PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 140, Number 5, May 2012, Pages 1835-1847 S 0002-9939(2011)11049-9 Article electronically published on September 26, 2011

k-HARMONIC MAPS INTO A RIEMANNIAN MANIFOLD WITH CONSTANT SECTIONAL CURVATURE

SHUN MAETA

(Communicated by Jianguo Cao)

ABSTRACT. J. Eells and L. Lemaire introduced k-harmonic maps, and Shaobo Wang showed the first variational formula. When k=2, it is called biharmonic maps (2-harmonic maps). There have been extensive studies in the area. In this paper, we consider the relationship between biharmonic maps and k-harmonic maps, and we show the non-existence theorem of 3-harmonic maps. We also give the definition of k-harmonic submanifolds of Euclidean spaces and study k-harmonic curves in Euclidean spaces. Furthermore, we give a conjecture for k-harmonic submanifolds of Euclidean spaces.

Introduction

The theory of harmonic maps has been applied to various fields in differential geometry. The harmonic maps between two Riemannian manifolds are critical maps of the energy functional $E(\phi) = \frac{1}{2} \int_M \|d\phi\|^2 v_g$, for smooth maps $\phi: M \to N$. On the other hand, in 1981, J. Eells and L. Lemaire [4] proposed the problem to

consider the k-harmonic maps: they are critical maps of the functional

$$E_k(\phi) = \int_M e_k(\phi) v_g \ (k = 1, 2, \cdots),$$

where $e_k(\phi) = \frac{1}{2} \|(d+d^*)^k \phi\|^2$ for smooth maps $\phi: M \to N$. G.Y. Jiang [6] studied the first and second variational formulas of the bi-energy E_2 , and critical maps of E_2 are called biharmonic maps (2-harmonic maps). There have been extensive studies on biharmonic maps.

In 1989, Shaobo Wang [10] studied the first variational formula of the k-energy E_k , whose critical maps are called k-harmonic maps. Harmonic maps are always k-harmonic maps by definition. However, the author [7] showed biharmonic is not always k-harmonic ($k \ge 3$). More generally, s-harmonic is not always k-harmonic (s < k). Furthermore, the author [7] showed the second variational formula of the k-energy.

In this paper, we study k-harmonic maps into a Riemannian manifold with constant sectional curvature K.

- In §1, we introduce notation and fundamental formulas of the tension field.
- In $\S 2$, we recall k-harmonic maps.
- In $\S 3$, we give the relationship between biharmonic maps and k-harmonic maps.

Received by the editors September 19, 2010 and, in revised form, January 20, 2011; January 27, 2001; and January 29, 2011.

²⁰¹⁰ Mathematics Subject Classification. Primary 58E20; Secondary 53C43.

In §4, we study 3-harmonic maps into a non-positive sectional curvature and obtain a non-existence theorem.

Finally, in §5, we define k-harmonic submanifolds of Euclidean spaces. Also, we show that a k-harmonic curve is a straight line. Furthermore, we give a conjecture for k-harmonic submanifolds in Euclidean spaces.

1. Preliminaries

Let (M,g) be an m dimensional Riemannian manifold, (N,h) an n dimensional one, and $\phi: M \to N$ a smooth map. We use the following notation.

The second fundamental form $B(\phi)$ of ϕ is a covariant differentiation $\nabla d\phi$ of the 1-form $d\phi$, which is a section of $\odot^2 T^*M \otimes \phi^{-1}TN$. For every $X,Y \in \Gamma(TM)$, let

(1)
$$B(X,Y) = (\widetilde{\nabla} d\phi)(X,Y) = (\widetilde{\nabla}_X d\phi)(Y) \\ = \overline{\nabla}_X d\phi(Y) - d\phi(\nabla_X Y) = \nabla^N_{d\phi(X)} d\phi(Y) - d\phi(\nabla_X Y).$$

Here, $\nabla, \nabla^N, \overline{\nabla}, \widetilde{\nabla}$ are the induced connections on the bundles TM, TN, $\phi^{-1}TN$ and $T^*M \otimes \phi^{-1}TN$, respectively.

If M is compact, we consider critical maps of the energy functional

(2)
$$E(\phi) = \int_{M} e(\phi)v_{g},$$

where $e(\phi) = \frac{1}{2} ||d\phi||^2 = \sum_{i=1}^m \frac{1}{2} \langle d\phi(e_i), d\phi(e_i) \rangle$, which is called the *energy density* of ϕ , the inner product $\langle \cdot, \cdot \rangle$ is a Riemannian metric h, and $\{e_i\}_{i=1}^m$ is a locally defined orthonormal frame field on (M,q). The tension field $\tau(\phi)$ of ϕ is defined by

(3)
$$\tau(\phi) = \sum_{i=1}^{m} (\widetilde{\nabla} d\phi)(e_i, e_i) = \sum_{i=1}^{m} (\widetilde{\nabla}_{e_i} d\phi)(e_i).$$

Then, ϕ is a harmonic map if $\tau(\phi) = 0$.

The curvature tensor field $R^N(\cdot,\cdot)$ of the Riemannian metric on the bundle TNis defined as follows:

(4)
$$R^{N}(X,Y) = \nabla_{X}^{N} \nabla_{Y}^{N} - \nabla_{Y}^{N} \nabla_{X}^{N} - \nabla_{[X,Y]}^{N} \quad (X,Y \in \Gamma(TN)).$$

$$\overline{\triangle} = \overline{\nabla}^* \overline{\nabla} = -\sum_{k=1}^m (\overline{\nabla}_{e_k} \overline{\nabla}_{e_k} - \overline{\nabla}_{\nabla_{e_k} e_k})$$
 is the rough Laplacian.

 $\overline{\triangle} = \overline{\nabla}^* \overline{\nabla} = -\sum_{k=1}^m (\overline{\nabla}_{e_k} \overline{\nabla}_{e_k} - \overline{\nabla}_{\nabla_{e_k} e_k})$ is the rough Laplacian. Also, Jiang [6] showed that $\phi: (M,g) \to (N,h)$ is a biharmonic (2-harmonic) if and only if

$$\overline{\triangle}\tau(\phi) - \sum_{i=1}^{m} R^{N}(\tau(\phi), d\phi(e_i)) d\phi(e_i) = 0.$$

Throughout the paper, we omit the sign \sum without mentioning this omission.

2. k-Harmonic maps

J. Eells and L. Lemaire [4] proposed the notation of k-harmonic maps. The Euler-Lagrange equations for the k-harmonic maps were shown by Shaobo Wang [10]. In this section, we recall k-harmonic maps.

We consider a smooth variation $\{\phi_t\}_{t\in I_{\epsilon}}(I_{\epsilon}=(-\epsilon,\epsilon))$ of ϕ with parameters t; i.e. we consider the smooth map F given by

$$F: I_{\epsilon} \times M \to N, F(t, p) = \phi_t(p),$$

where $F(0,p) = \phi_0(p) = \phi(p)$, for all $p \in M$.

The corresponding variational vector field V is given by

$$V(p) = \frac{d}{dt}|_{t=0}\phi_{t,0} \in T_{\phi(p)}N,$$

where V is a section of $\phi^{-1}TN$, i.e. $V \in \Gamma(\phi^{-1}TN)$.

We also denote by $\nabla, \overline{\nabla}$ and $\widetilde{\nabla}$ the induced Riemannian connection on $T(I_{\epsilon} \times M)$, $F^{-1}TN$ and $T^*(I_{\epsilon} \times M) \otimes F^{-1}TN$, respectively.

Definition 2.1 ([4]). For $k = 1, 2, \cdots$ the k-energy functional is defined by

$$E_k(\phi) = \frac{1}{2} \int_M \|(d+d^*)^k \phi\|^2 v_g, \quad \phi \in C^{\infty}(M,N).$$

Then, ϕ is k-harmonic if it is a critical point of E_k ; i.e., for all smooth variations $\{\phi_t\}$ of ϕ with $\phi_0 = \phi$,

$$\left. \frac{d}{dt} \right|_{t=0} E_k(\phi_t) = 0.$$

We say that a k-harmonic map is *proper* if it is not harmonic.

Lemma 2.2 ([10]).

$$\begin{split} \overline{\nabla}_{\frac{\partial}{\partial t}} \overline{\triangle}^{s-1} \tau(F)|_{t=0} &= -\overline{\triangle}^{s} V + \overline{\triangle}^{s-1} R^{N}(V, d\phi(e_{j})) d\phi(e_{j}) \\ &+ \sum_{l=1}^{s-1} \overline{\triangle}^{l-1} \{ -\overline{\nabla}_{e_{j}} R^{N}(V, d\phi(e_{j})) \overline{\triangle}^{s-l-1} \tau(\phi) \\ &- R^{N}(V, d\phi(e_{j})) \overline{\nabla}_{e_{j}} \overline{\triangle}^{s-l-1} \tau(\phi) \\ &+ R^{N}(V, d\phi(\nabla_{e_{j}} e_{j})) \overline{\triangle}^{s-l-1} \tau(\phi) \}. \end{split}$$

Proof. For all $\omega \in \Gamma(\phi^{-1}TN)$,

$$\begin{split} \overline{\nabla}_{\frac{\partial}{\partial t}} \overline{\triangle} \omega &= -\{ \overline{\nabla}_{\frac{\partial}{\partial t}} (\overline{\nabla}_{e_j} \overline{\nabla}_{e_j} - \overline{\nabla}_{\nabla_{e_j} e_j}) \omega \} \\ &= -\{ \overline{\nabla}_{e_j} \overline{\nabla}_{\frac{\partial}{\partial t}} (\overline{\nabla}_{e_j} \omega) + R^N (dF(\frac{\partial}{\partial t}), dF(e_j)) \overline{\nabla}_{e_j} \omega \\ &- \overline{\nabla}_{\nabla_{e_j} e_j} \overline{\nabla}_{\frac{\partial}{\partial t}} \omega - R^N (dF(\frac{\partial}{\partial t}), dF(\nabla_{e_j} e_j)) \omega \} \\ &= -\{ \overline{\nabla}_{e_j} (\overline{\nabla}_{e_j} \overline{\nabla}_{\frac{\partial}{\partial t}} \omega + R^N (dF(\frac{\partial}{\partial t}), dF(e_j)) \omega) \\ &+ R^N (dF(\frac{\partial}{\partial t}), dF(e_j)) \overline{\nabla}_{e_j} \omega \\ &- \overline{\nabla}_{\nabla_{e_j} e_j} \overline{\nabla}_{\frac{\partial}{\partial t}} \omega - R^N (dF(\frac{\partial}{\partial t}), dF(\nabla_{e_j} e_j)) \omega \}. \end{split}$$

Repeating this and using

$$\overline{\nabla}_{\frac{\partial}{\partial t}}\tau(F)|_{t=0} = -\overline{\triangle}V + R^N(V, d\phi(e_j))d\phi(e_j),$$

we have the lemma.

Lemma 2.3 ([10]).

$$\overline{\nabla}_{\frac{\partial}{\partial t}} \overline{\nabla}_{e_i} \overline{\triangle}^{s-1} \tau(F)|_{t=0} = -\overline{\nabla}_{e_i} \overline{\triangle}^s V + \overline{\nabla}_{e_i} \overline{\triangle}^{s-1} R^N(V, d\phi(e_j)) d\phi(e_j)
+ \sum_{l=1}^{s-1} \overline{\nabla}_{e_i} \overline{\triangle}^{l-1} \{ -\overline{\nabla}_{e_j} R^N(V, d\phi(e_j)) \overline{\triangle}^{s-l-1} \tau(\phi)
- R^N(V, d\phi(e_j)) \overline{\nabla}_{e_j} \overline{\triangle}^{s-l-1} \tau(\phi)
+ R^N(V, d\phi(\nabla_{e_j} e_j)) \overline{\triangle}^{s-l-1} \tau(\phi) \}
+ R^N(V, d\phi(e_i)) \overline{\triangle}^{s-1} \tau(\phi).$$

Proof.

$$\overline{\nabla}_{\frac{\partial}{\partial t}} \overline{\nabla}_{e_i} \overline{\triangle}^{s-1} \tau(F) = \overline{\nabla}_{e_i} \overline{\nabla}_{\frac{\partial}{\partial t}} \overline{\triangle}^{s-1} \tau(F) + R^N (dF(\frac{\partial}{\partial t}), dF(e_i)) \overline{\triangle}^{s-1} \tau(F).$$

Using Lemma 2.2, we have the lemma.

Lemma 2.4 ([10]).

$$\int_{M} \langle \overline{\nabla}_{e_{j}} R^{N}(V, d\phi(e_{j})) V_{1} - R^{N}(V, d\phi(\nabla_{e_{j}} e_{j})) V_{1}, V_{2} \rangle v_{g}$$

$$= -\int_{M} \langle R^{N}(V, d\phi(e_{j})) V_{1}, \overline{\nabla}_{e_{j}} V_{2} \rangle v_{g},$$

 $V_1, V_2 \in \Gamma(\phi^{-1}TN).$

Proof.

$$\begin{split} \operatorname{div}(\langle R^N(V, d\phi(e_i))V_1, V_2 \rangle e_i) = & \langle \nabla_{e_j} \langle R^N(V, d\phi(e_i))V_1, V_2 \rangle e_i, e_j \rangle \\ = & \langle \langle \overline{\nabla}_{e_j} R^N(V, d\phi(e_i))V_1, V_2 \rangle e_i \\ & + \langle R^N(V, d\phi(e_i))V_1, \overline{\nabla}_{e_j} V_2 \rangle e_i \\ & + \langle R^N(V, d\phi(e_i))V_1, V_2 \rangle \nabla_{e_j} e_i, e_j \rangle. \end{split}$$

By Green's theorem, we have

$$0 = \int_{M} \operatorname{div} \langle R^{N}(V, d\phi(e_{i}))V_{1}, V_{2} \rangle e_{i}v_{g}$$

$$= \int_{M} \langle \overline{\nabla}_{e_{j}} R^{N}(V, d\phi(e_{i})V_{1}, V_{2}) \rangle \delta_{ij}$$

$$+ \langle R^{N}(V, d\phi(e_{i}))V_{1}, \overline{\nabla}_{e_{j}} V_{2} \rangle \delta_{ij}$$

$$+ \langle R^{N}(V, d\phi(e_{i}))V_{1}, V_{2} \rangle \langle \nabla_{e_{i}} e_{i}, e_{j} \rangle v_{q}.$$

Here,

$$\langle R^{N}(V, d\phi(e_{i}))V_{1}, V_{2}\rangle \langle \nabla_{e_{j}}e_{i}, e_{j}\rangle = \langle R^{N}(V, d\phi(\langle \nabla_{e_{j}}e_{i}, e_{j}\rangle e_{i}))V_{1}, V_{2}\rangle$$
$$= -\langle R^{N}(V, d\phi(\nabla_{e_{i}}e_{i}))V_{1}, V_{2}\rangle.$$

Therefore, we have the lemma.

Theorem 2.5 ([10]). Let k = 2s ($s = 1, 2, \dots$),

$$\frac{d}{dt}\bigg|_{t=0} E_{2s}(\phi_t) = -\int_M \langle \tau_{2s}(\phi), V \rangle,$$

where

$$\tau_{2s}(\phi) = \overline{\triangle}^{2s-1} \tau(\phi) - R^N(\overline{\triangle}^{2s-2} \tau(\phi), d\phi(e_j)) e\phi(e_j)$$

$$- \sum_{l=1}^{s-1} \{ R^N(\overline{\nabla}_{e_j} \overline{\triangle}^{s+l-2} \tau(\phi), \overline{\triangle}^{s-l-1} \tau(\phi)) d\phi(e_j)$$

$$- R^N(\overline{\triangle}^{s+l-2} \tau(\phi), \overline{\nabla}_{e_j} \overline{\triangle}^{s-l-1} \tau(\phi)) d\phi(e_j) \},$$

where $\overline{\triangle}^{-1} = 0$.

Proof.

$$E_{2s}(\phi) = \int_{M} \langle \underbrace{(d^{*}d) \cdots (d^{*}d)}_{s} \phi, \underbrace{(d^{*}d) \cdots (d^{*}d)}_{s} \phi \rangle v_{g}$$
$$= \int_{M} \langle \overline{\triangle}^{s-1} \tau(\phi), \overline{\triangle}^{s-1} \tau(\phi) \rangle v_{g}.$$

By using Lemma 2.2 and Lemma 2.4, we calculate $\frac{d}{dt}E_{2s}(\phi_t)$:

$$\frac{d}{dt}E_{2s}(\phi_{t})|_{t=0}
= \int_{M} \langle \overline{\nabla}_{\frac{\partial}{\partial t}} \overline{\Delta}^{s-1} \tau(F), \overline{\Delta}^{s-1} \tau(F) \rangle v_{g}|_{t=0}
= \int_{M} \langle -\overline{\Delta}^{s} V + \overline{\Delta}^{s-1} R^{N}(V, d\phi(e_{j})) d\phi(e_{j})
+ \sum_{l=1}^{s-1} \overline{\Delta}^{l-1} \{ -\overline{\nabla}_{e_{j}} R^{N}(V, d\phi(e_{j})) \overline{\Delta}^{s-l-1} \tau(\phi)
- R^{N}(V, d\phi(e_{j})) \overline{\nabla}_{e_{j}} \overline{\Delta}^{s-l-1} \tau(\phi)
+ R^{N}(V, d\phi(\nabla_{e_{j}} e_{j})) \overline{\Delta}^{s-l-1} \tau(\phi), \overline{\Delta}^{s-1} \tau(\phi) \} \rangle
= \int_{M} \langle V, -\overline{\Delta}^{2s-1} \tau(\phi) \rangle v_{g}
+ \int_{M} \langle V, R^{N}(\overline{\Delta}^{2s-2} \tau(\phi), d\phi(e_{j})) d\phi(e_{j}) \rangle v_{g}
+ \sum_{l=1}^{s-1} \int_{M} \langle -\overline{\nabla}_{e_{j}} R^{N}(V, d\phi(e_{j})) \overline{\Delta}^{s-l-1} \tau(\phi)
- R^{N}(V, d\phi(e_{j})) \overline{\nabla}_{e_{j}} \overline{\Delta}^{s-l-1} \tau(\phi)
+ R^{N}(V, d\phi(\nabla_{e_{j}} e_{j})) \overline{\Delta}^{s-l-1} \tau(\phi), \overline{\Delta}^{s+l-2} \tau(\phi) \rangle v_{g}$$

$$\begin{split} &= \int_{M} \langle V, -\overline{\triangle}^{2s-1}\tau(\phi) \rangle v_{g} \\ &+ \int_{M} \langle V, R^{N}(\overline{\triangle}^{2s-2}\tau(\phi), d\phi(e_{j})) d\phi(e_{j}) \rangle v_{g} \\ &+ \sum_{l=1}^{s-1} \{ \int_{M} \langle R^{N}(V, d\phi(e_{j})) \overline{\triangle}^{s-l-1}\tau(\phi), \overline{\nabla}_{e_{j}} \overline{\triangle}^{s+l-2}\tau(\phi) \rangle v_{g} \\ &+ \int_{M} \langle -R^{N}(V, d\phi(e_{j})) \overline{\nabla}_{e_{j}} \overline{\triangle}^{s-l-1}\tau(\phi), \overline{\triangle}^{s+l-2}\tau(\phi) \rangle v_{g} \} \\ &= \int_{M} \langle V, -\overline{\triangle}^{2s-1}\tau(\phi) \rangle v_{g} \\ &+ \int_{M} \langle V, R^{N}(\overline{\triangle}^{2s-2}\tau(\phi), d\phi(e_{j})) d\phi(e_{j}) \rangle v_{g} \\ &+ \sum_{l=1}^{s-1} \{ \int_{M} \langle R^{N}(\overline{\nabla}_{e_{j}} \overline{\triangle}^{s+l-2}\tau(\phi), \overline{\triangle}^{s-l-1}\tau(\phi)) d\phi(e_{j}), V \rangle v_{g} \} \\ &= \int_{M} \langle R^{N}(\overline{\triangle}^{s+l-2}\tau(\phi), \overline{\nabla}_{e_{j}} \overline{\triangle}^{s-l-1}\tau(\phi)) d\phi(e_{j}), V \rangle v_{g} \} \\ &= \int_{M} \langle V, -\overline{\triangle}^{2s-1}\tau(\phi) + R^{N}(\overline{\triangle}^{2s-2}\tau(\phi), d\phi(e_{j})) d\phi(e_{j}) \\ &+ \sum_{l=1}^{s-1} \{ R^{N}(\overline{\nabla}_{e_{j}} \overline{\triangle}^{s+l-2}\tau(\phi), \overline{\triangle}^{s-l-1}\tau(\phi)) d\phi(e_{j}) \} \rangle v_{g}. \end{split}$$

Therefore, we have the theorem.

Theorem 2.6 ([10]). Let k = 2s + 1 $(s = 0, 1, 2, \dots)$,

$$\frac{d}{dt}\bigg|_{t=0} E_{2s+1}(\phi_t) = -\int_M \langle \tau_{2s+1}(\phi), V \rangle,$$

where

$$\begin{split} \tau_{2s+1}(\phi) = & \overline{\triangle}^{2s} \tau(\phi) - R^N(\overline{\triangle}^{2s-1}\tau(\phi), d\phi(e_j)) d\phi(e_j) \\ & - \sum_{l=1}^{s-1} \{ R^N(\overline{\nabla}_{e_j} \overline{\triangle}^{s+l-1}\tau(\phi), \overline{\triangle}^{s-l-1}\tau(\phi)) d\phi(e_j) \\ & - R^N(\overline{\triangle}^{s+l-1}\tau(\phi), \overline{\nabla}_{e_j} \overline{\triangle}^{s-l-1}\tau(\phi)) d\phi(e_j) \} \\ & - R^N(\overline{\nabla}_{e_j} \overline{\triangle}^{s-1}\tau(\phi), \overline{\triangle}^{s-1}\tau(\phi)) d\phi(e_j), \end{split}$$

where $\overline{\triangle}^{-1} = 0$.

Proof. When s=0, it is a well-known harmonic map. Hence we consider the case of $s=1,2,\cdots$:

$$E_{2s+1}(\phi) = \int_{M} \langle d\underbrace{(d^{*}d) \cdots (d^{*}d)}_{s} \phi, d\underbrace{(d^{*}d) \cdots (d^{*}d)}_{s} \phi \rangle v_{g}$$
$$= \int_{M} \langle \overline{\nabla}_{e_{i}} \overline{\triangle}^{s-1} \tau(\phi), \overline{\nabla}_{e_{i}} \overline{\triangle}^{s-1} \tau(\phi) \rangle v_{g}.$$

By using Lemma 2.3 and Lemma 2.4, we calculate $\frac{d}{dt}E_{2s+1}(\phi_t)$:

$$\begin{split} &\frac{d}{dt}E_{2s+1}(\phi_t)|_{t=0} \\ &= \int_M \langle \overline{\nabla}_{\frac{\partial}{\partial t}} \overline{\nabla}_{e_i} \overline{\triangle}^{s-1} \tau(F), \overline{\nabla}_{e_i} \overline{\triangle}^{s-1} \tau(F) \rangle v_g|_{t=0} \\ &= \int_M \langle -\overline{\nabla}_{e_i} \overline{\triangle}^s V + \overline{\nabla}_{e_i} \overline{\triangle}^{s-1} R^N(V, d\phi(e_j)) d\phi(e_j) \\ &+ \sum_{l=1}^{s-1} \overline{\nabla}_{e_i} \overline{\triangle}^{l-1} \{ -\overline{\nabla}_{e_j} R^N(V, d\phi(e_j)) \overline{\triangle}^{s-l-1} \tau(\phi) \\ &- R^N(V, d\phi(e_j)) \overline{\nabla}_{e_j} \overline{\triangle}^{s-l-1} \tau(\phi) \\ &+ R^N(V, d\phi(\nabla_{e_j} e_j)) \overline{\triangle}^{s-l-1} \tau(\phi) \\ &+ R^N(V, d\phi(e_i)) \overline{\triangle}^{s-1} \tau(\phi) \}, \overline{\nabla}_{e_i} \overline{\triangle}^{s-1} \tau(\phi) \rangle v_g. \end{split}$$

Here, using

$$\int_{M} \langle \overline{\nabla}_{e_i} \omega_1, \overline{\nabla}_{e_i} \omega_2 \rangle v_g = \int_{M} \langle \overline{\triangle} \omega_1, \omega_2 \rangle v_g,$$

where $\omega_1, \omega_2 \in \Gamma(\phi^{-1}TN)$, we have

$$\frac{d}{dt}E_{2s+1}(\phi_{t})|_{t=0}
= \int_{M} \langle V, -\overline{\Delta}^{2s}\tau(\phi)\rangle v_{g}
+ \int_{M} \langle R^{N}(V, d\phi(e_{j}))d\phi(e_{j}), \overline{\Delta}^{2s-1}\tau(\phi)\rangle v_{g}
+ \sum_{l=1}^{s-1} \int_{M} \langle -\overline{\nabla}_{e_{j}}R^{N}(V, d\phi(e_{j}))\overline{\Delta}^{s-l-1}\tau(\phi)
- R^{N}(V, d\phi(e_{j}))\overline{\nabla}_{e_{j}}\overline{\Delta}^{s-l-1}\tau(\phi)
+ R^{N}(V, d\phi(\nabla_{e_{j}}e_{j}))\overline{\Delta}^{s-l-1}\tau(\phi), \overline{\Delta}^{s+l-1}\tau(\phi)\rangle v_{g}
+ \int_{M} \langle R^{N}(V, d\phi(e_{i}))\overline{\Delta}^{s-1}\tau(\phi), \overline{\nabla}_{e_{i}}\overline{\Delta}^{s-1}\tau(\phi)\rangle v_{g}$$

$$\begin{split} &= \int_{M} \langle V, -\overline{\triangle}^{2s} \tau(\phi) + R^{N}(\overline{\triangle}^{2s-1} \tau(\phi), d\phi(e_{j})) d\phi(e_{j}) \\ &+ \sum_{l=1}^{s-1} \{ R^{N}(\overline{\nabla}_{e_{j}} \overline{\triangle}^{s+l-1} \tau(\phi), \overline{\triangle}^{s-l-1} \tau(\phi)) d\phi(e_{j}) \\ &- R^{N}(\overline{\triangle}^{s+l-1} \tau(\phi), \overline{\nabla}_{e_{j}} \overline{\triangle}^{s-l-1} \tau(\phi)) d\phi(e_{j}) \} \\ &+ R^{N}(\overline{\nabla}_{e_{j}} \overline{\triangle}^{s-1} \tau(\phi), \overline{\triangle}^{s-1} \tau(\phi)) d\phi(e_{j}) \rangle v_{g}. \end{split}$$

Therefore, we have the theorem.

By Theorems 2.5 and 2.6, we have the following [10].

Corollary 2.7. A harmonic map is always a k-harmonic map $(k = 1, 2, \cdots)$.

3. The relationship between biharmonic and k-harmonic

In [7], the author showed that s-harmonic is not always k-harmonic (s < k). Especially, biharmonic is not always k-harmonic ($k \ge 3$). Therefore, we study the relationship between biharmonic and k-harmonic (2 < k). We obtain some results.

Proposition 3.1. Let $\phi:(M,g) \to (N,h)$ be an isometric immersion into a Riemannian manifold with constant sectional curvature K. Then ϕ is biharmonic if and only if

$$\overline{\triangle}\tau(\phi) = Km\tau(\phi).$$

Proof. ϕ is biharmonic if and only if

$$0 = \overline{\Delta}\tau(\phi) - R^{N}(\tau(\phi), d\phi(e_{i}))d\phi(e_{i})$$

$$= \overline{\Delta}\tau(\phi) - K\{\langle d\phi(e_{i}), d\phi(e_{i})\rangle\tau(\phi) - \langle d\phi(e_{i}), \tau(\phi)\rangle d\phi(e_{i})\}$$

$$= \overline{\Delta}\tau(\phi) - Km\tau(\phi).$$

Thus, we have the proposition.

Lemma 3.2. Let $\phi:(M,g)\to(N,h)$ be an isometric immersion into a Riemannian manifold with constant sectional curvature K. If ϕ is biharmonic,

(7)
$$\langle d\phi(e_i), \overline{\triangle}^l \tau(\phi) \rangle = 0 \quad (l = 0, 1, \cdots).$$

Proof. By using Proposition 3.1, we have

$$\langle d\phi(e_i), \overline{\triangle}^l \tau(\phi) \rangle = mK \langle d\phi(e_i), \overline{\triangle}^{l-1} \tau(\phi) \rangle$$

$$\cdots$$

$$= (mK)^l \langle d\phi(e_i), \tau(\phi) \rangle$$

$$= 0.$$

Lemma 3.3. Let $\phi:(M,g) \to (N,h)$ be an isometric immersion into a Riemannian manifold with constant sectional curvature K. If ϕ is biharmonic,

(8)
$$\langle d\phi(e_i), \overline{\nabla}_{e_i} \overline{\triangle}^l \tau(\phi) \rangle = -(mK)^l ||\tau(\phi)||^2.$$

Proof. By using Proposition 3.1, we have

$$\langle d\phi(e_i), \overline{\nabla}_{e_i} \overline{\triangle}^l \tau(\phi) \rangle = mK \langle d\phi(e_i), \overline{\nabla}_{e_i} \overline{\triangle}^{l-1} \tau(\phi) \rangle$$

$$\cdots$$

$$= (mK)^l \langle d\phi(e_i), \overline{\nabla}_{e_i} \tau(\phi) \rangle$$

$$= - (mK)^l ||\tau(\phi)||^2,$$

where, in the last equation, we only notice that

$$0 = e_i \langle d\phi(e_i), \tau(\phi) \rangle = \langle \overline{\nabla}_{e_i} d\phi(e_i), \tau(\phi) \rangle + \langle d\phi(e_i), \overline{\nabla}_{e_i} \tau(\phi) \rangle.$$

Using these lemmas, we show the following two theorems.

Theorem 3.4. Let $\phi:(M,g)\to (N,h)$ be a biharmonic isometric immersion into a Riemannian manifold with constant sectional curvature $K\ (\neq 0)$. If ϕ is 2s-harmonic $(s\geq 2)$, ϕ is harmonic.

Proof. By Theorem 2.5, ϕ is 2s-harmonic if and only if

$$\begin{split} \overline{\triangle}^{2s-1}\tau(\phi) - K\{m\overline{\triangle}^{2s-2}\tau(\phi) - \langle d\phi(e_j), \overline{\triangle}^{2s-2}\tau(\phi)\rangle d\phi(e_j)\} \\ - \sum_{l=1}^{s-1}\{K(\langle \overline{\triangle}^{s-l-1}\tau(\phi), d\phi(e_j)\rangle \overline{\nabla}_{e_j} \overline{\triangle}^{s+l-2}\tau(\phi) \\ - \langle d\phi(e_j), \overline{\nabla}_{e_j} \overline{\triangle}^{s+l-2}\tau(\phi)\rangle \overline{\triangle}^{s-l-1}\tau(\phi) \\ - \langle \overline{\nabla}_{e_j} \overline{\triangle}^{s-l-1}\tau(\phi), d\phi(e_j)\rangle \overline{\triangle}^{s+l-2}\tau(\phi) \\ + \langle d\phi(e_j), \overline{\triangle}^{s+l-2}\tau(\phi)\rangle \overline{\nabla}_{e_j} \overline{\triangle}^{s-l-1}\tau(\phi))\} = 0. \end{split}$$

By Proposition 3.1 and Lemmas 3.2 and 3.3, we have

$$\begin{split} 0 &= (mK)^{2s-1}\tau(\phi) - (mK)^{2s-1}\tau(\phi) \\ &- \sum_{l=1}^{s-1} \{K((mK)^{2s-3}||\tau(\phi)||^2\tau(\phi) + (mK)^{2s-3}||\tau(\phi)||^2\tau(\phi))\} \\ &= -2(s-1)K(mK)^{2s-3}||\tau(\phi)||^2\tau(\phi). \end{split}$$

Thus, we have the theorem.

Theorem 3.5. Let $\phi:(M,g) \to (N,h)$ be a biharmonic isometric immersion into a Riemannian manifold with constant sectional curvature $K \neq 0$. If ϕ is (2s+1)-harmonic $(s \geq 1)$, ϕ is harmonic.

Proof. By Theorem 2.6, ϕ is (2s+1)-harmonic if and only if

$$\begin{split} \overline{\triangle}^{2s}\tau(\phi) - K\{m\overline{\triangle}^{2s-1}\tau(\phi) - \langle d\phi(e_j), \overline{\triangle}^{2s-1}\tau(\phi)\rangle d\phi(e_j)\} \\ - \sum_{l=1}^{s-1}\{K(\langle \overline{\triangle}^{s-l-1}\tau(\phi), d\phi(e_j)\rangle \overline{\nabla}_{e_j} \overline{\triangle}^{s+l-1}\tau(\phi) \\ - \langle d\phi(e_j), \overline{\nabla}_{e_j} \overline{\triangle}^{s+l-1}\tau(\phi)\rangle \overline{\triangle}^{s-l-1}\tau(\phi) \\ - \langle \overline{\nabla}_{e_j} \overline{\triangle}^{s-l-1}\tau(\phi), d\phi(e_j)\rangle \overline{\triangle}^{s+l-1}\tau(\phi) \\ + \langle d\phi(e_j), \overline{\triangle}^{s+l-1}\tau(\phi)\rangle \overline{\nabla}_{e_j} \overline{\triangle}^{s-l-1}\tau(\phi))\} \\ - K\{\langle \overline{\triangle}^{s-1}\tau(\phi), d\phi(e_i)\rangle \overline{\nabla}_{e_i} \overline{\triangle}^{s-1}\tau(\phi) \\ - \langle d\phi(e_i), \overline{\nabla}_{e_i} \overline{\triangle}^{s-1}\tau(\phi)\rangle \overline{\triangle}^{s-1}\tau(\phi)\} = 0. \end{split}$$

By Proposition 3.1 and Lemmas 3.2 and 3.3, we have

$$\begin{split} 0 &= (mK)^{2s}\tau(\phi) - (mK)^{2s}\tau(\phi) \\ &- \sum_{l=1}^{s-1} \{K\left((mK)^{2s-2}||\tau(\phi)||^2\tau(\phi) + (mK)^{2s-2}||\tau(\phi)||^2\tau(\phi)\right)\} \\ &- K(mK)^{2s-2}||\tau(\phi)||^2\tau(\phi) \\ &= -(2s-1)K(mK)^{2s-2}||\tau(\phi)||^2\tau(\phi). \end{split}$$

Thus, we have the theorem.

4. 3-HARMONIC MAPS INTO NON-POSITIVE CURVATURE

In this section we show the non-existence theorem of 3-harmonic maps. G. Y. Jiang showed the following.

Theorem 4.1 ([6]). Assume that M is compact and N is a non-positive curvature, i.e., a Riemannian curvature of N, $K \leq 0$. Then every biharmonic map $\phi : M \to N$ is harmonic.

We consider this theorem for 3-harmonic maps. First, we recall the following theorem

Theorem 4.2 ([7]). Let $l=1,2,\cdots$. If $\overline{\triangle}^l \tau(\phi)=0$ or $\overline{\nabla}_{e_i} \overline{\triangle}^{(l-1)} \tau(\phi)=0$ $(i=1,2,\cdots,m)$, then $\phi:M\to N$ from a compact Riemannian manifold into a Riemannian manifold is a harmonic map.

Using this theorem, we obtain the next result.

Proposition 4.3. Let $\phi:(M,g) \to (N,h)$ be an isometric immersion from a compact Riemannian manifold into a Riemannian manifold with non-positive constant sectional curvature $K \leq 0$. Then 3-harmonic is harmonic.

Proof. Indeed, by computing the Laplacian of the 4-energy density $e_4(\phi)$, we have

(9)
$$\triangle e_{4}(\phi) = ||\overline{\nabla}_{e_{i}}\overline{\triangle}\tau(\phi)||^{2} - \langle\overline{\triangle}^{2}\tau(\phi), \overline{\triangle}\tau(\phi)\rangle$$

$$= ||\overline{\nabla}_{e_{i}}\overline{\triangle}\tau(\phi)||^{2}$$

$$- \langle R^{N}(\overline{\triangle}\tau(\phi), d\phi(e_{i}))d\phi(e_{i}), \overline{\triangle}\tau(\phi)\rangle$$

$$- \langle R^{N}(\overline{\nabla}_{e_{i}}\tau(\phi), \tau(\phi))d\phi(e_{i}), \overline{\triangle}\tau(\phi)\rangle,$$

due to the fact that ϕ is 3-harmonic. Here, we consider the right hand side of (9):

$$\langle R^{N}(\overline{\nabla}_{e_{i}}\tau(\phi),\tau(\phi))d\phi(e_{i}),\overline{\triangle}\tau(\phi)\rangle = \langle K\{\langle \tau(\phi),d\phi(e_{i})\rangle\overline{\nabla}_{e_{i}}\tau(\phi) - \langle d\phi(e_{i}),\overline{\nabla}_{e_{i}}\tau(\phi)\rangle\tau(\phi)\},\overline{\triangle}\tau(\phi)\rangle$$
$$= K\{||\tau(\phi)||^{2}\langle \tau(\phi),\overline{\triangle}\tau(\phi)\rangle\}.$$

Using Green's theorem, we have

(10)
$$0 = \int_{M} \triangle e_{4}(\phi) = \int_{M} ||\overline{\nabla}_{e_{i}} \overline{\triangle} \tau(\phi)||^{2} - \langle R^{N}(\overline{\triangle} \tau(\phi), d\phi(e_{i})) d\phi(e_{i}), \overline{\triangle} \tau(\phi) \rangle - K||\tau(\phi)||^{2}||\overline{\nabla}_{e_{i}} \tau(\phi)||^{2} v_{g}.$$

Then both terms of (10) are non-negative, so we have

(11)
$$0 = \triangle e_4(\phi) = ||\overline{\nabla}_{e_i} \overline{\triangle} \tau(\phi)||^2 - \langle R^N(\overline{\triangle} \tau(\phi), d\phi(e_i)) d\phi(e_i), \overline{\triangle} \tau(\phi) \rangle - K||\tau(\phi)||^2 ||\overline{\nabla}_{e_i} \tau(\phi)||^2.$$

Especially, we have

$$\overline{\nabla}_{e_i} \overline{\triangle} \tau(\phi) = 0.$$

Using Theorem 4.2, we obtain the proposition.

5. k-harmonic curves into a Euclidean space

In this section, we consider k-harmonic curves into a Euclidean space \mathbb{E}^n and we give a conjecture. B. Y. Chen [1] defined biharmonic submanifolds of Euclidean spaces.

Definition 5.1 ([1]). Let $x: M \to \mathbb{E}^n$ be an isometric immersion into a Euclidean space. $x: M \to \mathbb{E}^n$ is called a biharmonic submanifold if

(12)
$$\triangle^2 x = 0, \text{ that is, } \triangle H = 0,$$

where $H = -\frac{1}{m} \triangle x$ is the mean curvature vector of the isometric immersion x and \triangle is the Laplacian of M.

B. Y. Chen and S. Ishikawa [2] proved that any biharmonic surface in \mathbb{E}^3 is minimal. Chen [1] also gave a conjecture.

Conjecture 5.2 ([1]). The only biharmonic submanifolds in Euclidean spaces are the minimal ones.

There are several results for this conjecture ([5], [3] and [8], etc.). However, the conjecture is still open. I. Dimitric [3] considered a curve case (m = 1) and obtained the following theorem.

Theorem 5.3 ([3]). Let $x: C \to \mathbb{E}^n$ be a smooth curve parametrized by arc length, with the mean curvature vector H satisfying $\triangle H = 0$. Then the curve is a straight line, i.e., totally geodesic in \mathbb{E}^n .

We generalize this theorem. First, we define k-harmonic submanifolds in Euclidean spaces.

Definition 5.4. Let $x: M \to \mathbb{E}^n$ be an isometric immersion into a Euclidean space. $x: M \to \mathbb{E}^n$ is called a k-harmonic submanifold if

(13)
$$\triangle^k x = 0$$
, that is, $\triangle^{k-1} H = 0 \ (k = 1, 2, \dots)$,

where $H = -\frac{1}{m} \triangle x$ is the mean curvature vector of the isometric immersion x and \triangle is the Laplacian of M.

We also consider a curve case (m = 1) and obtain the following theorem.

Theorem 5.5. Let $x: C \to \mathbb{E}^n$ be a smooth curve parametrized by arc length, with the mean curvature vector H satisfying $\triangle^{k-1}H = 0$ $(k = 1, 2, \cdots)$. Then the curve is a straight line, i.e., totally geodesic in \mathbb{E}^n .

Proof. We have $0 = \triangle^{k-1}H = -\triangle^k x = (-1)^{k+1} \frac{d^{2k}}{ds^{2k}} x$, $k = 1, 2, \cdots$. Hence x has to be a (2k-1)-th power polynomial in s,

$$x = \frac{1}{2k-1}a_{2k-1}s^{2k-1} + \frac{1}{2k-2}a_{2k-2}s^{2k-2} + \dots + a_1s + a_0,$$

where a_i $(i = 0, 1, \dots, 2k-1)$ are constant vectors. Since s is the natural parameter we have

$$1 = \langle \frac{dx}{ds}, \frac{dx}{ds} \rangle = \langle \sum_{i=1}^{2k-1} a_i s^{i-1}, \sum_{i=1}^{2k-1} a_i s^{i-1} \rangle$$

$$= |a_{2k-1}|^2 s^{4k-4} + 2\langle a_{2k-1}, a_{2k-2} \rangle s^{4k-5} + \{2\langle a_{2k-1}, a_{2k-3} \rangle + |a_{2k-2}|^2\} s^{4k-6}$$

$$\cdots$$

+
$${2\langle a_1, a_3\rangle + |a_2|^2}s^2 + 2\langle a_1, a_2\rangle s + |a_1|^2$$
.

On the right hand side we have a polynomial in s, so we must have

$$a_{2k-1} = a_{2k-2} = a_{2k-3} = a_{2k-4} = \dots = a_3 = a_2 = 0, |a_1|^2 = 1.$$

In other words, $x(s) = a_1 s + a_0$ with $|a_1|^2 = 1$, and therefore the curve is a straight line.

Conjecture 5.6. The only k-harmonic submanifolds in Euclidean spaces are the minimal ones.

Especially, when k = 2, it is the B. Y. Chen conjecture.

References

- B. Y. Chen, Some open problems and conjectures on submanfolds of finite type, Soochow J. Math. 17 (1991), 169-188. MR1143504 (92m:53091)
- [2] B. Y. Chen and S. Ishikawa, Biharmonic pseudo-Riemannian submanifolds in pseudo-Euclidean spaces, Kyushu J. Math. 52 (1998), no. 1, 167-185. MR1609044 (99b:53078)
- [3] I. Dimitric, Submanifolds of Eⁿ with harmonic mean curvature vector, Bull. Inst. Math. Acad. Sinica 20 (1992), 53-65. MR1166218 (93g:53087)
- [4] J. Eells and L. Lemaire, Selected topics in harmonic maps, CBMS, 50, Amer. Math. Soc., 1983. MR703510 (85g:58030)
- [5] T. Ichiyama, J. Inoguchi and H. Urakawa, Bi-harmonic map and bi-Yang-Mills fields, Note di Matematica 28 (2009), 233-275. MR2640583
- [6] G. Y. Jiang, 2-harmonic maps and their first and second variational formulas, Chinese Ann. Math., 7A (1986), 388-402; English translation, Note di Mathematica 28 (2008), 209-232. MR2640582

- [7] Sh. Maeta, The second variational formula of the k-energy and k-harmonic curves, arXiv:1008.3700v1 [math.DG], 22 Aug 2010.
- [8] Y.-L. Ou, Some constructions of biharmonic maps and Chen's conjecture on biharmonic hypersurfaces, arXiv:0912.1141v1, [math.DG] 6 Dec 2009.
- [9] H. Urakawa, Calculus of variations and harmonic maps, Transl. Math. Monograph. 132, Amer. Math. Soc., 1993. MR1252178 (95c:58050)
- [10] S. B. Wang, The first variation formula for K-harmonic mapping, Journal of Nanchang University 13, No. 1, 1989.

Graduate School of Information Sciences, Tohoku University, Aoba 6-3-09 Aramaki Aoba-ku Sendai-shi Miyagi, 980-8579 Japan

Current address: Nakakuki 3-10-9, Oyama-shi, Tochigi, Japan

 $E\text{-}mail\ address{:}\ \mathtt{shun.maeta@gmail.com}$