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ABSTRACT. J. Eells and L. Lemaire introduced k-harmonic maps, and Shaobo
Wang showed the first variational formula. When k = 2, it is called bihar-
monic maps (2-harmonic maps). There have been extensive studies in the
area. In this paper, we consider the relationship between biharmonic maps
and k-harmonic maps, and we show the non-existence theorem of 3-harmonic
maps. We also give the definition of k-harmonic submanifolds of Euclidean
spaces and study k-harmonic curves in Euclidean spaces. Furthermore, we
give a conjecture for k-harmonic submanifolds of Euclidean spaces.

INTRODUCTION

The theory of harmonic maps has been applied to various fields in differential
geometry. The harmonic maps between two Riemannian manifolds are critical maps
of the energy functional E(¢) = £ [, ||d®||?vy, for smooth maps ¢ : M — N.

On the other hand, in 1981, J. Eells and L. Lemaire [4] proposed the problem to
consider the k-harmonic maps: they are critical maps of the functional

Ek(@:/Mek(wvg (h=1,2,),

where ex(¢) = 3| (d+d*)*¢||? for smooth maps ¢ : M — N. G.Y. Jiang [6] studied
the first and second variational formulas of the bi-energy FEs, and critical maps
of Ey are called biharmonic maps (2-harmonic maps). There have been extensive
studies on biharmonic maps.

In 1989, Shaobo Wang [10] studied the first variational formula of the k-energy
FE, whose critical maps are called k-harmonic maps. Harmonic maps are always
k-harmonic maps by definition. However, the author [7] showed biharmonic is not
always k-harmonic (k > 3). More generally, s-harmonic is not always k-harmonic
(s < k). Furthermore, the author [7] showed the second variational formula of the
k-energy.

In this paper, we study k-harmonic maps into a Riemannian manifold with
constant sectional curvature K.

In {Il we introduce notation and fundamental formulas of the tension field.

In §2] we recall k-harmonic maps.

In §3l we give the relationship between biharmonic maps and k-harmonic maps.
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In § we study 3-harmonic maps into a non-positive sectional curvature and
obtain a non-existence theorem.

Finally, in §5 we define k-harmonic submanifolds of Euclidean spaces. Also, we
show that a k-harmonic curve is a straight line. Furthermore, we give a conjecture
for k-harmonic submanifolds in Euclidean spaces.

1. PRELIMINARIES

Let (M, g) be an m dimensional Riemannian manifold, (N, k) an n dimensional
one, and ¢ : M — N a smooth map. We use the following notation. B

The second fundamental form B(¢) of ¢ is a covariant differentiation Vd¢ of the
1-form d¢, which is a section of ®?T*M ® ¢~ 'TN. For every X,Y € ['(TM), let

B(X,Y) = (Vdg)(X,Y) = (Vxdo)(Y)

(1) =
= Vxdg(Y) = dp(VxY) = Vg x)do(Y) — dp(VxY).
Here, V,VV .V, V are the induced connections on the bundles TM, TN, ¢~ 'TN
and T*M ® ¢~ TN, respectively.
If M is compact, we consider critical maps of the energy functional

@) E(¢) = /N (o),

where e(¢) = $[|do||> = 31", 2(dd(e;), dd(e;)), which is called the energy density

2
of ¢, the inner product (-,-) is a Riemannian metric h, and {e;}!*, is a locally

defined orthonormal frame field on (M, g). The tension field T(¢) of ¢ is defined
by

m m

(3) T(¢) = D (Vdo)(ei i) = > (Ve dg)(e:).

i=1 i=1

Then, ¢ is a harmonic map if 7(¢) = 0.
The curvature tensor field RV (-, -) of the Riemannian metric on the bundle TN
is defined as follows:

(4) RN(X,Y)=VYVY - V§VR —ViXy, (X,Y €T(TN)).

A=VV=- S (Ve Ve, — Vv% e, ) 18 the rough Laplacian.
Also, Jiang [0] showed that ¢ : (M, g) — (N, h) is a biharmonic (2-harmonic) if
and only if

m

Ar(¢) = > RN (1(), dd(es))de(e;) = 0.

i=1

Throughout the paper, we omit the sign > without mentioning this omission.

2. k-HARMONIC MAPS

J. Eells and L. Lemaire [4] proposed the notation of k-harmonic maps. The
Euler-Lagrange equations for the k-harmonic maps were shown by Shaobo Wang
[10]. In this section, we recall k-harmonic maps.
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We consider a smooth variation {¢:}ier. (I = (—€,¢€)) of ¢ with parameters t;
i.e. we consider the smooth map F' given by

P Ie X M — NaF(t7p) = ¢t(p),
where F(0,p) = ¢o(p) = ¢(p), for all p € M.
The corresponding variational vector field V' is given by

d
V(p) = 2 li=0¢t0 € Ty N,

where V is a section of ¢~'TN, i.e. V € T'(¢~!TN).
We also denote by V, V and V the induced Riemannian connection on T'(I. x M),
F~ITN and T*(I. x M) ® F~'TN, respectively.

Definition 2.1 ([4]). For kK =1,2,--- the k-energy functional is defined by
1 - o
Bu(@) =5 [ @+ ) o, € CX(M,N),
M

Then, ¢ is k-harmonic if it is a critical point of Ej; i.e., for all smooth variations
{1} of ¢ with ¢o = ¢,
d

dt

We say that a k-harmonic map is proper if it is not harmonic.

Ej(¢1) =0

t=0

Lemma 2.2 ([10]).
Vo B (F)limo = = BV + B RN (V, dg(e;))dd (e;)

Z_Z =V, RN (V, dg(e,) B 7(4)
— RN(V,do(e;))Ve, 5 ' 7(0)
+ RV (V,dg(Ve,e; ) B 7 (0)).
Proof. For all w € T'(¢~'TN),
Vo Bw = —{V 4 (V. Ve, — Vo, o))
= —{V, V2 (Ve,w) +RN(dF(§) dF(e;))Ve,w

0
ot

= (7, (V.7 g+ RYAF(D). dF(e)))

~ Vv, eJVaw—RN(dF( ),dF (Ve e;))w}

0
50 dF ()T

~ Vv, e,Vauw — RN(dF (=

+ RN (dF (=
)

o1 )s dF(v€jej)) w}.

Repeating this and using
Vo 7(F)limo = —AV + RY (V. d¢(e;))de(e;),

we have the lemma.
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Lemma 2.3 ([I0]).

——s—1

Vo Ve N r(F)limo = = Ve &'V + Ve, &7 RV (V. di(e;) dos(e;)
iv T RN (Vb)) B ()
— RN (V,dg(e)))Ve, 57 1(0)
+ RN (Vodg(Ve,e) B r(e)}
+ RNV, dg(en)) "7 (9).

——s—1

VoV, AT (F) :Veﬁ%ZS’IT(F) + RN(dF(g ), dF(e,) A" 7 (F).

Using Lemma 2.2] we have the lemma.

Lemma 2.4 ([10]).
/M<v€j RN(V7 d¢(6j))V1 - RN(Va d(b(vfij ej))Vl’ V2>U9
__ / (RN (V, do(e;))Vi, Ve, Va)ug,
M

Vi,Va € T(¢~'TN).
Proof.
div((RY (V. dg(e:)V1, Va)er) =(V eJ<RN(V,d¢<ei>)V1,vz>ei,ej>
((Ve, RN(V, do(e:)) Vi, Va)e
< NV d(e:))Vi, Ve, Va)es
+ (RN(V, do(ei)) V1, Va)Ve, ei,€5).

By Green’s theorem, we have

0= [ div(RN(V.do(e) Vi, Valerv,
M

- / (Ve, RN (V, do(eq)Vi, Va)) i
M
+ (RN(V, d¢(e:))Vi, Ve, Va)di
<RN(V d¢( ))VlaV2><Vejeuej>U
Here,

(RN(V, dg(e;))Vi, Va)(Ve, €5, €5) <RN<Vd¢<<VeJeueg> ))Vi, Va)
<RN(‘/ad¢( e, € Z))Vlv‘/Q>'

Therefore, we have the lemma.
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Theorem 2.5 ([10]). Let k =2s (s =1,2,---),

d
 Eao)=— [ (n(0)V),

dt|,_
where
Ta(0) =B 7(6) = RN (B 7(6), dd(ej))ed(e;)
- S{RN (Ve, A7 720(0), 77 7 (0)dos(e;)
— RY(B T (9), Y, BT T (9)déles) )
where N = 0.
Proof.

Ess(9) = /M<(d*d) - (d"d) ¢, (d"d) - - (d"d) §)vg

S S

= [ @0 5 o,

By using Lemma [Z.2] and Lemma [Z.4] we calculate %Egs((bt)l

d

EEQS (¢t) |t:0
——s—1

:/ (Vo B (), B (F) oy leco
M

- / (=BV + R RY(V, de(e;))do ;)
M

s—1
+ ATV, RY (V. do(e, )BT ()
=1
— RV (V.do(e)))V, B 7 (9)
(5) + RN (V,dg(Ve,e)) D" r(6), 57 ' 7(¢)})
= [ =B o,
M

+ / (V, RY (B2 727(9), do(e;))db(e;)) v,
M

= N . —s—l—lT
+§/M< Ve, RN (V,dg(e;) 2" ' 7(¢)
— RN(V,dg(e;))Vo, A7 (9)

+ RN (V,dp(Ve,e)) D 17 (6), B 7 (6))vg
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- / (V, =D (),
M
+ / (V. RN (B 20(9), dle;))db(e;))vg
M

S N i —571717_ V. A T v
D3 /M<R (Vo d(e)) B 7(0), 0, B 20 (0)) v,

—1-1 ——s+1—-2

+ /M<—RN<v,do><ej>>vejZS (9). 5
- / V,—B% L r(9)e,
M
+ /N AVRY(E T 0),dole e )y
= N/ —~s+l-2 ——s—1l—1 ) v
32t /M<R (T, 5 720(8), B 2(0)dbles), Vg

1

- /M<RN<ZS”‘2T<¢>7Vejzs‘“ 7(6)dd(e;), V)vg}

= [ V=BT )+ RY (B 0).doe)dotey)

s—1
+ S RN (Ve A (0), B 7(0)do(e;)
1=1
— RN (9), Ve, BT T () dle) v,
Therefore, we have the theorem. O

Theorem 2.6 ([10]). Let k=2s+1 (s=0,1,2,---),

d Easi1(de) = —/ (T2s41(0), V),

M

dt|,_q

where
—2s

Tosi1(8) =0 "7(g) — RN (A" 1(6), ddle;))de(e;)

s—1

T (9))dé(es)
—RNA T (9), Y, 8T

——s—1 ——s—1

—RN(V, A" 1(¢),

s—1
~SURYV, AT T (9). B
=1

7(¢))dé(e;)}
7(¢))do(e;),
where Zﬂ =0.

Proof. When s = 0, it is a well-known harmonic map. Hence we consider the case
of s=1,2,---:

Epr1(6) = / (d(d*d) - (d*d) g d (d*d) - (d"d) §)v,

M

S

-1

- / (Ve B 7 (8), o B (00
M
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By using Lemma [Z.3] and Lemma [Z.4] we calculate %E25+1(¢t):

Ezs+1(¢t)|t 0

s—1
M ot
- / (—Ve, BV + V., N RN (V, do(e;))de(e;)

M

s—1
+ N VLA TV RN (Vdg(e) BT (9)
=1

— RN(V,do(e;))Ve, 5 ' 7(9)

+ RN (V,d¢(Ve,e)) A 7(9)
+ RN (V,dg(e) D" ()}, Ve, 87 7(9))vg.

Here, using

/(ﬁeiwl,veiu@)vg:/ <Zw1,w2>vg,
M M

where wy,ws € (¢ 1T N), we have

d
thzs+1(¢t)\t 0

= /M<v, iy 7(9))vg
/ (BN (V. dd(e;))dd(es), B2 (6))vy

©) +Z / (—V., RN (V. d(e)) B r(9)
— RV(V,dé(e)))Ve, Z““mz»
+ RN (V,dp(Ve,e) B (), B (@),
+/M<RN(V7d¢(ei))A (), Ve, 5" 1 (0,
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- /M<v, “Br(9) + RY (B2 0(6), dle;))dd(es)

——s—1—1

ES RN (T, 5 (), 5 () déles)
=1

~RN(@ET(9),Ve, B T 1(0))do(e)}
+ RN (Ve, B 7(0), 57 7(6))dos(e;)) vg.
Therefore, we have the theorem. ([

By Theorems and [2.6] we have the following [10].

Corollary 2.7. A harmonic map is always a k-harmonic map (k=1,2,---).

3. THE RELATIONSHIP BETWEEN BIHARMONIC AND k-HARMONIC

In [7], the author showed that s-harmonic is not always k-harmonic (s < k).
Especially, biharmonic is not always k-harmonic (k > 3). Therefore, we study the
relationship between biharmonic and k-harmonic (2 < k). We obtain some results.

Proposition 3.1. Let ¢ : (M,g) — (N,h) be an isometric immersion into a
Riemannian manifold with constant sectional curvature K. Then ¢ is biharmonic

if and only if
AT(¢) = Km7(¢).

Proof. ¢ is biharmonic if and only if
0 =A7(¢) — R (7(6), dg(e:))de(e:)

=A71(9) — K{(do(ei), dp(ei))T(¢) — (dp(ei), 7(¢))do(e:) }
=AT(¢) — Km7(9).

Thus, we have the proposition. ([l

Lemma 3.2. Let ¢ : (M,g) — (N, h) be an isometric immersion into a Riemann-
ian manifold with constant sectional curvature K. If ¢ is biharmonic,

—l
(7) (do(ei), A7(¢)) =0 (I=0,1,---).
Proof. By using Proposition [3I] we have

(dd(e:), B 7(9)) = mEK (d(e;), B 7(6))

= (mK)"d(e;), 7(¢))
= 0. O

Lemma 3.3. Let ¢: (M,g) — (N, h) be an isometric immersion into a Riemann-
ian manifold with constant sectional curvature K. If ¢ is biharmonic,

(8) (dp(es), Ve, B 7(8)) = —(mK)!||7(9)][>
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Proof. By using Proposition [3I] we have

=(mK) de(e;), Ve, m(¢))
=— (mEK)"|r(¢)|I*,

where, in the last equation, we only notice that

0= ei(dg(e:), 7(9)) = (Ve,dd(es), 7(9)) + (do(ei), Ve, 7(9)). O

Using these lemmas, we show the following two theorems.
Theorem 3.4. Let ¢ : (M,g) — (N,h) be a biharmonic isometric immersion
into a Riemannian manifold with constant sectional curvature K (# 0). If ¢ is

2s-harmonic (s > 2), ¢ is harmonic.

Proof. By Theorem 23] ¢ is 2s-harmonic if and only if

AT (g) = K{mA" " r(9) — (ddles), B r(¢))ddle;)}
~STHEB T T (9), d(e) Ve, BT T (9)
=1
— (d(e;), Ve, B (o)) AT T (0)
B <vejzs_l_17'(¢),d¢(€j)>zs+l_27(¢)
+ (dle;), BT (@) VL, AT T (¢)} = 0.

By Proposition B.J] and Lemmas and [3.3] we have
0= (mEK)*~'7(8) — (mEK)*~'7(9)
s—1
— Y AR ((mE)**?|r()|I’T(0) + (mK)>*~*||7(¢)[*7(¢))}
1=1

= —2(s — DK (mK)?~|[7(9)]*7(0).

Thus, we have the theorem. ([

Theorem 3.5. Let ¢ : (M,g9) — (N,h) be a biharmonic isometric immersion
into a Riemannian manifold with constant sectional curvature K (# 0). If ¢ is
(2s + 1)-harmonic (s > 1), ¢ is harmonic.
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Proof. By Theorem 28], ¢ is (2s + 1)-harmonic if and only if
1 251

ZQST( ) — K{mA""'7(¢) — (de(e;), B 7(8))d(e;)}

— s+l 1

—Z{K T (8),dee)) Ve, BT T 1 (0)

— K{(E"'7(4),dd(e)) Ve, B

— (do(e), Ve, 57 T(e))

By Proposition Bl and Lemmas 3.2 and B3] we have
0= (mK)*7(¢) — (mK)*1(¢)

- i{K ((mE )72 (@)[[Pr(6) + (mK)>*72[|7(¢)[[P7(¢))}

=1
— K(mK)*~?||r(¢)||*r(¢)

= —(2s = VK (mK)>?||7(¢) ().
Thus, we have the theorem. O

s—1

4. 3-HARMONIC MAPS INTO NON-POSITIVE CURVATURE

In this section we show the non-existence theorem of 3-harmonic maps. G. Y.
Jiang showed the following.

Theorem 4.1 ([0]). Assume that M is compact and N is a non-positive curvature,
i.e., a Riemannian curvature of N, K < 0. Then every biharmonic map ¢ : M — N
is harmonic.

We consider this theorem for 3-harmonic maps. First, we recall the following
theorem.

Theorem 4.2 ([7]). Let | = 1,2,---. If ZZT(gé) = 0 or Veiz(l71)7(¢) =0
(i = 1,2,---,m), then ¢ : M — N from a compact Riemannian manifold into
a Riemannian manifold is a harmonic map.

Using this theorem, we obtain the next result.

Proposition 4.3. Let ¢ : (M, g) — (N, h) be an isometric immersion from a com-
pact Riemannian manifold into a Riemannian manifold with non-positive constant
sectional curvature K < 0. Then 3-harmonic is harmonic.

Proof. Indeed, by computing the Laplacian of the 4-energy density e4(¢), we have
Bea(9) =V Br()I? = (B77(6), Br(9))
=|IVe, A7()II?
— (RN (A7(0), db(ei))do(e:), AT(9))
- <RN(v6iT(¢)7T(¢)) (b( ) Z

(9)



k-HARMONIC MAPS INTO A RIEMANNIAN MANIFOLD 1845

due to the fact that ¢ is 3-harmonic. Here, we consider the right hand side of ([@):
(RN (Ve, (), 7(9))de(ei), AT(9)) = (K{{(), d(e:)) Ve, ()
—{do(ei), Ve, 7(8)7(9)}, AT (9))
= KA{|[7(0)|I*(7(¢), Or(e))}-

Using Green’s theorem, we have

O:/ Ney(dp / Ve, AT(9)|[?
M

(10) — (RN (Br(9), dole:))dd(er), 7 (9))
— K|[7(9)IPIIVe, 7(9)]1*vg
Then both terms of (IT]) are non-negative, so we have
0= Ae(o) =[[Ve,A1(9)]]7

(11) — (RN(D7(9), do(er))dd(ei), AT())

= KlIr()|PIIVe,T()|I*.
Especially, we have

Ve, AT(¢) = 0.

Using Theorem (2] we obtain the proposition. (Il

5. k-HARMONIC CURVES INTO A EUCLIDEAN SPACE

In this section, we consider k-harmonic curves into a FEuclidean space E™ and
we give a conjecture. B. Y. Chen [I] defined biharmonic submanifolds of Euclidean
spaces.

Definition 5.1 ([I]). Let « : M — E™ be an isometric immersion into a Euclidean
space. = : M — [E" is called a biharmonic submanifold if

(12) A%z =0, that is, AH =0,

where H = —% A x is the mean curvature vector of the isometric immersion x and
A is the Laplacian of M.

B. Y. Chen and S. Ishikawa [2] proved that any biharmonic surface in E? is
minimal. Chen [I] also gave a conjecture.

Conjecture 5.2 ([1]). The only biharmonic submanifolds in Euclidean spaces are
the minimal ones.

However, the

There are several results for this conjecture ([5], [3] and [g], etc.).
= 1) and obtained

conjecture is still open. 1. Dimitric [3] considered a curve case (m
the following theorem.

Theorem 5.3 ([3]). Let x : C — E™ be a smooth curve parametrized by arc length,
with the mean curvature vector H satisfying AH = 0. Then the curve is a straight
line, i.e., totally geodesic in E™.

We generalize this theorem. First, we define k-harmonic submanifolds in Eu-
clidean spaces.
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Definition 5.4. Let x : M — E" be an isometric immersion into a Euclidean
space. z : M — E" is called a k-harmonic submanifold if

(13) Akg =0, that is, AMTH =0 (k=1,2,---),

where H = —% A x is the mean curvature vector of the isometric immersion x and
A is the Laplacian of M.

We also consider a curve case (m = 1) and obtain the following theorem.

Theorem 5.5. Let x : C — E™ be a smooth curve parametrized by arc length, with
the mean curvature vector H satisfying A¥YH =0 (k= 1,2,---). Then the curve
s a straight line, i.e., totally geodesic in E™.

Proof. We have 0 = AF~1H = — AF gz = (—1)FHL j;:k:z:, k=1,2,---. Hence x has
to be a (2k — 1)-th power polynomial in s,

1 2k—1 1 2k—2
T = ——02k_18 + a2k —28 + .-+ ai1s+ ap,
o — 1 %2k1 % — 9 12k—2 1 0
where a; (i =0,1,---,2k—1) are constant vectors. Since s is the natural parameter
we have
2k—1 2k—1

dr dx i—1 i-1
1:(£,%> = (; ;8" ", ; a;s" )

=lagk—_128" ™ + 2(agy_1, agk_2)s™ 75 + {2(ag_1, azk_3) + |agk_o|*}s*FC

+ {2<a1, a3> + |a2|2}82 + 2<a1, a2>s + |(11|2.
On the right hand side we have a polynomial in s, so we must have
Agk—1 = Agk—2 = (2k—3 = G2k—4 = -+ =ag = az =0, |a1|2 =1

In other words, z(s) = a1s+ag with |a;|?> = 1, and therefore the curve is a straight
line. g

Conjecture 5.6. The only k-harmonic submanifolds in FEuclidean spaces are the
minimal ones.

Especially, when k = 2, it is the B. Y. Chen conjecture.
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