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A MINIMAL LAMINATION WITH CANTOR SET-LIKE

SINGULARITIES

STEPHEN J. KLEENE

(Communicated by Richard A. Wentworth)

Abstract. Given a compact closed subset M of a line segment in R3, we
construct a sequence of minimal surfaces Σk embedded in a neighborhood C of

the line segment that converge smoothly to a limit lamination of C away from
M . Moreover, the curvature of this sequence blows up precisely on M , and the
limit lamination has non-removable singularities precisely on the boundary of
M .

1. Introduction

Let Σk ⊂ BRk
= BRk

(0) ⊂ R3 be a sequence of compact embedded minimal
surfaces with ∂Σk ⊂ ∂BRk

and curvature blowing up at the origin. In [1], Colding
and Minicozzi showed that when Rk → ∞, a subsequence converges off a Lipshitz
curve to a foliation by parallel planes. In particular, the limit is a smooth, proper
foliation. By contrast, in [2] Colding and Minicozzi constructed a sequence as
above with Rk uniformly bounded and converging to a limit lamination of the unit
ball with a non-removable singularity at the origin. Later, B. Dean in [3] found
a similar example where the limit lamination has a finite set of singularities along
a line segment, and S. Khan in [4] found a limit lamination consisting of a non-
properly embedded minimal disk in the upper half ball spiraling into a foliation
by parallel planes of the lower half ball. Both Dean and Khan used methods that
are analogous to those in [1]. Recently, using a variational method, D. Hoffman
and B. White in [5] were able to construct a sequence converging to a non-proper
limit lamination and with curvature blowup occurring along an arbitrary compact
subset of a line segment. In this paper we do the same, but with a method that is
derivative of that in [1] and [4]. The main theorem is:

Theorem 1. Let M be a compact subset of {x1 = x2 = 0, |x3| ≤ 1/2} and let C =
{x2

1 + x2
2 ≤ 1, |x3| ≤ 1/2}. Then there is a sequence of properly embedded minimal

disks Σk ⊂ C with ∂Σk ⊂ ∂C and containing the vertical segment {(0, 0, t)||t| ≤
1/2} so that:

(A) limk→∞ |AΣk
|2(p) = ∞ for all p ∈ M .

(B) For any δ > 0 it holds that supk supΣk\Mδ
|AΣk

|2 < ∞, where Mδ =⋃
p∈M Bδ(p).
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(C) Σk \ {x3 − axis} = Σ1,k ∪ Σ2,k for multi-valued graphs Σ1,k, Σ2,k.
(D) For each interval I = (t1, t2) of the compliment of M in the x3-axis, Σk ∩

{t1 < x3 < t2} converges to an imbedded minimal disk ΣI with Σ̄I \ ΣI =
C ∩ {x3 = t1, t2}. Moreover, ΣI \ {x3 − axis} = Σ1,I ∪ Σ2,I for ∞-valued
graphs Σ1,I and Σ2,I , each of which spirals into the planes {x3 = t1} from
above and {x3 = t2} from below.

It follows from (D) that a subsequence of the Σk \M converge to a limit lamina-
tion of C \M . The leaves of this lamination are given by the multi-valued graphs
ΣI given in (D), indexed by intervals I of the complement of M , taken together
with the planes {x3 = t} ∩ C for (0, 0, t) ∈ M . This lamination does not extend
to a lamination of C, however, as every boundary point of M is a non-removable
singularity. Theorem 1 was inspired by the result of Hoffman and White in [5].

Throughout we will use coordinates (x1, x2, x3) for vectors in R3, and z = x+ iy
on C. For p ∈ R3 and s > 0, the ball in R3 is Bs(p). We denote the sectional
curvature of a smooth surface Σ by KΣ. When Σ is immersed in R

3, AΣ will be its
second fundamental form. In particular, for Σ minimal we have that |AΣ|2 = −2KΣ.
Also, we will identify the setM ⊂ {x3-axis} with the corresponding subset of R ⊂ C;
that is, the notation will not reflect the distinction, but will be clear from context.
Our example will rely heavily on the Weierstrass representation, which we introduce
here.

2. The Weierstrass representation

Given a domain Ω ⊂ C, a meromorphic function g on Ω and a holomorphic one-
form φ on Ω, one obtains a (branched) conformal minimal immersion F : Ω → R

3,
given by (cf. [6])

(1) F (z) = Re

{∫
ζ∈γz0,z

(
1

2

(
g−1(ζ)− g(ζ)

)
,
i

2

(
g−1(ζ) + g(ζ)

)
, 1

)
φ(ζ)

}
,

the so-called Weierstrass representation associated to Ω, g, φ. The triple (Ω, g, φ)
is referred to as the Weierstrass data of the immersion F . Here, γz0,z is a path in
Ω connecting z0 and z. By requiring that the domain Ω be simply connected and
that g be a non-vanishing holomorphic function, we can ensure that F (z) does not
depend on the choice of path from z0 to z and that dF 	= 0. Changing the base
point z0 has the effect of translating the immersion by a fixed vector in R3.

The unit normal n and the Gauss curvature K of the resulting surface are then
(see sections 8, 9 in [6])

n =
(
2Re g, 2Im g, |g|2 − 1

)
/

(
|g|2 + 1

)
,(2)

K = −
[

4|∂zg||g|
|φ|(1 + |g|2)2

]2

.(3)

Since the pullback F ∗(dx3) is Reφ, φ is usually called the height differential. The
two standard examples are

(4) g(z) = z, φ(z) = dz/z,Ω = C \ {0},
giving a catenoid, and

(5) g(z) = eiz, φ(z) = dz,Ω = C,

giving a helicoid.
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x3-axis

Figure 1. A schematic of a helicoid-like apparently 3-valued
graph spiraling between two horizontal planes. (Image due to Sid-
dique Khan.)

We will always write our non-vanishing holomorphic function g in the form g =
eih, for a potentially vanishing holomorphic function h, and we will always take
φ = dz. For such Weierstrass data, the differential dF may be expressed as

∂xF = (sinh v cosu, sinh vsin u, 1) ,(6)

∂yF = (cosh v sinu,−cosh v cosu, 0) .(7)

3. An outline of the proof

Fix a compact subset M of the real line. We will be dealing with a family of
immersions Fk,a : Ωk,a → R3 that depend on a parameter 0 < a < 1/2 given by
Weierstrass data of the form Ωk,a, Gk,a = eiHk,a , φ = dz, and a sequence Mk ⊂ M
that converge to a dense subset of M . Each function Hk,a will be real-valued when
restricted to the real line in C. That is, writing Hk,a = Uk,a + iVk,a for real-valued
functions Uk,a, Vk,a : Ωk → R, we have that Hk,a(x, 0) = Uk,a(x, 0). Moreover, we
will show that Vk,a(x, y) > 0 when y > 0. A look at the expression for the unit
normal given above in (2) then shows that all of the surfaces Σk,a := Fk,a(Ωk,a)
will be multi-valued graphs over the (x1, x2) plane away from the x3-axis (since
|g(x, y)| = 1 is equivalent to y = 0). The dependence on the parameter 0 < a < 1/2
will be such that lima→0|AΣk,a

|2(p) = ∞ for all p ∈ Mk and such that |AΣk,a
|2

remains uniformly bounded in k and a away from M . We will then choose a
suitable sequence ak → 0 and set Fk = Fk,ak

, Ωk = Ωk,ak
, Gk = Gk,ak

, and
Hk = Hk,ak

. Immediately, (A), (B) and (C) of Theorem 1 are satisfied by the
diagonal subsequence. In fact, we will show that any suitable sequence is a sequence
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ak → 0 satisfying ak < γ−k for a parameter γ > 1 which we introduce later. The
bulk of the work will go towards establishing (D). To this end, we will show that

Lemma 2.

(a) The horizontal slice {x3 = t} ∩ Fk(Ωk) is the image of the vertical segment
{x = t} in the plane, i.e., x3(Fk(t, y)) = t.

(b) The image of Fk({x = t}) is a graph over a line segment in the plane
{x3 = t}(the line segment will depend on t).

(c) The boundary of the graph in (b) is outside the ball Br0(Fk(t, 0)) for some
r0 > 0.

This gives the fact that the immersions Fk : Ωk → R3 are actually embeddings
and that the surfaces Σk given by Fk(Ωk) are all embedded in a fixed cylinder
Cr0 = {x2

1 + x2
2 ≤ r20, |x3| < 1/2} about the x3-axis in R

3. This will then imply
that the surfaces Σk converge smoothly on compact subsets of Cr0 \M to a limit
lamination of Cr0 . The claimed structure of the limit lamination (that is, that on
each interval of the complement it consists of two multi-valued graphs that spiral
into planes from above and below) will be established at the end.

Figure 2. The functions Fk map vertical rays of the form {x = t}
contained in the domain Ωk to planes perpendicular to the x3-axis
given by {x3 = t}. Note that this induces an identification of the
closed set M , thought of as lying in the complex plane along the
real axis, with its image in the x3-axis.

Throughout the paper, all computations will be carried out and recorded only
on the upper half plane in C, as the corresponding computations on the lower half
plane are completely analogous. By scaling it suffices to prove Theorem 1 (D) for
some Cr0 , not C1 in particular.

4. Definitions

Let M ⊂ [0, 1] be a closed set. Fix γ > 1, and take M−1 to be the empty
set. Then for k a non-negative integer, we inductively define two families of sets
mk and Mk as follows: Assuming Mk−1 is already defined, take mk to be any
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maximal subset of M with the property that, for p, q ∈ mk, r ∈ Mk−1, it holds
that |p − q|, |p − r| ≥ γ−k. Then define Mk = Mk−1 ∪ mk and M∞ =

⋃
k Mk.

Also, for x ∈ R define pk(x) to be the closest element in Mk to x. Note that there
are at most two such points, and we take pk(x) to be the closest point on the left,
equivalently the smaller of the two points. For p ∈ M∞, we define e(p) to be the
unique natural number such that p ∈ me(p). Note that e(pk(x)) ≤ k. We take

(8) ha(z) =

∫ z

0

dz

(z2 + a2)
2 = ua(z) + iva(z)

and

y0,a(x) = ε
(
x2 + a2

)5/4
for ε to be determined. For p ∈ R we define

hp,a(z) = ha(z − p) = up,a(z) + ivp,a(z)

and

yp,a(x) = y0,a(x− p).

We then take

(9) hl,a(z) =
∑
p∈ml

hp,a(z) = ul,a(z) + ivl,a(z)

and

yl,a(x) = min
p∈ml

yp,a(x).

We take

(10) Hk(z) =

k∑
l=0

μ−lhl,ak
(z) = Uk(z) + iVk(z)

for a parameter μ > γ to be determined. We take

Yk(x) = min
l≤k

yl,ak
(x).

Y
K

y
k

yp
3

yp
2

yp
1

p1 p2 p3 pk ReΩk

Im

Figure 3. A schematic rendering of the domain Ωk in the case
of M = {pl = −2−l|l ∈ N}. The solid line indicates the function
Yk(x), and the shaded region indicates the domain Ωk itself. Note
that in this case, the sets ml = {pl} consist of a single point.
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We take

ωa = {x+ iy||y| ≤ y0,a(x)} , ωp,a = {x+ iy||y| ≤ yp,a(x)}
and

ωl,a = {x+ iy||y| ≤ yl,a(x)} ,Ωk = {x+ iy||y| ≤ Yk(x)}
and lastly set Ω∞ = ∩kΩk.

Note that in the above definitions, objects bearing the subscript “k” (as opposed
to “l”) always enumerate an (as yet undetermined) diagonal sequence. Conse-
quently, the dependence on the parameter a is omitted from the notation. At times,
the dependence on a will be suppressed from the notation for objects without the
subscript “k”. Also, note that for each x we have that Yk(x) = ypk,ak

(x). Again,
when it is clear, the subscript “ak” will be suppressed. Keep in mind throughout
that {ak} will always denote a sequence with ak ≤ γ−k. Also, the parameters γ
and μ introduced in this section must satisfy μ2/3 < γ < μ < γ3. The reasons are
technical and should become clear later in the paper.

5. Preliminary results

We record some elementary properties of the sets Mk and mk defined above
which will be needed later.

Lemma 3. |mk| ≤ γk + 1.

Proof. Let p1 < . . . < pn be n distinct elements of mk, ordered least to greatest.
By construction we have that pk+1 − pk ≥ γ−k. Also, since p1, pn ∈ M we get

1 ≥ pn − p1 =

n−1∑
k=1

pk+1 − pk ≥ (n− 1)γ−k. �

Lemma 4. For all p in M, there is a q in Mk such that |p− q| < γ−k.

Proof. If not, mk is not maximal. �

Lemma 5. The union
⋃∞

k=0mk =
⋃∞

k=0 Mk ≡ M∞ is a dense subset of M .

Proof. Suppose not. Then there is a q ∈ M and a positive integer k such that
|p− q| > γ−k, ∀p ∈ M∞. In particular, this implies that mk is not maximal. �

In order to avoid disrupting the narrative, the proofs of the remaining results
in this section will be recorded later in the Appendix. The proofs are somewhat
tedious, though easily verified.

Lemma 6. For ε sufficiently small, hp(z) is holomorphic on ωp, hl is holomorphic
on ωl, and Hk is holomorphic on Ωk.

We will also need the following estimates:

Lemma 7. On the domain ωp it holds that∣∣∣∣ ∂

∂y
up(x, y)

∣∣∣∣ ≤ c1|x− p||y|
((x− p)2 + a2)3

and
∂

∂y
vp(x, y) >

c2
((x− p)2 + a2)2

.
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Integrating the above estimates from 0 to the upper boundary of ωp gives∣∣up(x, yp(x))− up(x, 0)
∣∣ ≤ ε2c1

and

min[yp(x)/2,yp(x)]vp(x, y) >
εc2

2((x− p)2 + a2)3/4
.

These estimates immediately give

Corollary 8. We have the bounds

(11) |Uk(x, Yk(x))− Uk(x, 0)| ≤ ε2c1

{
k∑

l=0

(γ/μ)l + μ−l

}
≤ ε2c′1

and

Vk(x, Yk(x)/2) ≥
εc2
2

k∑
l=0

μ−l
∑
p∈ml

Yk(x)

yp(x)
((x− p)2 + a2k)

−3/4(12)

≥ ypk,ak
(x)

εc2
2

k∑
l=0

μ−e(pl(x))
1

ypl,ak
(x)

((x− pl(x))
2 + a2k)

−3/4

=
εc2
2

qk(x),

where qk(x) is defined by the last equality above.

6. Proof of Lemma 2

We will first concern ourselves with establishing Lemma 2. (a) follows from (1)

and the choice of z0 = 0. Choosing ε < ε0 < c
′−1/2
1 , where c′1 is the constant in

(11), and using (7) we get

〈∂yFk(x, y), ∂yFk(x, 0)〉 = coshVk(x, y) cos(Uk(x, y0(x))− Uk(x, 0))

> coshVk(x, y)/2.
(13)

Here we have used the fact that cos(1) > 1/2. This gives that all of the maps
Fk : Ωk → R

3 are indeed embeddings (for all values of a) and proves (b) of Lem-
ma 2.

Now, integrating (13) from Yk(x)/2 to Yk(x) gives

(14) 〈Fk(x, Yk(x))− Fk(x, 0), ∂yFk(x, 0)〉 >
Yk(x)

2
emin[Yk/2,Yk ]Vk .

Using the bound for Vk recorded in (12), we get that

(15) 〈Fk(x, Yk(x))− Fk(x, 0), ∂yFk(x, 0)〉 >
ε

2
s
5/3
k eε

c2
2 qk(x)

with sk(x) = ((x − pk(x))
2 + a2k)

3/4. Take rk(x) ≡ ε
2s

5/3
k e

1
2 εc2qk(x). We will show

that rk(x) remains uniformly large in k; this establishes (c) of Lemma 2. First, we

need Lemmas 9 and 10 below. In the following, take Φ(ξ) = ξ5/3e
1
2 2

c2εξ
−1

.

Lemma 9. For all α > 0, there exists a δ = δ(α) such that

(16) Φ(ξ) ≥ ξ−α

for 0 < ξ < δ.
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Proof.

lim
ξ→0

ε

2
ξ5/3+αe

1
2 εc2ξ

−1

= ∞

for all α. �

We now choose μ and σ so that μ2/3 < μ(1+σ)2/3 < γ < μ < γ3. We must also
choose α so that ασ − 5/3 ≥ 0, as will be seen in the following. In fact, for later
applications, we demand ασ − 5/3 ≥ 1.

Lemma 10. For |x− pk|, ak ≤ μ−2/3(1+σ)k
(

δ(α)2/3√
2

)
, we have that

rk(x) > 1.

Proof. The assumptions immediately give that

sk(x) = ((x− pk)
2 + a2k)

3/4 < μ−(1+σ)kδ < δ,

which we rewrite as

μksk ≤ μ−σkδ.

Applying (16) and using the fact that e(pk(x)) ≤ k, we find that

Φ(μe(pk)sk) >
(
μ−σkδ

)−α
.

Equivalently,

rk(x) ≥
ε

2
s
5/3
k e

ε
2 c2μ

−e(pk)s−1
k > μ(ασ−5/3)kδ−α > 1,

since we have chosen ασ − 5/3 ≥ 1, and we may assume δ < 1. �

We are ready to prove:

Lemma 11 (Lemma 2 (c)). There exists a sequence {ck} with ck > 0 and
∏∞

l=0 cl >
0 such that if rk(x) < 1, then

rk(x) > ckrk−1(x).

Proof. Recall that Yk(x) = ypk
(x) and Yk−1(x) = ypk−1

(x). If

|x− pk| < μ−2/3(1+σ)kδ2/3/
√
2,

then

rk(x) > 1

by Lemma 10. So we assume that |x− pk| > c0μ
−2/3(1+σ)k with c0 = δ2/3/

√
2. By

the construction of the sets mk,Mk, we have that |pk − pk−1| < γ−k+1. We also
have that |pk−1(x)− x| > c0μ

−2/3(1+σ)k. Then we may estimate that

[
ypk−1,ak

(x)

ypk−1,ak−1
(x)

]4/5

=
((x− pk−1)

2 + a2k)

((x− pk−1)2 + a2k−1)
>

1

1 + c−2
0 γ−2τ2k−1

(17)
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and that[
ypk,ak

(x)

ypk−1,ak
(x)

]4/5

≥ |x− pk|2 + a2k
(|x− pk|+ |pk − pk−1|)2 + a2k

(18)

≥ 1 + a2k/|x− pk|2
(1 + |pk − pk−1|/|x− pk|)2 + a2k/|x− pk|2

≥ 1

(1 + |pk − pk−1|/|x− pk|)2

≥ 1(
1 + γc−1

0 τk
)2 .

This then gives[
Yk(x)

Yk−1(x)

]4/5

=

[
ypk−1,ak

(x)

ypk−1,ak−1
(x)

]4/5 [
ypk,ak

(x)

ypk−1,ak
(x)

]4/5

(19)

>

[
1

1 + c−2
0 γ−2τ2k−1

][
1(

1 + γc−1
0 τk

)2
]

= θ
4/5
k ,

where θk is defined by the last equality above. We also get that

qk(x) ≥ ypk,ak
(x)

ypk−1,ak−1
(x)

qk−1(x)(20)

≥ θkqk−1(x).

Using (19) above, we obtain

rk(x) =
ε

2
s
5/3
k e

1
2 εc2qk(x)

≥
[

ypk,ak
(x)

ypk−1,ak−1
(x)

]
1

2
εypk−1,ak−1

(x)e
1
2 εc2θkqk−1(x)

≥ θk
1

2
εs

5/3
k−1(x)e

1
2 εc2θkqk−1(x)

= θk

[
1

2
εs

5/3
k−1(x)

]1−θk

[rk−1(x)]
θk

.

Now, since |x− pk−1(x)| ≥ c0μ
−2/3(1+σ)k and 1 − θk ≤ cτk for c sufficiently large,

we get

rk(x) > θk

[ ε
2
c
5/2
0 μ−5/3(1+σ)k

]cτk

[rk−1(x)]
θk .

Now, set ck = θk

[
ε
2c

5/2
0 μ−5/3(1+σ)k

]cτk

. It is easily seen that
∏∞

l=1 cl > 0. This

gives the bound

(21) rk(x) > ck (rk−1(x))
θk ,

and the conclusion follows by considering the separate cases rk−1(x) ≥ 1 and
rk−1(x) < 1 (since θk < 1). �

The immediate corollary is
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Corollary 12. Either

(22) rk(x) ≥ 1

or

(23) rk(x) >

( ∞∏
0

cl

)
r0(x).

This establishes (c) of Lemma 2.

7. Proof of Theorem 1(A), (B) and (C)

Note that (3) and our choice of Weierstrass data gives that

(24) KΣk
(z) =

−|∂zHk|2

cosh4 Vk

.

For p ∈ ml, it is clear that Fk(p) = (0, 0, p) for all k. Thus, for k > l we can then
estimate

(25) |∂zHk(p)| >
μ−l

a4k
,

since Vk(x, 0) = 0 for all x ∈ R, and hence |AΣk
(p)|2 → ∞. For x ∈ M \ M∞,

consider the sequence of points pl(x) ∈ ml. Recall that |pl(x)− x| < γ−l. We then
get

(26) |∂zHl(p)| >
μ−l

((p− pl)2 + a2l )
2
>

μ−l

(γ−2l + a2l )
2
.

Taking l → ∞ and al < γ−l gives that |AΣl
(p)|2 → ∞ and proves (A) of Theorem 1.

Since Vk(x, y) > 0 for y > 0, we see that x3(n(x, y)) 	= 0, and hence Σk is
graphical away from the x3-axis, which proves (C) of Theorem 1.

Now, for δ > 0 set Sδ = {z|dist(Re z,M) < δ}. From (3), it is immediate that

(27) supk supΩk\Sδ
|AΣk

(z)|2 < ∞
for any δ > 0. This combined with Heinz’s curvature estimate for minimal graphs
gives (B).

8. Proof of Theorem 1 (D)

and the structure of the limit lamination

Lemma 13. A subsequence of the embeddings Fk : Ωk → R
3 converges to a minimal

lamination of C \M .

Proof. Let K be a compact subset of the interior of Ω∞. Then for z ∈ K, we have
that supk | d

dzHk(z)| < ∞. Montel’s theorem then gives a subsequence converging
smoothly to a holomorphic function on K. By continuity of integration this gives
that the embeddings Fk : K → R3 converge smoothly to a limiting embedding.
Thus the surfaces Σk converge to a limit lamination of C \M that is smooth away
from the M . �

Let I = (t1, t2) ⊂ R be an interval of the complement of the M in R and consider
ΩI = Ω∞ ∩ {Re z ∈ I}. Then ΩI is topologically a disk, and by Lemma 13, the
surfaces Σk,I ≡ Fk(ΩI) are contained in {t1 < x3 < t2} ⊂ R3 and converge to
an embedded minimal disk ΣI . Now, Theorem 1 (C) (which we have already
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established) gives that ΣI consists of two multi-valued graphs Σ1
I , Σ

2
I away from

the x3-axis. We will show that each graph Σj
I is ∞-valued and spirals into the

{x3 = t1} and {x3 = t2} planes, as claimed.

Note that by (7) and Theorem 1 (C), the level sets {x3 = t}∩Σj
I for t1 < t < t2

are graphs over lines in the direction

(28) limk→∞ (sinUk(t, 0),−cosUk(t, 0), 0) .

First, suppose t1 ∈ ml for some l. Then we get that, for any k > l and any
t < t2−t1

2 ,
(29)

Uk(t1+2t, 0)−Uk(t1+t, 0) =

∫ t1+2t

t1+t

∂sUk(s, 0)ds > c2μ
−l

∫ t1+2t

t1+t

ds

((s− t1)2 + a2k)
2

(by the Cauchy-Reimann equations Uk,x = Vk,y). Then, since ak → 0 as k → ∞,
we get that

(30) limk→∞Uk(t1 + 2t, 0)− Uk(t1 + t, 0) > c2μ
−l

∫ t1+2t

t1+t

ds

(s− t1)4
>

c2μ
−l

64t3
,

and hence {t1 + t < |x3| < t1 + 2t} contains an embedded Nt-valued graph, where

(31) Nt >
cμ−l

t3
.

Note that Nt → ∞ as t → 0 from above and hence ΣI spirals into the plane
{x3 = t1}.

Now, suppose that t1 /∈ M∞. Then consider the sequence of points pl(t1) ∈ ml

and recall that t1 − pl(t1) < γ−l. Then set tl = t1 + γ−l and consider the intervals

(32) Il = [tl+1, tl].

Note that for l large Il ⊂ I. Then, for k > l and s ∈ Il we may estimate

(33) ∂sUk(s, 0) >
c2μ

−l

((s− pl(t1))2 + a2k)
2
>

c2μ
−l

(4γ−2l + a2k)
2

since s− pl < 2γ−l. We then get

(34) Uk(t
j , 0)− Uk(t

j+1, 0) > |Ij |
c2μ

−l

(4γ−2l + a2k)
2
≥ c2μ

−l(1− γ−1)γ−l

(4γ−2l + a2k)
2

.

Taking limits, we get

(35) limk→∞Uk(t
l, 0)− Uk(t

l+1, 0) >
c2(1− γ−1)

16

(
γ3

μ

)l

.

Thus we see that {tl+1 < x3 < tl} ∩ Σl
I contains an embedded Nl-valued graph,

where

(36) Nl ≈ c

(
γ3

μ

)l

.

This again shows that ΣI spirals into the plane {x3 = t1} since as j → ∞, tl → t1
and Nl → ∞. Now for t in the interior of M , every singly graphical component
of Fl contained in the slab {t − γ−l < x3 < t + γ−l} (by (36) there are many) is
graphical over {x3 = 0} ∩ Brl(0) where Lemma 10 gives rl → ∞, which implies
that each component converges to the plane {x3 = t}. This proves Theorem 1 (D).
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Appendix

Here we provide the computations that were omitted from section 5.

Proof of Lemma 6. It suffices to show that h = u+ iv is holomorphic on ω. Recall
that

(37) h(z) =

∫ z

0

dz

(z2 + a2)2
.

It is clear that the points ±ia lie outside of ω. Moreover, ω is obviously simply
connected so that

∫ z

0
dz

(z2+a2)2 gives a well-defined holomorphic function on ω. �

Proof of Lemma 7. We compute the real and imaginary components of (z2 + a2)2:

z2 + a2 = x2 − y2 + a2 + 2ixy,(
z2 + a2

)2
=

(
x2 − y2 + a2

)2 − 4x2y2 + 4ixy
(
x2 − y2 + a2

)
.

Set

d = Re
{(

z2 + a2
)2}

=
(
x2 − y2 + a2

)2 − 4x2y2,

b = Im
{(

z2 + a2
)2}

= 4xy
(
x2 − y2 + a2

)
,

and

c2 =
∣∣∣(z2 + a2

)2∣∣∣2 = d2 + b2 =
{(

x2 − y2 + a2
)2 − 4x2y2

}2

+ 16x2y2
(
x2 − y2 + a2

)2
.

Now on ω (that is, on the set where |y| ≤ y0(x)), we get the bounds

d ≥ (1− ε2)2
(
x2 + a2

)2 − 4ε2(x2 + a2)2 =
{
(1− ε2)2 − 4ε2

}
(x2 + a2)2,

d ≤ (x2 + a2)2,

b ≤ 4ε(x2 + a2)11/4 ≤ 4ε(x2 + a2)2,

since by assumption |x|, a < 1
2 . Using the fact that c2 = d2 + b2,{

(1− ε2)2 − 4ε2
}2

(x2 + a2)4 ≤ c2 ≤
{
1 + 16ε2

} (
x2 + a2

)4
.

Recalling that

∂

∂y
u(x, y) = Im

{
1

(z2 + a2)2

}
=

−b

c2
,
∂

∂y
v(x, y) = Re

{
1

(z2 + a2)2

}
=

d

c2
,

we get ∣∣∣∣ ∂

∂y
up(x, y)

∣∣∣∣ ≤ 4

{(1− ε2)2 − 4ε2}2
|x− p||y|

((x− p)2 + a2)3

and

∂

∂y
vp(x, y) ≥

{
(1− ε2)2 − 4ε2

}
1 + 16ε2

1

((x− p)2 + a2)2
.
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If we restrict ε < ε0 for ε0 sufficiently small, we get that

4

{(1− ε2)2 − 4ε2}2
< c1

and {
(1− ε2)2 − 4ε2

}
1 + 16ε2

> c2

for constants c1 and c2, which immediately gives the lemma. �

Proof of Corollary 8. Recalling definitions (9) and (10), we get

|Uk(x, Yk(x))− Uk(x, 0)| ≤
k∑

l=0

μ−l

∫ Yk(x)

0

∣∣∣∣ ∂

∂y
ul(x, y)

∣∣∣∣(38)

≤
k∑

l=0

μ−l
∑
p∈ml

∫ Yk(x)

0

∣∣∣∣ ∂

∂y
up(x, y)

∣∣∣∣
≤

k∑
l=0

μ−l
∑
p∈ml

∫ yp(x)

0

∣∣∣∣ ∂

∂y
up(x, y)

∣∣∣∣
≤ c1ε

2
k∑

l=0

μ−l(γl + 1)

and

min[Yk(x)/2,Yk(x)]Vk(x, y) ≥
k∑

l=0

∫ Yk(x)/2

0

∂

∂y
vl(x, y)(39)

≥
k∑

l=0

μ−l
∑
p∈ml

∫ Yk(x)/2

0

∂

∂y
vp(x, y)

≥ εc2
2

k∑
l=0

μ−l
∑
p∈ml

Yk(x)

yp(x)
((x− p)2 + a2)−3/4

= ε
c2
2
qk(x).

�
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