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LOCALLY NILPOTENT DERIVATIONS

WITH A PID RING OF CONSTANTS

MOULAY A. BARKATOU AND M’HAMMED EL KAHOUI

(Communicated by Ted Chinburg)

Abstract. Let K be a commutative field of characteristic zero, A be a domain
containing K and ∂ be a locally nilpotent K-derivation of A. We give in this
paper a description of the differential K-algebra (A, ∂) under the assumptions
that the ring of constants A∂ of ∂ is a PID, ∂ is fixed point free and its special
fibers are reduced.

1. Introduction

Let K be a commutative field of characteristic zero, with K as its algebraic
closure, and let A be a commutative ring with unity containing K. A K-derivation
∂ of A is called locally nilpotent if for any a ∈ A there exists m ≥ 1 such that
∂m(a) = 0. When A = K[V ] is the coordinate ring of an affine algebraic variety
V defined over K, a locally nilpotent K-derivation of A corresponds to an action
of the group Ga = (K,+) on the variety V defined by a regular map K×V −→ V
with coefficients in the field K.

Given a locally nilpotent K-derivation ∂ of a K-domain A, i.e., a domain contain-
ing K, we let A∂ be its ring of constants and s∂ = ∂(A)∩A∂ be its plinth ideal; see
[2] for more details on the plinth ideal. Given a prime ideal p of A∂ , the derivation
∂ uniquely extends to A ⊗A∂ A∂

p = ASp
, where A∂

p stands for the localization of

A∂ at p and Sp = A∂ \ p. If s∂ � p, then ASp
is a univariate polynomial ring over

A∂
p by a classical result of Wright [7] (see Lemma 2.1). In particular, if Fp is the

residue field of A∂
p , then A ⊗A∂ Fp is a univariate polynomial ring over Fp. But

when s∂ ⊆ p the structure of A ⊗A∂ A∂
p is not trivial and the fiber A ⊗A∂ Fp is

degenerate. In the sequel, the fibers corresponding to the prime ideals containing
s∂ will be called the special fibers of ∂.

Recently, M. Miyanishi established in [6] a structure theorem for (A, ∂) under
the assumptions that A∂ is a discrete valuation ring, with m as its unique maximal
ideal, A is finitely generated over A∂ and the unique special fiber A ⊗A∂ Fm is
irreducible; i.e., A⊗A∂ Fm is a domain. More precisely, if x is a uniformizer of A∂ ,
then Miyanishi’s result may be stated as follows. The differential algebra (A, ∂) is
A∂-isomorphic to (A∂ [z1, . . . , zr+1]/p, aζ), where p is an ideal of A∂ [z1, . . . , zr+1]
generated by a system of the form xm1z2 − h1(z1), . . . , x

mrzr+1 − hr(z1, . . . , zr),
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a is a constant in A∂ and ζ is induced by the Jacobian derivation Jac(xm1z2 −
h1, . . . , x

mrzr+1 − hr).
The assumptions in Miyanishi’s result imply in particular that A is a UFD [6,

Lemma 2.3] and ∂ = b∂1, where b ∈ A∂ and ∂1 is fixed point free [6, Remark 2.2].
Thus, Miyanishi’s result essentially concerns the case of a UFD endowed with a
fixed point free locally nilpotent derivation. In this paper we show that the result
holds true under the weaker assumptions that ∂ is fixed point free, A∂ is a PID
and the special fibers of (A, ∂) are reduced. This is a nontrivial generalization of
Miyanishi’s result since it goes beyond the factorial case. However, even in the case
where A∂ is a DVR, the techniques developed in this paper do not apply when ∂
is not fixed point free or when some of the special fibers of ∂ are not reduced.

2. Basics

In this section we recall the basic facts on locally nilpotent derivations to be used
in this paper, and we refer to the books [4, 1, 2] for more details. We also recall the
concept of affine modification [3]. Throughout this paper all the considered rings
are commutative with unity.

2.1. Locally nilpotent derivations. Let A be a ring and ∂ be a locally nilpotent
derivation of A. We let A∂ be the ring of constants, also called the kernel, of ∂. An
element s of A is called a slice of ∂ if ∂(s) = 1. The following fundamental result
characterizes locally nilpotent derivations having a slice; see [7].

Lemma 2.1. Let A be a ring containing Q and ∂ be a locally nilpotent derivation
of A having a slice s. Then A = A∂ [s] and ∂ = ∂s. Moreover, if A is a domain,
then all locally nilpotent A∂-derivations of A are of the form c∂s, where c ∈ A∂.

In general, a nonzero locally nilpotent derivation need not have a slice. Never-
theless, it always has a local slice, i.e., an element s such that ∂(s) ∈ A∂ \ {0}. If
s is a local slice of ∂, with ∂(s) = c, and A is a domain, then ∂ uniquely extends
to a locally nilpotent derivation of the localization ring Ac. Moreover, we have

(Ac)
∂ =

(
A∂

)
c
and according to Lemma 2.1 we have Ac = A∂

c [s] if A contains Q.

In particular, A has transcendence degree 1 over A∂ , and in case A has a finite
transcendence degree r over K the K-domain A∂ has transcendence degree r − 1
over K.

A locally nilpotent derivation ∂ of a K-domain A is called irreducible if the
image ∂(A) is not contained in any principal ideal of A. Assume that every infinite
ascending sequence (aiA∂)i of principal ideals of A∂ is stationary. Then we have
∂ = aδ, where a ∈ A∂ and δ is an irreducible locally nilpotent derivation. If in
addition to the above assumption the intersection of any two principal ideals of A∂

is a principal ideal, i.e., A∂ is a UFD, then the decomposition is unique up to the
units of A; see e.g. [2, section 2.1].

Let A be a ring containing K and ∂ be a K-derivation of A. Let i be a proper
invariant ideal of ∂, i.e., ∂(i) ⊆ i. Then ∂ induces a K-derivation, denoted by ∂|i,
of the quotient algebra A/i. The derivation ∂|i is nonzero if and only if ∂(A) is
not contained in the ideal i. If ∂ is locally nilpotent, so is ∂|i. Given an ideal i of
A invariant under ∂, its radical is also an invariant ideal of ∂. If moreover A is
Noetherian, then any minimal prime of i is an invariant ideal ∂.
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Given two locally nilpotent K-derivations ∂ and δ of A, their sum ∂ + δ need
not be locally nilpotent. Nevertheless, if ∂ and δ commute, then ∂ + δ is locally
nilpotent.

A derivation ∂ of a ring A is called fixed point free if the ideal generated by the
range ∂(A) of ∂ is equal to A. This equivalently means that ∂(A) is not contained
in any proper ideal of A.

2.2. Plinth ideal. Let A be a K-domain and let ∂ be a locally nilpotent K-
derivation of A. The subset s∂ = A∂ ∩ ∂(A) is actually an ideal of A∂ , called the
plinth ideal of ∂; see [2] for more details. It is easy to see that s∂ = {∂(s) : ∂2(s) =
0} and that s∂ = A∂ if and only if ∂ has a slice. A local slice s of ∂ is called minimal
if for any local slice v such that ∂(v) | ∂(s) we have ∂(s) = μ∂(v), where μ is a
unit of A∂ . In case the ring A satisfies the ascending chain condition on principal
ideals, it is proved in [2, section 2.2] that a minimal local slice exists.

Now assume that s∂ is a principal ideal. Then for any minimal local slice s of
∂ the element c = ∂(s) generates the ideal s∂ . Although a minimal local slice s
is not uniquely determined, any other minimal local slice s1 of ∂ is of the form
s1 = μs + a, where μ ∈ A� and a ∈ A∂ ; see [2, Proposition 2.7]. This shows that
the subring A∂ [s] is uniquely determined.

2.3. Affine modifications. We recall in this subsection the concept of affine mod-
ification and refer to [3] for more details.

Definition 2.2. Let A be a ring, i be an ideal of A and c ∈ i be a regular element.
The subring A[c−1i] of Ac is called the affine modification of A with locus (i, c).

Notice that the affine modification A[c−1i] contains A since c is assumed to be
regular in A. Moreover, if i is finitely generated and h1, . . . , hr is a generating
system of i, then A[c−1i] is generated as an A-algebra by c−1h1, . . . , c

−1hr. It
follows that an affine modification of an affine ring over K is also an affine ring over
K. Let us also recall the following result; see [3, Corollary 2.3].

Proposition 2.3. Let A be a a ring containing K and A[c−1i] be an affine modifi-
cation of A with locus (i, c). Let ∂ be a locally nilpotent K-derivation of A such that
∂(c) = 0 and ∂(i) ⊆ i. Then ∂ may be lifted in a unique way to a locally nilpotent
K-derivation of A[c−1i].

When a locally nilpotent derivation δ of an affine modification A[c−1i] is obtained
from a locally nilpotent derivation ∂ of A by using Proposition 2.3, we will say that
δ is the affine modification of ∂ with locus (i, c).

3. Statement of the main result

Given a ring B and g = g1, . . . , gr a list of polynomials in B[z1, . . . , zr+1], we let
Jac(g, .) be the Jacobian derivation associated to g; i.e., for any f ∈ B[z1, . . . , zr+1],
the polynomial Jac(g, f) is the determinant of the Jacobian matrix of (g, f) with
respect to z1, . . . , zr+1.

Assume that B is a UFD and let c ∈ B. Then we may write c = c1 · · · cr, where
the ci’s are square-free and ci+1 | ci. Moreover, this factorization is essentially
unique in the sense that if c = d1 · · · dt, with di square-free and di+1 | di, then
r = t and there exist μ1, . . . , μr ∈ B such that di = μici and μ1 · · ·μr = 1. Such a
factorization will be called the square-free factorization of c.

The following theorem is the main result of this paper.
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Theorem 3.1. Let A be a K-domain and ∂ be a fixed point free locally nilpotent K-
derivation of A such that A∂ is a PID and all the special fibers of ∂ are reduced. Let
c be a generator of the plinth ideal s∂ and c = c1 · · · cr be its square-free factorization.
Then there exists a triangular system h1(z1), . . . , hr(z1, . . . , zr) with coefficients in
A∂ such that

(A, ∂) �A∂ (A∂ [z1, . . . , zr+1]/p, ζ),

where p is the ideal generated by c1z2 − h1, . . . , crzr+1 − hr and ζ is induced by the
Jacobian derivation Jac(c1z2 − h1, . . . , crzr+1 − hr).

If A∂ is a DVR and the unique special fiber of (A, ∂) is irreducible, then A is a
UFD by [6, Lemma 2.3] and ∂ = b∂1, with b ∈ A∂ and ∂1 is fixed point free, by [6,
Remark 2.2]. Thus, Theorem 3.1 applies to (A, ∂1) and we retrieve Theorem 4.3
of [6]. It is also worth mentioning that we do not need to assume A to be finitely
generated over A∂ since this property is automatically satisfied.

4. Proof of the main result

The main idea behind the proof of Theorem 3.1 is the following construction.
Let A be a K-domain and ∂ be a locally nilpotent K-derivation of A such that A∂

is a UFD and s∂ is principal. Let c = ∂(s) be a generator of the plinth ideal s∂ and
write c = c1 · · · cr for a square-free factorization of c; i.e., the ci’s are square-free
and ci+1 | ci. We consider the following sequence of affine modifications and ideals:

T ∂
1 = A∂ [s] i∂1 = c1A ∩ T ∂

1

T ∂
2 = T ∂

1 [c−1
1 i∂1 ] i∂2 = c2A ∩ T ∂

2
...

...
T ∂
i+1 = T ∂

i [c−1
i i∂i ] i∂i+1 = ci+1A ∩ T ∂

i+1
...

...
T ∂
r+1 = T ∂

r [c−1
r i∂r ] i∂r+1 = A.

If c = d1 . . . dt is another square-free factorization of c, then we have t = r
and di = μici, with μ1 · · ·μr = 1. Moreover, the sequence of affine modifications
and ideals corresponding to the factorization c = d1 . . . dr is the same as the one
corresponding to the factorization c = c1 · · · cr since the μi’s are units of A∂ . Thus,
the sequence (T ∂

i , i∂i )i is independent of the choice of the square-free factorization.
It will be called the tower of square-free affine modifications corresponding to ∂.
Notice that the above argument also shows that for any unit μ of A∂ the towers of
affine modifications corresponding respectively to ∂ and μ∂ are the same.

One readily checks that T ∂
1 is a subring of A stable under ∂ and that T ∂

i ⊆ T ∂
i+1.

Moreover, an easy induction using Proposition 2.3 shows that T ∂
i is stable under

∂ and i∂i is an invariant ideal of the restriction to T ∂
i of ∂. In particular, the

restriction of ∂ to T ∂
i+1 is the affine modification of the restriction of ∂ to T ∂

i with

locus (i∂i , ci). So, in case T ∂
r+1 = A the derivation ∂ is obtained from the derivation

c∂s of A∂ [s] by a sequence of affine modifications.
To prove Theorem 3.1 we will study the structure of the sequence (T ∂

i , i∂i )i when
A∂ is a PID, ∂ is fixed point free and its special fibers are reduced. For this, we
need the following couple of lemmata.
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4.1. Some lemmata.

Lemma 4.1. Let A be a reduced K-algebra of transcendence degree 1 and ∂ be
a locally nilpotent K-derivation of A. Assume that ∂ is fixed point free and let
B = A∂. Then A = B[s], where s is a slice of ∂, and B is reduced and algebraic
over K.

Proof. The case where A is finitely generated over K is proven in [5, Theorem 2.1].
Now assume that A is an arbitrary reduced K-algebra. By assumption, ∂ is fixed
point free and so there exist u1, . . . , ut and s1, . . . , st in A such that

∑
ui∂(si) = 1.

On the other hand, there exists n ≥ 0 such that ∂n+1(si) = ∂n+1(ui) = 0 for any
i. Now consider the subalgebra A0 of A generated by the ∂j(ui)’s and the ∂j(si)’s,
where j = 0, . . . , n. Clearly, A0 is finitely generated over K and is stable under ∂,
and ∂ restricts to a fixed point free locally nilpotent K-derivation of A0. Moreover,
since A is reduced, so is A0. The finitely generated case then yields that ∂ has a
slice s in A0, and according to Lemma 2.1 we have A = B[s]. The fact that B is
algebraic over K is obtained as a by-product. �

Lemma 4.2. Let A be a K-domain and ∂ be an irreducible locally nilpotent K-
derivation of A. Assume that A∂ is a PID and let c = ∂(s) be a generator of s∂.
Then for any prime factor p of c such that A/pA is reduced, the transcendence
degree of A/pA over Fp = A∂/pA∂ is 1.

Proof. Let p be a prime factor of c and let us first prove that A/pA has transcen-
dence degree at most 1 over Fp. Let a, b be two elements of A \ A∂ . Since A has
transcendence degree 1 over A∂ there exists a polynomial f(x, y) ∈ A∂ [x, y] such
that f(a, b) = 0. Since, on the other hand, A∂ is a UFD and A is a domain we may
assume, even if it means dividing the coefficients of f by their greatest common
divisor, that f is primitive. This means, in particular, that f 	= 0 when viewed in
Fp[x, y].

Now assume towards a contradiction that f(x, y) is constant in Fp[x, y], say a0.
Then we have gcd(a0, p) = 1 according to the fact that f 	= 0 in Fp[x, y]. This
yields f(x, y) = pf1(x, y) + a0 and so pf1(a, b) + a0 = 0. Thus, p | a0 in A and
so p | a0 in A∂ according to the fact that A∂ is factorially closed in A. But this
contradicts the assumption that gcd(p, a0) = 1. Therefore, f(x, y) is nonconstant
in Fp[x, y] and hence a and b, viewed in A/pA, are algebraically dependent over
Fp.

Since ∂ is irreducible it induces a nonzero Fp-derivation of A/pA and so A/pA
is transcendental over Fp according to the fact that Fp has characteristic zero and
A/pA is reduced. �

Recall that an ideal i of a ring A is called zero-dimensional if the quotient ring
A/i has Krull dimension 0. Recall as well that two ideals i and j of A are called
co-maximal if i + j = A. The following lemma concerns reduced zero-dimensional
ideals of a polynomial ring over a PID.

Lemma 4.3. Let B be a PID and let i be a reduced zero-dimensional ideal of the
polynomial ring B[z] = B[z1, . . . , zr]. In case B is not a field we assume that i∩B 	=
(0). Then the ideal i is generated by a triangular system c, h1(z1), . . . , hr(z1, . . . , zr)
which satisfies the following properties:

i) The hi’s are primitive and c ∈ B is square-free (c = 0 if B is a field).
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ii) For any factor d of c and any i = 0, . . . , r the ideal (dB[z] + i) ∩ B[z1, . . . , zi]
is generated by d, h1, . . . , hi.

iii) The polynomials ∂zihi are units in the quotient ring B[z]/i.

Proof. Assume first that B is a field and let j = i∩B[z1, . . . , zr−1]. Then j is reduced
and by the Hilbert Nullstellensatz it is also zero-dimensional and B[z]/i is integral
over B[z1, . . . , zr−1]/j. We may thus write j =

⋂
pi for the primary decomposition

of j, where the pi’s are maximal. Since the pi’s are pairwise co-maximal, we have
i =

⋂
(piB[z] + i) and for any i the ideal ii = piB[z] + i is proper according to the

fact that B[z]/i is integral over B[z1, . . . , zr−1]/j. If we let Fi = B[z1, . . . , zr−1]/pi,
then B[z]/ii is algebraic over the field Fi and so zr has a minimal polynomial
gi(w) over Fi. This shows that ii is generated by gi(zr) and pi. The fact that i

is reduced and zero-dimensional implies that any ideal containing i is reduced and
zero-dimensional. In particular, B[z]/ii is reduced and so gi(w) is square-free, which
means that ∂zrgi(zr) is a unit in B[z]/ii.

By the Chinese Remainder Theorem we may find a polynomial hr(zr) such that
hr = gi mod pi for any i. The ideal ii is thus generated by hr and pi. Since
i is the intersection of the ii’s we have hr ∈ i. Since moreover the ideals ii are
pairwise co-maximal, we have the equality i =

∏
ii, which shows that i is generated

by hr and j, and ∂zrhr is a unit in B[z]/i. Continuing this way we construct the
polynomials hr−1, . . . , h1.

Now we deal with the case where B is not a field. By assumption the ideal B ∩ i

is generated by a nonzero element c ∈ B. Since i is reduced, c is square-free and we
may write c = p1 . . . pt, where the pi’s are prime elements of B. Let qi = piB[z] + i

and notice that these ideals are reduced and pairwise co-maximal. Moreover, if for
some i we have qi = B[z], then we have 1 = a+ bpi, with a ∈ i. The multiplication
of p−1

i c to both sides of the equation yields p−1
i c ∈ i. Thus, the qi’s are proper

reduced and zero-dimensional, and so are the ideals q′i = qiFpi
[z1, . . . , zr], where

Fpi
= B/piB. Since Fpi

is a field we may find hi,1(z1), . . . , hi,r(z1, . . . , zr) ∈ B[z]
which generate the ideal q′i and ∂zjhi,j is a unit in B[z]/qi. As a by-product,
pi, hi,1, . . . , hi,r generate qi. By the Chinese Remainder Theorem we may construct
polynomials h1(z1), . . . , hr(z1, . . . , zr) such that hj = hi,j mod pj for any i, j.
Now the fact that i is the intersection of the qi’s implies that hj ∈ i for any j. Since
moreover the qi’s are pairwise co-maximal we have i =

∏
qi, which shows that i

is generated by c, h1, . . . , hr. Even if it means removing the content of hj , which
is necessarily co-prime with c, we may assume that hj is primitive. On the other
hand, since each ∂zjhi,j is a unit in B[z]/qi, it is so for ∂zjhj in B[z]/i. Finally, if
d is a divisor of c we may assume without loss of generality that d = p1 · · · pu. In
this case we have (dB[z] + i) =

⋂u
1 qi, and the way the hj ’s are constructed shows

that (dB[z] + i) ∩ B[z1, . . . , zi] is generated by d, h1, . . . , hi. �

Lemma 4.4. Let A be a K-domain and ∂ be a fixed point free locally nilpotent
K-derivation of A such that A∂ is a PID and all the special fibers of ∂ are reduced.
Let c = ∂(s) be a generator of the plinth ideal s∂, c = c1 · · · cr be its square-
free factorization and let (T ∂

i , i∂i ) be the tower of square-free affine modifications
corresponding to ∂. Then there exist s1, . . . , sr+1 ∈ A and a triangular system
h1(z1), . . . , hr(z1, . . . , zr) with coefficients in A∂ such that the following hold:

i) s1 = s, ci | hi(s1, . . . , si), si+1 = c−1
i hi(s1, . . . , si) and ci · · · cr | ∂(si).
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ii) T ∂
i = A∂ [s1, . . . , si], i

∂
i = (ci, h1(s1), . . . , hi(s1, . . . , si))T ∂

i and ∂zihi is a unit
in T ∂

i /i∂i .
iii) If p is a prime factor of c, with c = piq and gcd(p, q) = 1, then we have

Aq =
(
T ∂
i+1

)
q
.

Proof. We will prove the assertions i) and ii) by induction on i. Let us write
c1 = p1, . . . , pt, where the pj ’s are prime and pairwise distinct, and recall that
each Aj = A/pj is reduced by assumption. By Lemma 4.2, Aj is of transcendence
degree 1 over Fj = A∂/pj . Moreover, ∂ induces a fixed point free locally nilpotent
Fj-derivation δj on Aj . Let Bj be the ring of constants of δj and notice that Bj is
algebraic over Fj by Lemma 4.1.

Let j1,j = T ∂
1 ∩ pjA. Then T ∂

1 /j1,j ⊂ A/pj and moreover δj = 0 on T ∂
1 /j1,j

according to the fact that pj | ∂(s). This yields T ∂
1 /j1,j ⊂ Bj , and so T ∂

1 /j1,j is
reduced and algebraic over Fj since it is the case for Bj . This shows that T ∂

1 /j1,j
is zero-dimensional. On the other hand, since A∂ is a PID the j1,j ’s are pairwise
co-maximal and so i∂1 =

⋂
j1,j and T ∂

1 /i∂1 �
∏

T ∂
1 /j1,j by the Chinese Remainder

Theorem. Therefore, T ∂
1 /i∂1 is reduced zero-dimensional. By Lemma 4.3 the ideal

i∂1 is generated by c1, h1(s1), where h1(z1) ∈ A∂ [z1] is primitive. If we let s2 =
c−1
1 h1(s1), then clearly T ∂

2 = A∂ [s1, s2] and ∂(s2) = c2 · · · cr∂z1h1(s1). We have
thus proven the properties i) and ii) for i = 1.

Assume that i) and ii) hold for i ≤ r. Let us write T ∂
i = A∂ [s1, . . . , si] and

let i∂i be generated by ci, h1(s1), . . . , hi(s1, . . . , si). It follows immediately that
T ∂
i+1 = A∂ [s1, . . . , si+1], with si+1 = c−1

i hi. Notice that if i = r, then we are
done. Thus, we assume in the sequel that i < r. By the induction hypothesis we
have cj · · · cr | ∂(sj) for any j ≤ i. This fact together with the relation ∂(si+1) =

c−1
i

∑i
1 ∂zjhi(s1, . . . , si)∂(sj) implies that ci+1 · · · cr | ∂(si+1).

Since ci+1 | c1 it is the product of some of the pj ’s. Without loss of generality
we may assume that ci+1 = p1 · · · pu. Let ji+1,j = T ∂

i+1 ∩ pjA and notice that

T ∂
i+1/ji+1,j ⊂ A/pj . Moreover, we have δj(si+1) = 0 since ci+1 | ∂(si+1) and so

T ∂
i+1/ji+1,j ⊂ Bj . This shows that T ∂

i+1/ji+1,j is reduced and zero-dimensional. The

ideals ji+1,j are clearly pairwise co-maximal and i∂i+1 =
⋂
ji+1,j , and by the Chinese

Remainder Theorem we have T ∂
i+1/i

∂
i+1 �

∏
T ∂
i+1/ji+1,j . This shows that T ∂

i+1/i
∂
i+1

is reduced and zero-dimensional.
Let φ : A∂ [z1, . . . , zi+1] −→ T ∂

i+1 be the A∂-algebra homomorphism defined by
φ(zi) = si. Clearly, φ is onto. Since moreover ir is reduced and zero-dimensional,
so is the ideal i = φ−1(ir). We may thus find a generating system ci+1, h1(z1), . . . ,
hi+1(z1, . . . , zi+1) of i which satisfies the properties of Lemma 4.3, and therefore
ci+1, h1(s1), . . . , hi+1(s1, . . . , si+1) generates i∂i+1. Now we need to show that we
may always choose h1, . . . , hi in such a way that the system ci, h1(s1), . . . ,
hi(s1, . . . , si) generates the ideal i∂i . Taking into account the property ii) of Lem-
ma 4.3 this reduces to showing that ci+1A ∩ T ∂

i = ci+1T ∂
i + i∂i . Let us write

ci = ci+1d, and notice that gcd(ci+1, d) = 1 since ci is square-free. Since moreover
A∂ is a PID the ideals ci+1A ∩ T ∂

i and dA ∩ T ∂
i are co-maximal and so i∂i is their

product. The fact that these two ideals are co-maximal also yields ci+1T ∂
i + i∂i =

(ci+1T ∂
i + ci+1A∩T ∂

i )∩ (ci+1T ∂
i + dA∩T ∂

i ) and finally ci+1T ∂
i + i∂i = ci+1A∩T ∂

i

since ci+1T ∂
i + dA ∩ T ∂

i = T ∂
i .

iii) Let p be a prime factor of c and write c = piq, with gcd(p, q) = 1. Notice
first that p | ci and so pi−j+1 | ∂(sj) for any j ≤ i. On the other hand, even if
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it means replacing A by the localization Aq we may assume that c = pi. Now let
a ∈ A and assume that pa ∈ T ∂

i+1. We may then write pa = a0(s1, . . . , si) + · · · +
am(s1, . . . , si)s

m
i+1. We claim that ai ∈ i∂i for any i = 0, . . . ,m. Indeed, the result

is obviously true for m = 0. So, assume it holds true for m− 1 and let us prove it
for m. By applying ∂ to the relation pa =

∑
j ajs

j
i+1 we get

p∂(a) =
∑
j

∂(aj)s
j
i+1 + ∂(si+1)

∑
j≥1

jajs
j−1
i+1 .

Since ∂(aj) =
∑i

0 ∂zkaj∂(sk) and pi−k+1 | ∂(sk) we have p |
∑

j ∂(aj)s
j
i+1. On

the other hand, we have ∂(si+1) = p−1
∑

k ∂zkhi∂(sk), and according to the fact
that pi−k+1 | ∂(sk) we have ∂(si+1) = pb1 + ∂zihi

(
p−1∂(si)

)
, where b1 ∈ A. By

inductively repeating the same process we ultimately get

∂(si+1) = pbi +

(
i∏
1

∂zkhk

)
p−i∂(s1)

= pbi +

i∏
1

∂zkhk.

We therefore have p | (
∏

k ∂zkhk)
∑

j≥1 jajs
j−1
i+1 , and since, by Lemma 4.3,

∏
k ∂zkhk

is a unit modulo p we have p |
∑

j≥1 jajs
j−1
i+1 . By the induction hypothesis we have

aj ∈ i∂i for any j = 1, . . . ,m. The fact that p |
∑m

0 ajs
j
i+1 and p | aj for j ≥ 1

implies that p | a0 and so a0 ∈ i∂i .
Since i∂i = (p, h1, . . . , hi)T ∂

i we may write aj = a0,jp + a1,jh1 + · · · + ai,jhi

for j = 1, . . . ,m. This gives a = p−1
∑

j ajs
j
i+1 =

∑
j a0,j + s2si+1

∑
j a1,j +

· · · + sm+1
i+1

∑
j ai,j . We have thus shown that a ∈ T ∂

i+1 whenever pa ∈ T ∂
i+1. A

straightforward induction shows that for any n ≥ 1 such that pna ∈ T ∂
i+1 we

actually have a ∈ T ∂
i+1. Now let a ∈ A and notice that by Lemma 2.1 we have

Ap = A∂
p [s1]. In particular, there exists n ≥ 0 such that pna = �(s1) ∈ T ∂

i+1 and so

a ∈ T ∂
i+1. �

Given two ideals i and j of a ring A recall that i : j stands for the quotient ideal
of i and j. In case j is generated by a single element c we use the notation i : c
instead of i : cA. The sequence (i : jn)n is ascending, and so

⋃
n (i : j

n) is an ideal
of A denoted by i : j∞. In case j is generated by a single element c we use the
notation i : c∞ instead of i : (cA)∞.

Lemma 4.5. Let A be a domain, i be an ideal of A and let c ∈ A. Let j = i : c∞

and assume that j ⊆ cA + i. Then for any n ≥ 1 we have j ⊆ cnj + i. As a
consequence, if j is finitely generated, then we have i = j.

Proof. Let a ∈ j and let v ∈ N be such that cva ∈ i. Since j ⊆ cA+ i we can write
a = ca1 + b1, where a1 ∈ A and b1 ∈ i. This gives cva = cv+1a1 + cvb1, and so
we have cv+1a1 ∈ i since both cva and cvb1 belong to i. Therefore a1 ∈ j, and so
a ∈ cj+ i. We have thus proven that j ⊆ cj+ i.

The fact that j ⊆ cnj + i for any n ≥ 1 follows immediately from the inclusion
j ⊆ cj+ i. In case j is finitely generated we have cnj ⊆ i for n large enough, and so
j ⊆ i. Since i ⊆ j we have the equality i = j. �
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4.2. Proof of Theorem 3.1. Let us write c = pn1
1 · · · pnt

t , where the pi’s are prime
and pairwise distinct, and let qi =

∏
j �=i p

nj

j . If a ∈ A, then, according to Lemma 4.4

iii), for any i = 1, . . . , t there exists mi ≥ 0 such that qmi
i a = �i(s1, . . . , sni+1).

Since (qm1
1 , . . . , qmt

t )A∂ = A∂ there exist u1, . . . , ut ∈ A∂ such that
∑

uiq
mi
i = 1.

This yields a =
∑

uiq
mi
i a =

∑
ui�i(s1, . . . , sni+1), and so A = T ∂

r+1.

Let φ : A∂ [z1, · · · , zr+1] −→ A be the A∂-algebra homomorphism defined by
φ(zi) = si. Since A = T ∂

r+1 = A∂ [s1, . . . , sr+1] the map φ in onto. Now consider

the ideal p = (c1z2 − h1(z1), . . . , crzr+1 − hr(z1, . . . , zr))A∂ [z] and let q = p : c∞1 .
We prove in the sequel that q is the kernel of φ.

Given a ∈ q there exists a nonnegative integer v such that cv1a ∈ p. According to
Lemma 4.4 i) we have φ(cizi+1 − hi) = 0, and so cv1φ(a) = 0. This gives φ(a) = 0
since A is a domain. Conversely, let a ∈ A∂ [z1, . . . , zr+1] be such that φ(a) = 0.
Since cr | c1 we can multiply a by a suitable power cvr1 and then perform Euclidean
division of cvr1 a by crzr+1 − hr(z1, . . . , zr), with respect to zr+1 to obtain

cvr1 a = ur(z)(crzr+1 − hr) + ar(z),

where ur, ar ∈ A∂ [z1, . . . , zr+1] and ar depends only on z1, . . . , zr. Using inductively
this process and taking into account the fact that ci | c1 we ultimately get an identity
of the form

(1) cv1a = ur(z)(crzr+1 − hr) + · · ·+ u1(z)(c1z2 − h1) + a1(z1).

From Lemma 4.4 i) we have φ(cizi+1−hi) = 0, and so by applying φ to the identity
(1) we get a1(s1) = 0. Since s1 is transcendental over A∂ we have a1(z1) = 0, and
so a ∈ q.

Let us now prove that p = q. Even if it means localizing and then using
Lemma 4.4 iii) we may assume without loss of generality that c = pr, where p
is prime. On the other hand, since A∂ [z] is Noetherian it suffices, according to
Lemma 4.5, to show that q ⊆ pA∂ [z] + p = (p, h1, . . . , hr)A∂ [z].

First, let us recall the following fact established in the proof of Lemma 4.4 iii).
Let b ∈ A and write b = b0 + b1sr+1 + · · ·+ bmsmr+1, with bi ∈ Tr = A∂ [s1, . . . , sr],
and assume that p | b in A. Then p | bi in Tr; i.e., bi ∈ ir, for any i = 0, . . . ,m. Now
let a(z) ∈ q and write a(z) = a0 + a1zr+1 + · · ·+ amzmr+1, with ai ∈ A∂ [z1, . . . , zr].
Then φ(a) = 0 and so p | φ(a) in A. It follows that φ(ai) ∈ ir for any i = 0, . . . ,m,
and so ai ∈ φ−1(ir) ∩ A∂ [z1, . . . , zr]. As established in the proof of Lemma 4.4
i), ii), φ−1(ir) ∩ A∂ [z1, . . . , zr] is nothing but the ideal of A∂ [z1, . . . , zr] generated
by p, h1(z1), . . . , hr(z1, . . . , zr). Therefore, a(z) belongs to pA∂ [z] + p.

The canonical decomposition of the homomorphism φ yields an A∂-algebra iso-
morphism ψ : A∂ [z1, . . . , zr+1]/p −→ A. On the other hand, consider the Jacobian
derivation δ = Jac(c1z2 − h1, . . . , crzr+1 − hr) of A∂ [z1, . . . , zr+1]. An easy induc-
tion on r shows that δ is triangular and so locally nilpotent. Moreover, we have
δ(cizi+1 − hi) = 0 for i = 1, . . . , r, and so p is invariant under δ. If we let ζ = δ|p,
then ∂(ψ(zi)) = ψ(ζ(zi)) for any i. This shows that ψ is a differential algebra
isomorphism.
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