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DERIVED EQUIVALENCE INDUCED BY

INFINITELY GENERATED n-TILTING MODULES

SILVANA BAZZONI, FRANCESCA MANTESE, AND ALBERTO TONOLO

(Communicated by Harm Derksen)

Abstract. Let TR be a right n-tilting module over an arbitrary associative
ring R. In this paper we prove that there exists an n-tilting module T ′

R equiva-
lent to TR which induces a derived equivalence between the unbounded derived
category D(R) and a triangulated subcategory E⊥ of D(End(T ′)) equivalent
to the quotient category of D(End(T ′)) modulo the kernel of the total left
derived functor − ⊗L

S′ T
′. If TR is a classical n-tilting module, we have that

T = T ′ and the subcategory E⊥ coincides with D(End |(T )), recovering the

classical case.

Introduction

Tilting theory generalizes the classical Morita theory of equivalences between
module categories. Originated in the works of Gel’fand and Ponomarev, Brenner
and Butler, Happel and Ringel [6, 9, 19], it has been generalized in various di-
rections. In the recent literature, given an associative ring R with 0 �= 1, a right
R-module TR (possibly infinitely generated) is said to be n-tilting if the following
conditions are satisfied:

(T1) there exists a projective resolution of right R-modules

0 → Pn → ... → P1 → P0 → T → 0;

(T2) ExtiR(T, T
(α)) = 0 for each i > 0 and each cardinal α;

(T3) there exists a coresolution of right R-modules

0 → R → T0 → T1 → ... → Tm → 0,

where the Ti’s are direct summands of arbitrary direct sums of copies of T .

If the projectives Pi’s in (T1) can be assumed finitely generated, then the n-tilting
module TR is said to be classical n-tilting.

Infinitely generated tilting modules arise naturally; they are objects of interest
in themselves and also in the context of representation theory of Artin algebras.
Relevant examples are studied in [28, 24, 2]. Moreover, they play an important
role in connection with homological conjectures. In [3] it is proved that the little
finitistic dimension of a Noetherian ring is finite if and only if there is an n-tilting
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module representing in a canonical way the category of finitely presented modules
of finite projective dimension. Even in the case of finite dimensional algebras it
could be possible that this tilting module is necessarily infinitely generated.

Let us denote by S = End(TR) the endomorphism ring of T and by KEi(T ) and
KTi(T ), 0 ≤ i ≤ n, the following classes:

KEi(T ) = {M ∈ Mod-R : ExtjR(T,M) = 0 for each 0 ≤ j �= i},
KTi(T ) = {N ∈ Mod-S : TorSj (N, T ) = 0 for each 0 ≤ j �= i}.

In 1986 Miyashita [27] proved that if TR is a classical n-tilting, then the functors

ExtiR(T,−) and TorSi (−, T ) induce equivalences between the classes KEi(T ) and
KTi(T ).

In the same year, works of several authors showed that the natural context
for studying equivalences induced by classical tilting modules is that of derived
categories. In particular Cline, Parshall and Scott [10], generalizing a result of
Happel [18], proved that a classical n-tilting module TR provides a derived equiva-
lence between the bounded derived categories Db(R) and Db(S) of bounded cochain
complexes of right R- and S-modules.

In the context of infinite dimensional tilting theory, Facchini [12, 13] in 1988
proved that, over a commutative domain, the divisible module ∂ introduced by
Fuchs [14] is an infinitely generated 1-tilting module and it provides a pair of equiv-
alences

KE0(∂)
Hom(∂,−)−−−−−→←−−−−−

−⊗∂
KT0(∂) ∩ I-Cot, KE1(∂)

Ext1(∂,−)−−−−−→←−−−−−
Tor1(−,∂)

KT1(∂) ∩ I-Cot

between the category KE0(∂) of all divisible modules and the category KT0(∂) ∩
I-Cot of all I-reduced I-cotorsion modules, and the category KE1(∂) of all reduced
modules and the category KT1(∂) ∩ I-Cot of all I-divisible I-cotorsion modules,
respectively. This equivalence generalizes both the Harrison and Matlis equivalences
[20, 26]. In 1995 Colpi and Trlifaj [11] started the study in general of 1-tilting
modules. They realized that it can be useful to “change slightly” the tilting module
to realize a good equivalence theory. They proved that if TR is a 1-tilting module,
there exists another 1-tilting module T ′

R equivalent to TR (i.e. KE0(T ) = KE0(T
′)),

with endomorphism ring S′ = End(T ′), such that the functors HomR(T
′,−) and

−⊗S′ T ′ induce an equivalence between KE0(T ) = KE0(T
′) and its image class in

Mod-S′. Moreover T ′ results in a finitely presented S′-module. In 2001 Gregorio
and Tonolo extended this result proving the existence of a pair of equivalences

KEi(T
′)

ExtiR(T ′,−)−−−−−→←−−−−−
TorS

′
i (−,T ′)

KTi(T
′) ∩ Cost(T ′), i = 0, 1

where Cost(T ′) is the class of costatic right S′-modules (see [17]).
In 2009 Bazzoni [5] gives a better understanding of the whole situation in the

setting of derived categories proving that for a 1-tilting module TR it is possible to
find an equivalent 1-tilting module T ′ which induces a derived equivalence between
the unbounded derived category D(R) and the quotient category of D(S′) modulo
the full triangulated subcategory Ker(−⊗L

S′ T ′), namely the kernel of the total left
derived functor of the functor −⊗S′ T ′.
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In this paper we generalize Bazzoni’s result to a general n-tilting module TR.
We prove the existence of a good n-tilting module T ′

R equivalent to TR (see Defini-
tion 1.1), which, also in such a case, provides a derived equivalence between the un-
bounded derived category D(R) and a triangulated subcategory E⊥ of D(End(T ′)).
The category E⊥ turns out to be equivalent to the quotient category of D(End(T ′))
modulo the kernel of the total left derived functor −⊗L

S′ T ′. Moreover, as done in
[25] in the contravariant case, we interpret the derived equivalence at the level of
stalk complexes obtaining on the underlying module categories a generalization of
the Miyashita equivalences.

1. n-tilting classes

In 2004 Bazzoni (see [4]) proved that TR is an n-tilting module if and only if the
classes

T⊥∞ := {MR : ExtiR(T,M) = 0 for each i > 0}
and

Genn(T ) := {MR : ∃ T (αn) → ... → T (α1) → M → 0, for some cardinals αi}

coincide.

Definition 1.1. Two n-tilting right R-modules TR and T ′
R are said to be equivalent

if Genn(TR) = Genn(T
′
R).

An arbitrary direct sum of copies of an n-tilting module is an n-tilting mod-
ule equivalent to the original one. Therefore equivalent tilting modules can have
completely different endomorphism rings.

Definition 1.2. We say that TR is a good n-tilting module if it is n-tilting and it
satisfies the condition

(T3′) there is an exact sequence

0 → R → T0 → T1 → ... → Tn → 0

where the Ti’s are direct summands of finite direct sums of copies of T .

It is easy to verify that a classical n-tilting module is good (see e.g. [16, p. 189]).

Proposition 1.3. For any n-tilting module TR there exists an equivalent good n-
tilting module T ′

R such that

KEi(T ) = KEi(T
′) for each i ≥ 0.

Proof. Let TR be an n-tilting module. If it is classical, then T already satisfies
(T3′). Otherwise, from condition (T3) let us consider T ′ = T0 ⊕ ...⊕ Tn. Since T ′

is a direct summand of a direct sum of copies of T , we have

Genn(T
′) ⊆ Genn(T ) = T⊥∞ ⊆ T ′⊥∞ ,

and T ′ satisfies properties (T1) and (T2) of tilting modules. Since by construction
it satisfies also property (T3′), we have Genn(T

′) = T ′⊥∞ and T ′ is the wanted
good n-tilting module equivalent to T .

Finally, since KerExtj(T,−) = KerExtj(T0 ⊕ ...⊕ Tn,−) = KerExtj(T ′,−), we
conclude that KEi(T ) = KEi(T

′) for each i ≥ 0. �
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A good n-tilting module has an endomorphism ring S sufficiently large to permit
building a good equivalence theory between the unbounded derived categories D(R)
and D(S). In the sequel we will work directly with good n-tilting modules.

Proposition 1.4. Let TR be a good n-tilting module and S = End(TR). Then ST
has a projective resolution

0 → Qn → ... → Q0 → ST → 0,

where the Qi’s are direct summands of a finite direct sum of copies of S, ExtiS(T, T )
= 0 for each i ≥ 0, and R ∼= End(ST ).

Proof. By Definition 1.2 there is an exact sequence

0 → R → T0 → T1 → ... → Tn → 0

with the Ti’s direct summands of Tm for a suitable m ∈ N. Denote by Ki the
kernel of the map Ti → Ti+1, 1 ≤ i ≤ n − 1. Applying the contravariant functor
HomR(−, T ) we get easily by dimension shifting that

0 = ExtiR(Kj , T ) for each 1 ≤ j ≤ n− 1, and i ≥ 1.

Therefore we have the exact sequence

(†) 0 → HomR(Tn, T ) → HomR(Tn−1, T ) → ... → HomR(T1, T )

→ HomR(T0, T ) → ST → 0,

where each HomR(Ti, T ) is a direct summand of HomR(T
m, T ) = Sm and hence a

finitely generated projective S-module. Given a right R-module M , let us denote
for simplicity by M∗ the left S-module HomR(M,T ), by M∗∗ the right R-module
HomS(M

∗, T ), and by δM the evaluation map M → M∗∗. The modules K∗
i are

the cokernels of the morphisms HomR(Ti+1, T ) → HomR(Ti, T ), 1 ≤ i ≤ n −
1. Applying to (†) the contravariant functor HomS(−, T ) we get the following
commutative diagrams with exact rows:

0 �� HomS(T, T ) = R∗∗ �� T ∗∗
0

�� K∗∗
1

�� Ext1S(T, T ) �� 0

0 �� R

δR

��

�� T0

δT0

��

�� K1

δK1

��

�� 0

. . .

0 �� K∗∗
n−1

�� T ∗∗
n−1

�� T ∗∗
n

�� Ext1S(K
∗
n−1, T ) �� 0

0 �� Kn−1

δKn−1

��

�� Tn−1

δTn−1

��

�� Tn

δTn

��

�� 0

Since the δTi
’s are isomorphisms we get

Ext1S(T, T ) = 0 and 0 = Ext1S(K
∗
i , T )

∼= Exti+1
S (T, T ) for each 1 ≤ i ≤ n− 1,

and R ∼= HomS(T, T ). �
Lemma 1.5 (Lemmas 1.8, 1.9 [27]). Let TR be a good n-tilting and S = EndT .
For any right R-module M in T⊥∞ and any right projective S-module PS, we have

(1) TorSi (HomR(T,M), T ) = 0 for each i > 0;
(2) HomR(T,M)⊗S T ∼= M, f ⊗ t �→ f(t);
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(3) ExtiR(T, P ⊗S T ) = 0 for each i > 0.

If TR is a classical n-tilting module, then

(4) P ∼= HomR(T, P ⊗S T ), p �→ (f : t �→ p⊗ t).

Proof. Everything except condition (3) follows by the quoted lemmas in [27]. If
P ≤⊕ S(α) we have

ExtiR(T, P ⊗S T ) ≤⊕ ExtiR(T, S
(α) ⊗S T ) = ExtiR(T, T

(α)) = 0. �

2. Tilting equivalences in derived categories

In the sequel, for any ring R, we denote by K(R) the homotopy category of
unbounded complexes of right R-modules and by D(R) the associated derived
category. Given an object M ∈ Mod-R, we continue to denote by M also the
stalk complex in D(R) associated to M , i.e. the complex with M concentrated
in degree zero. Any complex C• ∈ D(R) admits a K-injective resolution, i.e.
a complex iC• quasi-isomorphic to C• whose terms are injective modules such
that HomK(R)(N

•, iC•) = 0 for each exact complex N•. Similarly, any complex
C• ∈ D(R) admits a K-projective resolution, i.e. a complex pC• quasi-isomorphic
to C• whose terms are projective modules such that HomK(R)(pC

•, N•) = 0 for
each exact complex N• (see for instance [7], [22]). This result guarantees the
existence of the total derived functor of any additive functor defined on module
categories.

Given any covariant left exact functor H : Mod-R → Mod-S, we denote by RH
its total right derived functor defined on D(R). For any C• ∈ D(R), RH(C•)
coincides with the complex H(iC•), where we still denote by H its extension to
K(R). Similarly, for any right exact covariant functor G : Mod-S → Mod-R, we
denote by LG its total left derived functor defined on D(S). For any N• ∈ D(S),
LG(N•) coincides with the complex G(pN•).

A module M in Mod-R is called H-acyclic if RiHM := Hi(RHM) = 0 for
any i �= 0. The abelian group RiHM coincides with the usual i-th derived functor
H(i)(−) of H evaluated in M . Analogously G-acyclic objects are defined and
LiG(−) := Hi(LG(−)) = G(−i)(−). Following the proof of [21, Corollary I.5.3.γ],
in case the functor H has finite homological dimension, the class J of the complexes
with H-acyclic components satisfies the conditions 1 and 2 of [21, Theorem I.5.1];
therefore for any complex M• in D(R), we have

RHM• = H(J•),

where J• is a complex in J quasi-isomorphic to M•. The analogous result holds for
the left derived functor of G, in case G has finite homological dimension.

In view of these considerations, by Lemma 1.5 we have the following result:

Corollary 2.1. Let TR be a good n-tilting module with endomorphism ring S. Then
for each injective module IR and each projective module PS we have

(1) HomR(T, I) is −⊗S T -acyclic;
(2) P ⊗S T is HomR(T,−)-acyclic.

In particular for cochain complexes I• and P • whose terms are injective right R-
modules and projective right S-modules respectively, we have

RHom(T, I•)⊗L

ST = Hom(T, I•)⊗ST and RHom(T, P •⊗L

ST ) = Hom(T, P •⊗ST ).



4230 S. BAZZONI, F. MANTESE, AND A. TONOLO

Finally, we recall that any adjoint pair of functors (G,H) between categories
of modules induces an adjoint pair (LG,RH) between the associated unbounded
derived categories. For other notation and results in derived categories we refer to
[21, 29].

In the sequel we denote by H the functor HomR(T,−) and by G the functor
−⊗S T .

Theorem 2.2. Let TR be a good n-tilting module and S = EndTR. The following
hold:

(1) The counit adjunction morphism

LG ◦ RH → IdD(R)

is invertible.
(2) The functor RH : D(R) → D(S) is fully faithful.
(3) If Σ is the system of morphisms u ∈ D(S) such that LGu is invertible in

D(R), then Σ admits a calculus of left fractions and the category D(S)[Σ−1]
coincides with the quotient category D(S) modulo the full triangulated sub-
category Ker(LG) of the objects annihilated by the functor LG.

(4) There is a triangle equivalence

D(S)[Σ−1]
Θ−−−−−→←−−−−−
RH

D(R),

where Θ is the functor such that LG = Θ ◦ q with q the canonical quotient
functor q : D(S) → D(S)[Σ−1].

Proof. (1) Let M• be a complex in D(R) and consider a K-injective resolution iM•

of M•. By Corollary 2.1 we have

LG(RH(M•)) = LG(H(iM•)) = G(H(iM•)).

Since (HomR(T, I
n)⊗S T )n∈Z and iM• are isomorphic by Lemma 1.5, (2), we have

LG(RH(M•)) = G(H(iM•)) ∼= iM• = M•.

Conditions (2), (3) and (4) follow by applying [15, Proposition I.1.3]. �

Let C be a triangulated category closed under arbitrary coproducts; recall that
a triangle functor L : C → C is a Bousfield localization if there exists a natural
transformation φ : 1C → L such that for each X in C,

(1) L(φX) : L(X) → L2(X) is an isomorphism;
(2) L(φX) = φL(X).

In such a case the kernel L of L is a full triangulated subcategory of C closed under
coproducts; i.e. it is a localizing subcategory. The category

L⊥ := {X ∈ C : HomC(L, X) = 0}

is called the subcategory of L-local objects. If L⊥ is also closed under coproducts,
then L is called smashing [8, 7].

A localization functor L factorizes as

C q→ C/KerL
ρ−→∼= L⊥

j
↪→ C,
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where q is the canonical quotient functor and ρ is an equivalence; (ρ ◦ q, j) is an
adjoint pair. Moreover the composition

L⊥
j
↪→ C q→ C/KerL

is an equivalence and (q, j ◦ ρ) is an adjoint pair (see [7, Section 4], or [1, Proposi-
tion 1.6], or [23, Propositions 4.9.1, 4.11.1]).

We collect in the following theorem results appearing in [15] and [23, Section 4.9].
For the sake of completeness we include the proof.

Theorem 2.3. Let (Φ,Ψ) be an adjoint pair of covariant functors between trian-
gulated categories

C
Φ−−−−−→←−−−−−
Ψ

D.

Denote by φ : 1C → Ψ ◦ Φ and ψ : Φ ◦ Ψ → 1D the corresponding unit and counit.
If ψ is a natural isomorphism, then the functor L := Ψ ◦Φ is a localization functor
with kernel L = KerΦ. The functor Ψ factorizes through L⊥ as Ψ = j ◦ Ψ, where
j is the inclusion L⊥↪→C. Finally we have a triangle equivalence

L⊥
Φ◦j−−−−−→←−−−−−
Ψ

D,

where Φ ◦ j is the restriction of Φ to L⊥ and Ψ is the corestriction of Ψ to L⊥.

Proof. Since (Φ,Ψ) is an adjoint pair, we have

ψΦ(X) ◦ Φ(φX) = 1Φ(X);

applying the functor Ψ we get

Ψ(ψΦ(X)) ◦ L(φX) = 1L(X).

On the other hand, again by the adjunction, we have

Ψ(ψΦ(X)) ◦ φΨΦ(X) = 1ΨΦ(X), i.e. Ψ(ψΦ(X)) ◦ φL(X) = 1L(X).

Since ψΦ(X) is an isomorphism by assumption, we have that for each X in C,
L(φX) = φL(X) = (Ψ(ψΦ(X)))

−1

is an isomorphism. Hence L is a localization functor.
An objectX belongs to L = KerL if and only if we have 0 = Φ(0) = Φ(ΨΦ(X)) ∼=

Φ(X).
Next, since L = Ψ ◦ Φ factorizes through L⊥ and Φ(Ψ(Y )) ∼= Y for each Y in

D, Ψ also factorizes through L⊥. Therefore we have the following commutative
diagram:

L⊥
� �

j ��

q◦j
∼=

��

C q ��

Φ
����

����
��

�����
����

���

C/KerΦ ρ∼=
��

Θ
���

�

����
���

L⊥
� �

j �� C

D

Ψ���

�����
Ψ�������

���������

Finally Φ ◦ j ◦ Ψ = Φ ◦ Ψ ∼= 1D, and Ψ ◦ Φ ◦ j = ρ ◦ q ◦ j, being a composition of
two equivalences, is naturally isomorphic to 1L⊥ . �

Applying Theorem 2.3 to our context we obtain the following result.
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Corollary 2.4. Let TR be a good n-tilting R-module and S = End(T ). Denoting
by E the kernel of LG, and denoting by RH and LG also their restriction and
corestriction, we have a triangulated equivalence

D(R)
RH−−−−−→←−−−−−
LG

E⊥.

Embedding right R-modules and S-modules in D(R) and D(S) via the canonical
functor, we obtain the following generalization of Miyashita’s results [27, Theo-
rem 1.16]:

Corollary 2.5. Let TR be a good n-tilting R-module and S = End(T ). Then for
each 0 ≤ i ≤ n there is an equivalence

KEi

ExtiR(T,−)−−−−−→←−−−−−
TorSi (−,T )

KTi ∩ E⊥.

Proof. Let M ∈ KEi. Then by Corollary 2.4, RH(M) = RiH(M)[−i] =
ExtiR(T,M)[−i] belongs to E⊥. Since E⊥ is closed under shift, ExtiR(T,M) ∈ E⊥.
In D(R), by Theorem 2.2, (1), we have

M ∼= LGRH(M) = LG(ExtiR(T,M)[−i]).

Then for each j �= 0,

0 = Hj
LG(ExtiR(T,M)[−i]) = Hj−i

LG(ExtiR(T,M)) = TorSi−j(Ext
i
R(T,M), T ).

Therefore ExtiR(T,M) belongs to KTi ∩ E⊥ and M ∼= TorSi (Ext
i
R(T,M), T ). Anal-

ogously if N ∈ KTi ∩ E⊥, then
LG(N) = L−iG(N)[i] = TorSi (N, T )[i];

and since RH LG(N) = N in D(S), necessarily TorSi (N, T ) belongs to KEi and

N ∼= ExtiR(T,Tor
S
i (N, T )). �

Proposition 2.6. In the notation of Corollary 2.4, the following are equivalent:

(1) TR is a classical n-tilting;
(2) E = 0 or equivalently E⊥ = D(S);
(3) the class E is smashing.

Proof. (1 ⇒ 2). Let N• be a complex in E and pN• a K-projective resolution of
N•. By Lemma 1.5, (3) and (4), we have

0 = RH(LGN•) = RH(LGpN•) = RH(pN• ⊗S T )

= HomR(T,pN
• ⊗S T ) ∼= pN• = N•.

We conclude that E = 0 by Corollary 2.4.
(2 ⇒ 3) is obvious.
(3 ⇒ 2). Since S = RH(TR), E⊥ contains the bounded complexes of finitely

generated projective S-modules; that is, E⊥ contains the set T c of the compact
objects of D(S).

Since D(S) is compactly generated by T c, D(S) is the smallest triangulated
category closed under coproducts and containing T c. Thus, if E⊥ is closed under
coproducts, we get that E⊥ = D(S); hence E = 0.

(2 ⇒ 1). By Corollary 2.4, condition (2) implies that LG induces an equivalence
between D(S) and D(R). Hence by [18] or [22, Section 4.1], TR is a classical n-tilting
module. �
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I-35121 Padova, Italy

E-mail address: tonolo@math.unipd.it

http://www.ams.org/mathscinet-getitem?mr=0178025
http://www.ams.org/mathscinet-getitem?mr=0178025
http://www.ams.org/mathscinet-getitem?mr=852914
http://www.ams.org/mathscinet-getitem?mr=852914
http://www.ams.org/mathscinet-getitem?mr=2195596
http://www.ams.org/mathscinet-getitem?mr=2195596
http://www.ams.org/mathscinet-getitem?mr=1269324
http://www.ams.org/mathscinet-getitem?mr=1269324

	Introduction
	1. n-tilting classes
	2. Tilting equivalences in derived categories
	References

