Bk}
is a convex function of R

d that coincides with φ on Bk. Each point of non-
differentiability of φ is a point of non-differentiability for some φk. It follows that φ
is μ0-a.e. differentiable. Note that in (1), one can also add the points of ∂U as points
of non-differentiability. For that, consider ∂U as the set of non-differentiability of
the convex function x → d(x, U).

Gigli states (1) in a different way in terms of c – c hypersurfaces. These objects
appear in the work by Zaj́ıček [13] in relation to the non-differentiability set of a
convex function and for the first time in relation to optimal transport in a footnote
of [5]. Actually Zaj́ıček proved in [13] that the set of non-differentiability of a convex
function is included in countably many c – c hypersurfaces and that, conversely,
such a union is exactly the set of non-differentiability of some function. We will
not define c – c hypersurfaces because we use a different result on the set of non-
differentiability points. Here is a weak formulation of a result due to Alberti [1].
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Proposition 1.8 (Alberti). Let φ be a convex function of Rd. There are (d − 1)
dimensional submanifolds Mk ⊂ R

d of class C2, and a set N with Hd−1(N) = 0

such that φ is differentiable outside
⋃+∞

k=1Mk ∪N .

Example 1.9. We give some examples of transport-regular measures. They share
the property to be defined by duality as the measures vanishing on special classes
of sets F .

• If μ0 is absolutely continuous (i.e., Hd(F ) = 0 ⇒ μ0(F ) = 0), then it is
transport-regular. This assumption is the classical assumption of Brenier’s
Theorem on existence and uniqueness of minimizers in (1.1).

• If (dimH(F ) ≤ d − 1 ⇒ μ0(F ) = 0), then μ0 is transport-regular. This
is the setting of the more usual refined Brenier Theorem, presented in [11,
Theorem 2.32].

• A Lipschitz piece is any set f(E) for some E ⊂ R
d−1 and f a Lipschitz

continuous map. If
– μ0 is absolutely continuous with respect to Hd−1 and
– μ0(F ) = 0 for every Lipschitz piece F (i.e., μ0 is purely non-rectifiable),

then μ0 is transport-regular. Any C1-hypersurface of Rd is contained in a
countable union of Lipschitz pieces.

The measures in the proof of the main theorem are of the type described in the
example below.

Example 1.10. If (i) μ0 is absolutely continuous with respect to Hd−1 and (ii) it
does not charge hypersurfaces of class C2 (i.e., μ0 is C2-purely non-rectifiable), then
μ0 is transport-regular.

2. Displacement interpolation of transport-regular measures

It is part of the theory to consider the displacement interpolation introduced by
McCann in [9]. Let μ0, μ1 be such that there exists a unique optimal plan π between
them. For any t ∈ [0, 1] we consider μt = et#π, where et(x, y) = tx+(1−t)y. For the
unicity in the definition of μt, we assume that the optimal transport plan π is unique.
If π = (Id⊗T )#μ0, we have μt = Tt#μ0, where Tt = tT + (1 − t) Id. The curve

(μt)t∈[0,1] defines the unique geodesic curve between μ0 and μ1 in (P2(R
d),W2). We

are interested in the question of whether μt is transport-regular for t < 1. Because
of Corollary 1.3, for μ0 ⊗ μ0-almost every x, x′ we have

〈
−→
xx′,

−−−−−→
TtxTtx

′〉 ≥ (1− t)|x′ − x|2,

so that

|Ttx
′ − Ttx| ≥ (1− t)|x′ − x|.

Hence there exists a μt-measurable map St such that μ0-almost surely St ◦Tt = Id.
Therefore St#μt = μ0 and

|y′y| ≥ 1

(1− t)
|
−−−−−→
Sty

′Sty|

for μt ⊗ μt almost every (y, y′). Then up to a modification of μt-measure 0, St

is Lipschitz continuous on Spt(μt). Thus we can consider that St is Lipschitz
continuous and extend its definition domain to R

d.
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2.1. Some particular cases. Let t ∈]0, 1[ and F ⊂ R
d satisfying one of the

properties of Example 1.9: Hd(F ) = 0, Hd−1(F ) = 0, dimH(F ) ≤ d − 1 or
“F is a d − 1 dimensional Lipschitz piece”. Consider St(F ) and observe that it
satisfies the same property as F , just because St is Lipschitz continuous. Thus if a
transport-regular μ0 satisfies properties described in Example 1.9, μt satisfies the
same properties and is transport-regular. On the contrary, in Example 1.10 the
Lipschitz image of a C2 submanifold is not necessarily C2. This fact is at the origin
of the proof of Theorem 2.2.

2.2. A counterexample in the general case. The counterexample will take
place in R

2, and we will consider t = 1/2. Generalizations to higher dimension and
other interpolation parameters will be given in Theorem 2.5. We start with a result
of one variable analysis.

Proposition 2.1. There exists a C1 function f defined on [0, 1] such that for all
H ∈ C2([0, 1]),

(2.1) L1 ({x ∈ [0, 1], f(x) = H(x)}) = 0.

See [3, Appendix] for statements with Hölder conditions.

Proof. It is enough to prove that some continuous function g meets the C1 functions
on a set of measure 0. Actually if there exists a continuous g satisfying

(2.2) L1({g = h}) = 0

for all h ∈ C1([0, 1]), we can set f(x) =
∫ x

0
g. Therefore for H of class C2, at density

points of {f = H} we must have f ′ = H ′ so that L1({f = H}) ≤ L1({g = H ′}) = 0.
One can see that a Weierstrass-like function (take for instance a van der Waerden
function) or almost surely a one dimensional Brownian path can serve as an example
of g. Actually these functions are nowhere approximatively differentiable on [0, 1].
See [8] and the references therein for these and other results. �

Figure 1 represents the construction involved in the next (main) theorem.

Theorem 2.2. There exists μ0, μ1, transport-regular measures of P2(R
2), such that

μ1/2 is not transport-regular.

Proof. Consider f as in Proposition 2.1. Up to multiplication by a constant one can
assume that |f ′| < 1. We introduce q+ : x → (x, f(x)) from [0, 1] to the graph of f ,
q− : x → (x,−f(x)) and p : (x, y) → x. We now set μ0 = q+#ν and μ1 = q−#ν, where

ν denotes the restriction of the Lebesgue measure to [0, 1]. Following subsection
1.2.2 we denote by �u the unit vector of the x-axis. As |f ′| < 1, 
 is a total order
on sptμ0 and sptμ1. It follows from Lemma 1.6 and the comment after it that
π = (q+ ⊗ q−)#ν is the unique optimal transport plan between μ0 and μ1. But
q++q−

2 (x) = (x, 0) so that μ1/2 = L1
|[0,1]×{0} is concentrated on the x-axis. Thus

μ1/2 is not transport-regular (consider φ(x, y) = |y| in Proposition 1.7 or compare
with Example 4.9 in [12]).

The last thing we have to check is that μ0 and μ1 are transport-regular. Of
course it suffices to consider μ0. Note that for any measurable set F ⊂ R

2 we have

μ0(F ) = L1 (p(Spt(μ0) ∩ F )) ,
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where Spt(μ0) is simply the graph of f in R
2. Let φ be a convex function and

S the set of the non-differentiability points of φ. We have to show μ0(S) = 0. As
Alberti proved (Proposition 1.8), there are 1 dimensional submanifolds of class C2,

Mk ⊂ R
d and a set N with H1(N) = 0 such that S ⊂

⋃+∞
k=1Mk ∪N . But

(2.3) μ0(N) = L1 (p(Spt(μ0) ∩N)) ≤ H1(p(N)) ≤ H1(N) = 0

because p is 1-Lipschitz. Let us now prove that μ0(Mk) = 0 for a given k ∈ N.
Because of Sard’s lemma, H1(p(Mu

k )) = 0, where Mu
k = {m ∈ Mk | �u is normal to

Mk}. Therefore
μ0(M

u
k ) = L1 (p(Spt(μ0) ∩Mu

k )) = 0.

Moreover, Mk \Mu
k is the countable union of pieces of graphs of class C2. Thus

L1 (p(Spt(μ0) ∩ (Mk \Mu
k ))) = 0

just because f follows the consequence of Proposition 2.1. Finally μ0(Mk) = 0 and
μ0(S) = 0, as we want. �

Remark 2.3. We have actually proven that μ0 satisfies the hypotheses of Exam-
ple 1.10.

Remark 2.4. The optimal transport map T used in this construction is an orthog-
onal symmetry. This is a very special feature because for most measures usually
considered in optimal transport theory, pushing forward by symmetry provides a
transport plan that does not satisfy the cyclical monotonicity.

2.2.1. Generalization. In this last part we generalize Theorem 2.2 to higher dimen-
sions d and interpolation parameters t ∈]0, 1[. The proof for d > 2 can be deduced
from d = 2 thanks to a tensorization method.

Theorem 2.5. For any d ≥ 2 and any t ∈]0, 1[, there exists μ0, μ1 transport-regular
measures of P2(R

d) such that μt is not transport-regular.

First, we keep t = 1/2. Let us define

(2.4) μ
(d)
i = ν ⊗ · · · ⊗ ν︸ ︷︷ ︸

d−2

⊗μi

for i = 0, 1, where ν is the uniform measure on [0, 1] and μi is a measure of R2 as
in Theorem 2.2. We claim that these measures are transport-regular. We show it

for μ
(d)
0 . Observe that μ

(d)
0 = q

+(d)
# ν⊗d−1, where

q+(d)(x1, . . . , xd−1) = (x1, . . . , xd−1, f(xd−1)),

for the same f : R → R
2 as used in Theorem 2.2. Actually μ

(d)
0 satisfies the

hypotheses of Example 1.10. On the one hand μ
(d)
0 is absolutely continuous with

respect to Hd−1. To show this, just consider a relation corresponding to (2.3) where
p(d)(x1, . . . , xd) = (x1, . . . , xd−1) replaces p. On the other hand, any hypersurface
of class C2 can be decomposed into two parts. The first part M ′ is made of the
points where the the normal vector is in R

d−1×{0}. Then because of Sard’s lemma
Ld−1(p(d)(M ′)) = 0. The other part is a countable union of graph pieces of class
C2. Let M ′′ be one of these pieces. Hence

M ′′ = {(x, v(x)) | x ∈ U},
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where v ∈ C2(U,R) and U ⊂ R
d−1 is an open set. As v(x1, . . . , xd−2, ·) ∈ C2(R) we

can conclude using the proof of Theorem 2.2 and Fubini’s theorem that

Ld−1
(
p(d)(Spt(μ

(d)
0 ) ∩M ′′)

)
= 0.

Thus μ0 is transport-regular.
We now prove that formula (2.4) also holds for i ∈]0, 1[; i.e., the displacement

interpolation commutes with the ν⊗d−2-tensorization. From there we will be done

because μ
(d)
1/2 is concentrated on R

d−1 × {0} so that it is not transport-regular.

Consider the optimal transport plan π(d) between μ
(d)
0 and μ

(d)
1 . For r defined by

r(x1, . . . , xd) = (xd−1, xd) we obtain a coupling πr = (r ⊗ r)#π
(d) between μ0 and

μ1. This projection reduced the value of the cost in (1.1); we have C(πr) ≤ C(π(d)).

But C(π(d)) ≤ C(((Id⊗ Id)#ν)
⊗d−2 ⊗π) = C(π), where π is the optimal transport

plan between μ0 and μ1. Hence πr = π. From there it is not difficult to see that

π(d) = ((Id⊗ Id)#ν)
⊗d−2 ⊗ π.

Note that in this proof we have been implicitly identifying R
d ×R

d with (R×R)d.
For the generalization in the convexity parameter t, observe that for any T > 1/2,

the non-transport-regular μ1/2 is the interpolated measure of parameter t = 1
2T >

1/2 between μ0 and μT . Moreover, μT is transport-regular because μT = uT
#μ1,

where uT : (x1, . . . , xd) → (x1, . . . , xd−1, 2(T − 1
2 )xd) is affine and invertible. By a

symmetric argument one can conclude this for t < 1/2 too.

Remark 2.6. In the one dimensional case, transport-regular means with no atom.
If μ0 and μ1 have no atom, it is the same for any transport plan π. For an optimal
π, it follows from subsection 1.2.1 that x < x′ ⇒ y ≤ y′ for (x, y), (x′, y′) ∈ Spt(π).
Hence for t ∈]0, 1[, et is one-to-one when restricted to Spt(π), and μt has no atom.
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