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ARITHMETIC OF DIVISION FIELDS

ARMAND BRUMER AND KENNETH KRAMER

(Communicated by Matthew A. Papanikolas)

Abstract. We study the arithmetic of division fields of semistable abelian
varieties A/Q. The Galois group of Q(A[2])/Q is analyzed when the conductor
of A is odd and squarefree. The irreducible semistable mod 2 representations
of small conductor are determined under GRH. These results are used in our
paper Paramodular abelian varieties of odd conductor.

1. Introduction

This paper contains results needed in [4] and of independent interest. We write
S for a set of primes, NS for their product and � for a prime not in S. If F/Q is
Galois, Iv(F/Q) denotes the inertia group at a place v of F .

Definition 1.1 ([3]). The Galois extension F/Q is (�,NS)-controlled if

i) F/Q is unramified outside S ∪ {�,∞};
ii) Iv(F/Q) = 〈σv〉 is cyclic of order � for all ramified v not over �;
iii) Iλ(F/Q)u = 1 for all u > 1/(�− 1) and λ over �, using the upper ramification

numbering as in §5.

We denote by V a finite dimensional vector space over the finite field F of char-
acteristic � with q = |F|. Additional structure on V , such as a symplectic pairing
or Galois action, is often imposed.

Definition 1.2. Let V be an F[GQ]-module and F = Q(V ). The set S of rational
primes p �= � ramified in F/Q comprises the bad primes of V . Declare V to be
semistable if F is (�,NS)-controlled and (σv − 1)2(V ) = 0 for all v lying over the
primes of S.

Throughout, A/Q is a semistable abelian variety with good reduction at � and
EndQA = o is the ring of integers in a totally real number field. If l is a prime over
� in o and o/l = F, then V = A[l] is semistable [9, 7]. The conductor of A has the
form NA = Nd with d = [o :Z]. Since inertia over each bad prime p is tame,

(1.3) ordp(N) = dimF V/V
I = dimF (σv − 1)V.

In §2, we use known results on symplectic representations generated by transvec-
tions to describe Gal(Q(W )/Q) for constituents W of V with squarefree conductor,
assuming l lies over 2.
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A stem field for a Galois extension F/k is an intermediate field K whose Galois
closure over k is F . If G = Gal(F/k) acts faithfully and transitively on a set X,
the fixed field of the stabilizer Gx of any x in X is a stem field. A formula for
the discriminant dK/k is given in §3 and applied to semistable Galois modules. By
relating number-theoretic properties ofK and F , certain computations may become
feasible, since K has a smaller degree and discriminant than F.

Suppose E/Q� is a Galois extension of �-adic fields satisfying Definition 1.1(iii).
In §5, we find conditions on the ray class conductor of an abelian extension L/E
so that Definition 1.1(iii) also holds for the Galois closure of L/Q�. The maximal
(2, N)-controlled extension for all odd N ≤ 79 and for N =97 is determined in §6,
thanks to §5 and Odlyzko’s GRH bounds. We also construct a (2, 127)-controlled ex-
tension of degree 161280 with root discriminant just above the asymptotic Odlyzko
bound, but finiteness of a maximal one is unknown to us.

A finite flat group scheme V over Z� admits a filtration 0 ⊆ Vm ⊆ V0 ⊆ V with
connected component V0, étale quotient Vet = V/V0, multiplicative subscheme Vm

and biconnected subquotient Vb = V0/Vm. Let λ be a place over � in F = Q(V )
and Dλ be its decomposition group. We denote the corresponding F[Dλ]-modules
of Fλ-valued points by V , V et, V m and V b, respectively.

Definition 1.4 ([4]). A/Q is o-paramodular if dimA = 2d, with d = [o :Z].

Let A be o-paramodular, with o/l 	 F2. When A[l] is irreducible, estimates for
the discriminant of a stem field of Q(A[l]) are obtained in §4. The reducible case
leads to ray class fields whose conductors are controlled by the results of §5. This
information depends on the structure of A[l] as a group scheme and is used in [4].

2. Mod 2 representations generated by transvections

A transvection on V is an automorphism of the form τ (x) = x + ψ(x) z, with
ψ : V → F a non-zero linear form and z �= 0 in kerψ. Assume V admits a non-
degenerate alternating pairing [ , ] : V ×V → F preserved by τ and let dimV = 2n.
Then τ (x) = x+ a [z, x]z for some z ∈ V and a ∈ F×. When a is a square in F, we
may take a = 1. For x and z in V , define τ[z] by

(2.1) τ[z](x) = x+ [z, x]z.

Assume that � = 2 for the rest of this section, unless otherwise noted.
A quadratic form θ on the symplectic space V is called a theta characteristic if

θ(x+y) = θ(x)+θ(y)+[x, y] for all x, y in V . Theta characteristics form a principal
homogeneous space over V , with (θ+ a)(x) = θ(x)+ [a, x]2 for a in V . We identify
a with [ a,−] under the Galois isomorphism V 	 HomF(V,F). Elements σ in Sp(V )
act by σ(θ)(x) = θ(σ(x)). Then σ(θ + a) = σ(θ) + σ(a) and

(2.2) τ[z](θ) = θ +
√
1 + θ(z) z.

Fix a symplectic basis {e1, . . . , e2n} for V with [ei, ej ] = 1 if |i − j| = n and 0
otherwise. Let ℘(x) = x2−x be the Artin-Schreier function. Depending on whether
or not the Arf invariant Arf(θ) =

∑
i θ(ei)θ(ei+n) vanishes in F/℘(F), we say θ is

even or odd and write O±
2n for the corresponding orthogonal group. Further, Sp(V )

acts transitively on the sets Θ±
2n of even and odd characteristics and

(2.3) |Θ±
2n| =

1

2
qn(qn ± 1).
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Denote the symmetric, alternating, dihedral and cyclic groups by Sn, An, Dn

and Cn respectively.

Proposition 2.4 ([17]). If F = F2 and G � SL(V) is an irreducible subgroup
generated by transvections, then dimV = 2n with n ≥ 2 and G is O±

2n(F2), Sp2n(F2)
or Sm with 2n+1 ≤ m ≤ 2n+2. Also, G has a trivial center and is self-normalizing
in SL(V).

Proposition 2.5. Let V be a symplectic space of dimension 2n. An irreducible
subgroup G of Sp(V ) generated by transvections is one of the following, with F′ ⊆ F:

i) dihedral, Dm with m dividing one of |F| ± 1 and n = 1;
ii) orthogonal, O±

2n(F
′) for n ≥ 2;

iii) symplectic, Sp2n(F
′);

iv) symmetric, Sm for n ≥ 2 and 2n+ 1 ≤ m ≤ 2n+ 2.

Moreover, G has trivial center and is self-normalizing in Sp(V ).

Proof. If V is imprimitive, then V is monomial [22], say V = IndGH1
(V1), with

V1 = Fe1 and [G : H1] = dimV = 2n. Arrange that G =
⋃

giH1, with g1 = 1
and Vi = gi(V1) = Fei, and let π : G → S2n by gVi = Vπ(g)i. Since π(G) is
transitive and generated by transpositions, namely the images of the transvections,
π(G) = S2n. For h in H = kerπ, we have hei = χi(h)ei, and so the pairing on V
satisfies [ei, ej ] = [hei, hej ] = χi(h)χj(h)[ei, ej ]. Hence [ei, ej ] = 0 or χi(h)χj(h) =
1. Because the pairing is perfect and π(G) is doubly transitive, we must have
[ei, ej ] �= 0 and χi(h)χj(h) = 1 for all i �= j. If n ≥ 2, then χi(H) = 1 for all i,
H = 1 and π is an isomorphism. The stabilizer H1 of V1 is isomorphic to S2n−1,
and so the character χ1 : H1 → F× is trivial. Since

∑
gi(e1) is a non-trivial fixed

point, V is reducible. Now combine [11, Ch. II, §8.27] and [15, 16] to get our list.
If g in Sp2n(F) normalizes G and σ is in Gal(F/F′), then gσg−1 centralizes G. Our

representations are absolutely irreducible and the center of Sp2n(F) is trivial, so g
is in Sp2n(F

′). To verify that the center is trivial and G = Sm is self-normalizing in
Sp2n(F2) when m �= 6, use the fact that all automorphisms are inner and absolute
irreducibility. Note that S6 	 Sp4(F2). The dihedral case is easily checked. See [6]
for the other cases. �
Remark 2.6. As to (iv) above, note that Sm acts by permutation on

Y = {(a1, ..., am) ∈ Fm
2 | a1 + · · ·+ am = 0}

with pairing [(ai), (bi)] =
∑

aibi. Let V = Y/〈(1, . . . , 1)〉 or V = Y according as
m is even or odd. Then V is irreducible and transpositions in Sm correspond to
transvections on V . This action of Sm and that of Galois on J [2] for a hyperelliptic
Jacobian are compatible.

Lemma 2.7. Let V be an irreducible F[G]-module and let P be the subgroup of
G generated by transvections. If P is not trivial, then V|P is the direct sum of r
irreducible F[P ]-modules Wi and P = Q1 · · ·Qr is a direct product, with Qi = 〈σ ∈
P |σ|Wi

is a transvection and σ|Wj
= 1 for all j �= i〉. If V is symplectic, then the Wi

are symplectic and the sum is orthogonal.

Proof. Since P is normal, Clifford’s theorem applies. Let W1 be an irreducible sub-
module of V|P , H = {h ∈ G |h(W1) 	 W1 as P -module} and X =

∑
h∈H h(W1).

Then V = indGH(X) and X|P 	 eW1 is isotypic. If G =
⋃r

1 giH is a coset decom-

position with g1=1, then V|P 	
⊕r

1 eWi with Wi=gi(W1). For any transvection τ ,
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we have 1 = dim (τ − 1)(V ) = e
∑r

1 dim (τ − 1)(Wi). Thus e = 1 and τ is in Qi for

a unique index i. Moreover, Qi = giQ1g
−1
i is normal in P and P = Q1 · · ·Qr is a

direct product.
Suppose V is symplectic and τ is a transvection in Qi. Then (τ − 1)Wi = 〈z〉

with z in Wi ∩W⊥
j for all j �= i, but not in W⊥

i . Irreducibility of Wi implies that

Wi ⊆ W⊥
j and Wi ∩W⊥

i = 0. Hence Wi is symplectic. �

Proposition 2.8. Let V be an irreducible symplectic F[GQ]-module with squarefree
conductor N and let F = Q(V ). Let P be the subgroup of G = Gal(F/Q) generated
by transvections. If P = G, then G is as in Proposition 2.5.

Otherwise, V = indGPW and G 	 Q �C2, where Q is in the list in Proposition 2.5.
Moreover, FP = Q(i) and N = nn in Z[i], where n generates the conductor ideal of
W as an F[GQ(i)]-module.

Proof. Since ordpv
(N) = 1, any generator σv of Iv(F/Q) is a transvection. Propo-

sition 6.2 shows that the fixed field FP = Q(i). The restriction V|P is reducible
by Lemma 2.5 and so V is induced. Hence H = P 	 Q1 × Q2 and G 	 Q1 � C2

is a wreath product, thanks to Lemma 2.7. The conductor formula for an induced
module gives N = nn, where n ∈ Z[i] is the odd part of the Artin conductor of W ,
since Q(i) is unramified at odd places. �

Remark 2.9. In Proposition 2.8, if we take F = F2 but do not assume V symplectic,
the conclusions hold, with “Proposition 2.5” replaced by “Proposition 2.4”.

Remark 2.10. The conjugacy class of any involution σ in Sp(V ) has invariants
t = rank (σ − 1) and δ, with δ = 0 if [v, (σ − 1)v] = 0 for all v in V and δ = 1
otherwise. If t = n and σ is in O−

2n(F), then δ = 1. If t is odd, then δ = 1.

For the last result in this section, � = 3.

Proposition 2.11. Let V be an irreducible symplectic F3[GQ]-module with square-
free conductor N . Set 2n = dimF V, F = Q(V ) and G = Gal(F/Q). Then

i) G 	 GSp2n(F3) or
ii) n is even, G 	 Spn(F3) � C2 and N = nn in Z[μ3].

Proof. An irreducible proper subgroup of SL2n(F3) generated by transvections is
isomorphic to Sp2n(F3); cf. [16]. The pairing on V implies that F contains μ3.
The subgroup P of G generated by all transvections fixes K = Q(μ3) and FP

is unramified outside 3∞, so FP = K by Proposition 6.2. If V|P is irreducible,
then (i) holds. If V|P , is reducible, the arguments in the proofs of Lemma 2.7
and Proposition 2.8 give (ii), with n a generator for the conductor ideal of the
F[GQ(μ3)

]-module W . �

3. Discriminants of stem fields

Let F/k be a Galois extension of number fields with group G. Let D be the
decomposition group of a fixed prime πF of F and Im be the mth ramification
group (see §5), with I = I0 the inertia group. For intermediate fields L, set
πL = πF ∩ L.
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Theorem 3.1. Let G act transitively on X. If K is the fixed field of Gx and Im\X
is the set of Im-orbits of X, then

ordπk
(dK/k) =

∑
m≥0

1

[I : Im]
(|X| − |Im\X|) .

Proof. If H = Gx and I is any subgroup of G, then HgI ↔ Ig−1x is a bijection
between the set of double cosets H\G/I and the set of orbits I\X. Thus,

(3.2)
∑

HgI ∈H\G/I

[I : (I ∩Hg)] = [G : H],

where Hg = g−1Hg. Suppose further that J is a normal subgroup of I so that
(I ∩Hg)J = I ∩HgJ is a subgroup of I. For each g ∈ G, we have

(3.3) HgI =
⊔

HgziJ,

where zi runs over a set of representatives for the right cosets I/(I ∩ Hg)J . The
isomorphism (I ∩Hg)/(J ∩Hg) 	 (I ∩Hg)J/J implies that

∑
HgI ∈H\G/I

|J ∩Hg|
|I ∩Hg| =

∑
HgJ ∈H\G/J

1

[I : (I ∩Hg)J ]

|J ∩Hg|
|I ∩Hg|

=
∑

HgJ ∈H\G/J

1

[I : J ]
=

|H\G/J |
[I :J ]

.(3.4)

The ramification groups for πF inside H are given by Im ∩H, and the different
ideal DF/k satisfies ordπF

(DF/k) =
∑∞

m=0(|Im| − 1). By transitivity of differents,

ordπK
(DK/k) =

1

|I ∩H|ordπF
(DK/k)

=
1

|I ∩H|
(
ordπF

(DF/k)− ordπF
(DF/K)

)

=
∑
m≥0

|Im| − |Im ∩H|
|I ∩H| .(3.5)

Each prime of K over πk has the form g(πF ) ∩ K, corresponding to a unique
double coset HgD in H\G/D. Since the decomposition and inertia groups of g(πF )
inside G are gDg−1 and gIg−1, the ramification and residue degrees of g(πF ) ∩K
over πk are given by

(3.6) e(HgD) = [I : (I ∩Hg)] and f(HgD) = [D : (D ∩Hg)I].

By conjugation, (3.5) implies that the exponent of g(πF ) ∩K in DK/k is

(3.7) x(HgD) =
∑
m≥0

|Im| − |Im ∩Hg|
|I ∩Hg| .

Moreover,

(3.8) ordπk
(dK/k) =

∑
HgD∈H\G/D

x(HgD)f(HgD).
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In view of (3.3) and (3.6), HgD is the disjoint union of f(HgD) distinct elements
of H\G/I. By (3.8) and (3.7), we now have

ordπk
(dK/k) =

∑
HgI ∈H\G/I

=
∑
m≥0

∑
HgI ∈H\G/I

|Im| − |Im ∩Hg|
|I ∩Hg| .

But (3.2) implies that

∑
HgI ∈H\G/I

|Im|
|I ∩Hg| =

∑
HgI ∈H\G/I

[I : (I ∩Hg)]

[I :Im]
=

[G : H]

[I :Im]
=

[K : k]

[I :Im]
,

while (3.4) with J = Im gives

∑
HgI ∈H\G/I

|Im ∩Hg|
|I ∩Hg| =

|H\G/Im|
[I :Im]

.

Substituting the last two identities in the previous double sum proves our claim. �
Corollary 3.9. If πk is tame in F , with ramification degree |I(F/k)| = � prime,
then ordπk

(dK/k) = (1− �−1)(|X| − |XI |).

Proof. Theorem 3.1 implies the claim, since I1 is trivial and there are |XI | orbits
of size 1, while the others have size �. �

We now apply these results to semistable GQ-modules V of conductor N . We
write F = Q(V ) and G = Gal(F/Q).

Corollary 3.10. Let t = ordp(N) ≥ 1 and s = dimF V . If G acts transitively on
X = V − {0} and K = FGx , then ordp(dK/Q) = (1− �−1) (qs − qs−t) .

Proof. Our claim follows from Corollary 3.9, since dimV I = s− t by (1.3). �

Now assume that � = 2 and V is symplectic of dimension 2n. Let K be the fixed
field of Gx, where G acts transitively on X, as below:

i) G 	 Sm = Sym(X) and V is the representation in Remark 2.6.
ii) X = Θ−

2n or X = Θ−
2n − {θ0}, with θ0 fixed by G.

Proposition 3.11. Let Iv = 〈σ〉 ⊆ G be an inertia group at v over p |N .

i) If G 	 Sm and σ is the product of s disjoint transpositions, then ordp(dK/Q) =
s and ordp(N) = min(s, n).

ii) If G 	 Sp2n(F) or O±
2n(F), then ordp(dK/Q) =

1
4q

n(qn − qn−t − δ), with δ as
in Remark 2.10.

Proof. i) Since |XIv | = m − 2s, we have ordp(dK/Q) = s by Corollary 3.9 and, by
(1.3), ordp(N) = dimF (σ − 1)(V ) = min(s, n).

ii) We give a proof for t = 1. Thus σ is a transvection and we choose a sym-
plectic basis for V as in §2, such that σ = τ[en]. For the even theta characteristic

θ(x1, . . . , x2n) =
∑n

j=1 xjxn+j , by (2.1) and (2.2), we have

σ(θ + a) = θ + a+ (1 + [a, en]) en.

Thus, σ fixes θ + a if and only if [a, en] = 1. Let V ′ = (span{en, e2n})⊥ and

θ′(y) =
∑n−1

j=1 yjyn+j . Assume [a, en] = 1 and write a = y + anen + e2n with y in

V ′. In F/℘(F), we have

Arf(θ + a) = Arf(θ) + θ(a) = an + θ′(y).
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Hence θ + a is in Θ−
2n precisely when one of the following conditions holds:

(a) an ∈ ℘(F) and θ′(y) �∈ ℘(F) or (b) an �∈ ℘(F) and θ′(y) ∈ ℘(F).

If n = 1, only (b) applies, yielding 1
2q choices of a. If n ≥ 2, y is in ℘(F) exactly

when θ′ + y is in Θ+
2n−2. Hence there are 1

2q |Θ
−
2n−2| choices of a in case (a) and

1
2q |Θ

+
2n−2| choices in case (b). But |Θ+

2n−2| + |Θ−
2n−2| = |V ′| = q2n−2, and so

|(Θ−
2n)

Iv | = 1
2q

2n−1. �
Definition 3.12. A semistable Galois module V is ordinary at 2 if it is symplectic
and a2 V = 0, where a is the augmentation ideal in F[Iλ] for any λ over 2 in F .

Let V be the Galois module of a finite flat group scheme V over Z2. Then Iλ
acts trivially on V m and V et. If the biconnected subquotient Vb is trivial, then
(σ − 1)(σ′ − 1)(V ) = 0 for all σ, σ′ in Iλ, whence V is ordinary. If Vb �= 0, then Iλ
is not even a 2-group.

We next treat the power of 2 in dK/Q when V is ordinary.

Lemma 3.13. We have aV ⊆ Z ⊆ V Iλ for some maximal isotropic subspace Z of
V . If H = Gθ stabilizes an odd theta characteristic θ, then |Iλ/(Iλ ∩H)| ≤ 1

2q
n.

Proof. Set I = Iλ. Since a2 V = 0 and I ⊆ Sp(V ), we find aV ⊆ V I = (aV )⊥.
Thus, aV is contained in a maximal isotropic space Z and, by duality, Z ⊆ V I .

If Γ is the subgroup of Sp2n(F) fixing both Z and V/Z pointwise, then we have
(g− 1)(g′ − 1)(V ) = 0 for all g, g′ in Γ. Hence ψ(g) = (g − 1)θ defines a homomor-
phism Γ → V . In the notation of (2.1), Γ is generated by the transvections τ[z] with

z in Z. Since we may identify (τ[z] − 1)θ with
√
1 + θ(z) z, the homomorphism ψ

takes values in Z. We next verify the exactness of the sequence

(3.14) 0 → Γ ∩H → Γ
ψ→ Z

θ→ F/℘F → 0.

Since Z is isotropic, θ is linear on Z and θ is surjective because it is odd. Clearly
θ(ψ(τ[z])) is in ℘F. Conversely, if θ(z) = a2 + a and y = (1/

√
a)z, then ψ(τ[y]) = z.

This proves exactness around Z, and the rest is clear.
Finally, I ⊆ Γ, and therefore |I/(I ∩H)| ≤ |Γ/(Γ ∩H)| = 1

2q
n. �

Proposition 3.15. If V is ordinary at 2 and G is transitive on Θ−
2n or Θ−

2n−{θ0},
then ord2(dK/Q) ≤ (qn − 2)(qn − 1− ε), where ε = 0 or 1, respectively.

Proof. Since I is a 2-group, I0 = I1. The definition of the upper numbering (see
§5) and the bound on wild ramification (Definition 1.1(iii)) imply that I2 = 1. By
Theorem 3.1, ord2(dK/Q) = 2(|X| − |I\X|).

By Lemma 3.13, each I-orbit of X has at most 1
2q

n elements and there are at

least 2|Θ−
2n|/qn = qn − 1 orbits when ε = 0, proving the claim.

If ε = 1, I fixes θ0. The theta characteristic θ0 + z is odd exactly if θ0(z) is in
℘F. By (3.14), there are 1

2q
n such z ∈ Z, giving at least 1

2q
n − 1 orbits of size 1 for

I acting on X. The number of orbits not accounted for is at least

|X| − ( 12q
n − 1)

1
2q

n
= qn − 2,

and so |I\X| ≥ 1
2q

n − 1 + (qn − 2) = 3
2q

n − 3. Hence our claim. �
Proposition 3.16. If V is ordinary and G is a transitive subgroup of Sm, then
ord2(dK/Q) ≤ 2�m/2�, unless m = 4 or 8, when ord2(dK/Q) ≤ 3m/2.
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Proof. We find lower bounds for the number of I-orbits and apply Theorem 3.1.
Since there is at least one orbit, our claims hold for m ≤ 4. Assume m ≥ 5 and refer
to the explicit representation (2.6). Let yi,j ∈ Y denote the vector with non-zero
entries only in coordinates i and j. Write y ∈ V for the coset of y ∈ Y when m is
even and y = y otherwise.

Suppose distinct letters i, j lie in the same I-orbit. If we can find a permutation
σ in I such that σ(i) = j and σ(k) = k, then yi,j = (σ − 1)(yi,k) ∈ aV is fixed by
I. It follows that τ (yi,j) = yi,j for all τ in I, and so {i, j} is an I-orbit.

A larger orbit can exist only if m = 2n+ 2 is even and I contains a product of
n+ 1 disjoint transpositions, say

σ = (1, n+ 2)(2, n+ 3) · · · (n+ 1, 2n+ 2).

Treat subscripts modulo 2n+ 2, fix k and consider j �∈ {k, k + n+ 1}. Then
xj := yj,j+n+1 − yk,k+n+1 = (σ − 1)(yj,k) ∈ aV

is fixed by I. If m �= 8, xj has a unique representative xj ∈ Y with exactly 4
non-zero entries, and so τ (xj) = xj for all τ in I. Since

τ (k) ∈
⋂

j �∈{k,k+n+1}
{j, j + n+ 1, k, k + n+ 1} = {k, k + n+ 1},

{k, k+n+1} is an I-orbit and every I-orbit has 2 elements. If m = 8, the I-orbits
have size at most 4, giving the weaker bound. �

4. Stem field discriminant for Q(A[l]) in a special case

In this section, A/Q is o-paramodular with good reduction at 2, l is a prime of
o with residue field F2 and V = A[l] is irreducible. Thus V admits a symplectic
pairing [4, §3]. Let F = Q(V ) and G = Gal(F/Q). The elements of V correspond
to differences θi−θj of the 6 odd theta characteristics, and we view G as a subgroup
of S6, via its action on Θ−. Irreducibility of V implies that G has an orbit Σ ⊆ Θ−

of size 5 or 6. If H = Gθ stabilizes θ in Σ, then K = FH is a stem field for F , with
[K : Q] = |Σ|.

The following local building blocks are used in the next result. Let X be the
irreducible GQ2

-module such that dimF2
X = 2 and Ẽ = Q2(X) = Q2(μ3,

3
√
2).

The exhaustive list [13] of 2-adic fields of low degree, or class field theory, shows

that there is a unique quartic extension M̃/Q2 whose Galois closure L̃ has non-

trivial tame ramification, necessarily of degree 3. Then M̃/Q2 is totally ramified,

ord2(dM̃/Q2
) = 4, L̃ contains Ẽ and Gal(L̃/Q2) 	 S4, with inertia subgroup A4.

Proposition 4.1. ord2(dK/Q) ≤ 4 (resp. 6) if [K : Q] = 5 (resp. 6).

Proof. If V is ordinary at 2, the result follows from Proposition 3.15 or 3.16. Hence
we suppose F has non-trivial tame ramification over 2. Among primes over 2 in K,
choose λ with maximal ramification degree eλ(K) and consider all possibilities:

i) eλ(K) = 5. Then (2)OK = λ5 or λ5λ′, depending on whether K is quintic or
sextic, and ord2(dK/Q) = 4 by tame theory.

ii) eλ(K) = 3. If K is quintic, the worst case occurs when (2)OK = λ3(λ′)2, and
then we have ord2(dK/Q) = ord2(dKλ/Q2

)+ord2(dKλ′/Q2
) = 2+2 = 4. Suppose

K is sextic. If (2)OK = (λλ′)3 or λ3 with residue degree fλ(K) = 2, we have
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ord2(dK/Q) = 4. In the remaining cases, at most one more prime λ′ over 2
ramifies in K, with eλ′(K) = 2, and we conclude as for quintics.

iii) eλ(K) = 4. Then the completion Kλ = M̃ . If [K : Q] = 5, the other prime
over 2 in K is unramified, but if [K : Q] = 6, there may at worst be some λ′

with eλ′(K) = 2. Hence

ord2(dK/Q) ≤
{

4 if [K : Q] = 5,
4 + 2 = 6 if [K : Q] = 6.

iv) eK(λ) = 6, so [K : Q] = 6, (2)OK = λ6 and the inertia group I of λ acts
transitively on Θ−. Since a non-zero fixed point for the action of I on V
corresponds to a pair of theta characteristics preserved by I, contradicting
transitivity, there are none. The tame ramification group I/I1 is a cyclic
subgroup of S6 whose order is odd and a multiple of 3. Hence |I/I1| = 3.

Because I1 is a non-trivial 2-group, normal in its decomposition group D,
the fixed space W = V I1 is a non-zero D-module, properly contained in V .
Viewed as an I/I1-module, W is semisimple. But I/I1 has no non-zero fixed
points on W , as they would be fixed points of I, so dimW = 2 and W 	 X.

Viewed as a finite flat group scheme over Z2, V = A[l] is Cartier self-dual.
The multiplicative component Vm cannot have order 4, since I is not a 2-group,
nor can it have order 2, since I has no non-trivial fixed points. Hence Vm = 0
and V is fully biconnected. There is a subgroup scheme W of V with D-module
W , and V/W is biconnected, so its D-module also is isomorphic to X.

Schoof [20, Prop, 6.4] showed that if V is an extension of X by X as a

D-module, then Q2(V ) is contained in the maximal elementary 2-extension L̃1

of Ẽ with ray class conductor exponent 2. One checks that L̃1 is an unramified
central extension of degree 2 over L̃ and the root discriminant of L̃1/Q2 is 7/6.
Since ord2(dK/Q) is even, we have ord2(dK/Q) ≤ 6, as claimed. �

5. Preserving the Fontaine bound

Let K ′/K be a Galois extension of �-adic fields with Galois group G. Denote
the ring of integers of K ′ by O′ and a prime element by λ′. Set

Gn = {σ ∈ G | ordλ′(σ(x)− x) ≥ n+ 1 for all x ∈ O′},

so G0 is the inertia group and tK′/K = [G0 :G1] is the degree of tame ramification.
If �x� = m, the Herbrand function is given by

(5.1) ϕK′/K(x) =
1

|G0|
( |G1|+ · · ·+ |Gm|+ (x−m)|Gm+1| )

and is continuous and increasing. In the upper numbering used by Serre [21, IV],
Gm = Gn, with m = ϕK′/K(n). In the numbering of [7] or [13], this group is

denoted by G(m+1). Let ψK′/K be the inverse of ϕK′/K .

Notation 5.2. Let c = cK′/K be the maximal integer such that Gc �= 1. We omit

the lower field if K = Q�. Let mK′ = ψK′/Q�
( 1
�−1 ).

Wild ramification in K ′/K is equivalent to cK′/K ≥ 1. If G1 is not abelian, then
cK′/K ≥ 2, since successive quotients in the ramification filtration are elementary
abelian �-groups. By (5.1), mK′ is an integer when (�− 1) divides tK′/Q�

.
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Lemma 5.3. Let E ⊃ F , both Galois over K, G = Gal(E/K) and H = Gal(E/F ).

Then 1 → HψF/K(x) → Gx res−→ Gal(F/K)x → 1 is exact. In addition,

(5.4) mE ≥ tE/FmF and cE/K ≥ tE/F cF/K .

Proof. By compatibility with quotients, res is surjective and its kernel is

Gx ∩H = GψE/K(x) ∩H = HψE/K(x) = HϕE/FψE/K(x) = HψF/K(x),

since ψE/K = ψE/F ψF/K . Thus the sequence is exact.
Equation (5.1) implies that tE/FϕE/F (z) ≤ z, so ψE/F (z) ≥ tE/F z. If x =

ϕF/K(cF/K), then GψE/K(x) = Gx �= 1 by surjectivity of res. Hence

cE/K ≥ ψE/K(x) = ψE/FψF/K(x) = ψE/F (cF/K) ≥ tE/F cF/K ,

and similarly for mE ≥ tE/F mF . �

Definition 5.5. Let F be the Galois closure of K/Q�. We say K is Fontaine if
Gal(F/Q�)

u = 1 for all u > 1
�−1 or, equivalently, cF ≤ mF .

Lemma 5.6. Let E ⊃ F , both Galois over Q�, G=Gal(E/Q�) and H = Gal(E/F ).
Then:

i) If tF/Q�
= �− 1, then mE ≥ tE/F , with equality when G0 is abelian.

ii) Let F be Fontaine, with non-trivial wild ramification. Then 1 ≤ cF ≤ mF .
Assume further that tF/Q�

= �− 1. Then cF = mF = 1 and, if E is Fontaine,
then cE = mE.

Proof. i) Since ϕF/Q�
(1) = 1

�−1 , we have mF = 1, so mE ≥ tE/F by (5.4). If G0

is abelian and tE/Q�
does not divide j, then Gj = Gj+1 by [21, IV, §2]. Thus the

definition gives ϕE/Q�
(tE/F ) =

1
�−1 , whence mE = tE/F .

ii) By Definition 5.5, ϕF/Q�
(cF ) ≤ 1

�−1 = ϕF/Q�
(mF ). Hence cF ≤ mF . If

tF/Q�
= � − 1, then mF = 1, so cF = 1. Surjectivity of res in Lemma 5.3 implies

that G
1

�−1 �= 1. If E is Fontaine, it follows that cE = ψE/Q�
( 1
�−1) = mE . �

Example 5.7. By class field theory or the table of quartics [13], there is a unique
Fontaine S4-extension F/Q2. The ramification subgroups of G = Gal(F/Q2) are
G0 	 A4, G1 	 C2

2 and G2 = 1, so cF = 1, ϕF/Q2
(x) = (4+(x−1))/12 if x ≥ 1 and

mF = 9. Moreover, E = F (i) remains Fontaine, with G = Gal(E/Q2) 	 S4 × C2.
Lemma 5.6(ii) may be used to show that |G0| = 24, |G1| = 8, |G2| = · · · = |G9| = 2,
|G10| = 1 and cE = mE = 9. Alternatively, E has two stem fields of degree 6, and
this determines E uniquely in [13].

Lemma 5.8. Let M/F be abelian, with F/Q� Galois. Then M is Fontaine if and
only if F is Fontaine and the ray class conductor exponent f(M/F ) ≤ �mF �+ 1.

Proof. If E is the Galois closure of M/Q�, then E/F is abelian and we have
f(E/F ) = f(M/F ) = ϕE/F (cE/F ) + 1; cf. [21, XV, §2]. The exact sequence of
Lemma 5.3 with K = Q� implies our claim. �

Remark 5.9. Let E be a number field with root discriminant �E . Write Ẽ for
the completion of E at a prime λ | � and eẼ for the absolute ramification degree.

Suppose E contains F , both Galois over Q, with Ẽ Fontaine. Then

ord�(�E) ≤ 1 + 1
�−1 − tẼ/F̃ cF̃+1

eẼ
.
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Indeed, if DẼ/Q�
is the different, then [21, IV, Prop. 4] and [7, Prop. 1.3] give

ord�(�E) =
1

eẼ
ordλ(DẼ/Q�

) = 1 + ϕẼ/Q�
(cẼ)−

cẼ + 1

eẼ
.

We conclude by Definition 5.5 and equation (5.4). �
Because the upper numbering is compatible with quotients, the composition of

Fontaine fields is Fontaine and there is a maximal field L, such that Gal(F/Q�)
u = 1

for all Galois subfields F finite over Q� and all u > 1
�−1 . Since F = Q�(μ�, (1− �)

1
� )

is contained in L, Lemma 5.6(ii) implies a gap in the upper numbering:

Gal(L/Q�)
1

�−1 �= Gal(L/Q�)
1

�−1+ε for ε > 0.

Hajir and Maier [10] study number field extensions K ′/K of bounded depth, i.e.,
with vanishing ramification groups Dp(K

′/K)x for all x ≥ νp. When there is deep
wild ramification, the concept of Galois slope content introduced by Jones and
Roberts [13] and used in [12, §1.4] leads to variants of (5.4) and Remark 5.9, not
required for our applications, thanks to Definition 1.1(iii).

6. Using Odlyzko

We study some maximal (�,N)-controlled extensions L/Q by means of Odlyzko’s
bounds [18, 19, 5]. If the F[GQ]-module V is semistable and bad only at S, then
Q(V ) is (�,NS)-controlled. The converse holds for � = 2 but not for � odd; e.g., if
dimV = 2, then Sym2V rarely is semistable.

By tameness at p |N and the bound of Definition 1.1(iii), the root discriminant

of L/Q satisfies �L < �1+
1

�−1 N1− 1
� . More precisely,

(6.1) ordp(�L) ≤ 1− �−1 for all p |N and ord�(�L) < 1 + (�− 1)−1.

Proposition 6.2. For � ≤ 13, the maximal (�, 1)-controlled extension L is Q(μ2�).
Under GRH, the same is true for � = 17 and 19.

Proof. For � odd, Q(μ�) ⊆ L and n = [L :Q] is a multiple of �− 1. From (6.1) and
[18], we find M in Table 1 below such that n ≤ (�− 1)M . If � = 13, 17, 19, we see
that M < �, so L/Q is tame at � and �L ≤ �1−α, with α = ((� − 1)M)−1. One
gets a new bound n ≤ (�− 1)M ′ with M ′ ≤ 5. If � ≤ 11, we have M ≤ 5. In both
cases, L is abelian over Q(μ2�), and so L = Q(μ2�) by class field theory [3, Lem.
2.2]. Use Q(i) ⊆ L for � = 2. �

Table 1. Odlyzko bounds for (�, 1)-controlled fields

� 2 3 5 7 11 13 17 19

�L ≤ 4 5.197 7.477 9.682 13.981 16.099 20.294 22.377

M 2 3 3 3 5 7 8 10

Now suppose L is maximal (2, N)-controlled, so �L < 4N
1
2 by (6.1). If n = [L :Q]

is finite, [18, Tables 3, 4] provides B,E, depending on a parameter b, such that

�L > Be−
E
n . In Table 2 below, we find a best bound for n < E/ log(B/4N

1
2 ) by

varying B > 4N
1
2 , unconditionally for N ≤ 21 and under GRH for larger N .

If V is an irreducible semistable F2[GQ]-module good outside S and NS |N ,
then Gal(Q(V )/Q) factors through G = G/H, where H is the maximal normal
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2-subgroup of G = Gal(L/Q). For odd N ≤ 79 and N = 97, we find a subfield
F of L containing LH by composing a solvable extension of Q with a subfield of
Q(J0(N)[2]). Then we use the improvements in §5 on the bound (6.1) for �L,
together with the Odlyzko tables and Magma [2] to control [L :F ].

Table 2. Bounds on n = [L :Q] for (2, N)-controlled fields L

N 3 5 7 11 13 15 17 19 21 23 29

n ≤ 10 16 22 42 56 74 100 138 192 98 155

N 31 33 35 37 39 41 43 47 51 53 55

n ≤ 181 210 244 284 330 385 449 615 852 1007 1196

N 57 59 61 65 67 69 71 73 77 79 97

n ≤ 1427 1710 2061 3046 3743 4638 5800 7332 12042 15766 470652

Theorem 6.3 (GRH). Let V be semistable and irreducible over F2. If V is bad
exactly over S and N = NS ≤ 79 or N = 97, the following hold:

i) no such V exists for N in {3, 5, 7, 13, 15, 17, 21, 33, 39, 41, 55, 57, 65, 77};
ii) V is unique and dimV = 2 for N in {11, 19, 23, 29, 31, 35, 37, 43, 51, 53, 61};
iii) V is unique for N in {23, 31, 47, 71};
iv) V is an irreducible F2[G]-module with G = D9, D3×A5, A5, D3×D5, SL2(F8)

when N = 59, 67, 73, 79, 97 respectively.

Remark 6.4. Aside from F2, there are exactly two irreducible F2[A5]-modules, both
4-dimensional, occurring as a submodule V1 and quotient module V2 of the permu-
tation module. The non-trivial F2[SL2(F8)]-modules have dimensions 6, 8 and 12.
Further, the irreducible modules for G1×G2 are the tensor products of irreducibles
for G1 and G2.

Sketch of the proof. In (i), G is a 2-group, except for 33, 55, 57, 77, when G 	 D3

has a representation whose conductor, 11 or 19, divides N properly. In (ii), V 	
CN [2] for an elliptic curve CN of conductor N , except that V 	 J0(29)[

√
2] for

N = 29. In (iii), V is the F2[Dh]-module of dimension h− 1 induced by the Hilbert
class field over Q(

√
−N) of class number h = 3, 3, 5, 7 corresponding to N = 23,

31, 47, 71 respectively.
N = 59: The two irreducibles are the constituents of J0(59)[2], using an equation

for X0(59), namely y2 = f(x)g(x) with f = x3 − x2 − x+ 2 and

g = x9 − 7x8 + 16x7 − 21x6 + 12x5 − x4 − 9x3 + 6x2 − 4x− 4.

The Galois group of g is D9, and a root of f gives a cubic subfield.
N = 67: Let V1 = C67[2] and V2 = J+

0 (67)[2]. Then Gal(Q(V2)/Q) = SL2(F4)
and [L :Q(V1, V2, i)] ≤ 2.

We provide more details forN = 73, 77, 79 and 97. Let E be the maximal abelian
extension of Q in L. Since G is generated by involutions, E/Q is the elementary
2-extension generated by i and

√
p as p ranges over S.

Lemma 6.5. Let M ⊃ F be subfields of L containing E and Galois over Q. Set
T = Gal(M/F ) and assume λ | 2 is totally ramified of odd degree t = |T | > 1 in
M/F . Then t = 3 and the residue degree fλ(E/Q) = 2.
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Proof. Since the image of α : Gal(M/Q) → Aut(T ) by conjugation is abelian, E
contains M0 = Lkerα, and so f = fλ(M0/Q) ≤ fλ(E/Q) ≤ 2. Any Frobenius in
Dλ(M/M0) acts trivially on T. Thus 2f ≡ 1 (mod t) and the claim ensues. �

Remark 6.6. Let M ⊇ F be subfields of L containing Q(i,
√
N) and Galois over

Q. Denote the residue, ramification and tame degree of λ in F/Q by f0, e0 and t0
respectively. Given an a priori bound [M :F ] ≤ b, consider possible factorizations
[M :F ] = 2st1u1, where 2s is the degree of wild ramification, t1 the degree of tame
ramification and u1 = f1g1 the unramifed (inert and split) degree of λ in M/F .
The resulting tame ramification in M/Q requires that the completion Mλ contain
μt0t1 , and so 2f0f1 ≡ 1 (mod t0t1).

For each s with 0 ≤ s ≤ log2 b, let t1 ≥ 1 run through odd integers at most
b/2s. Set β = (cF t1 + 1)/(2s t1 e0), as in Remark 5.9, and let nβ be the Odlyzko

bound on [M :Q] when �M ≤ 22−β
√
N . Then 1 ≤ g1 ≤ nβ/(2

st1f1 [F :Q]). Values
of s, t1, f1 not satisfying the congruence and inequality above are ruled out.

Let E1 be the maximal subfield of L abelian over E. By Lemmas 5.6(ii) and
5.8, the ray class conductor of E1/E divides (1+ i)2OE . Then class field theory or
Magma gives Table 3 below.

Table 3. Decomposition type of λ|2 in E1

N Gal(E1/E) eλ(E1/Q) fλ(E1/Q) gλ(E1/Q)

73 C4 4 2 2

77 C6 6 2 4

79 C15 2 5 6

97 C4 4 2 2

N = 73: The Jacobian J+
0 (73) has RM by Q(

√
5) and the Galois group of its

2-division field K is SL2(F4) 	 A5. For the 5 primes over 2 in K, fλ(K/Q) = 3
and Frobenius acts irreducibly on Iλ(K/Q) 	 C2

2 . Since Frobenius is reducible
on Iλ(E1/Q) 	 C2

2 , we have Iλ(F/Q) 	 C4
2 for the compositum F = E1K, thus

[F :Q] = 960. By Table 2, [L :Q] = 960r ≤ 7332, so r ≤ 7. Lemma 6.5 implies
the tame degree tλ(L/F ) = 1, so eλ(L/F ) divides 4. Finally, [L :F ] divides 4 by
Remark 6.6.

N = 77: In the S3-field K0 = Q(J0(11)[2]) = Q(
√
−11, θ), with θ3−2θ2+2 = 0,

the decomposition type over 2 is eλ = 3, fλ = 2, gλ = 1. IfK = E(θ) = K0(i,
√
−7),

then Gal(K/Q) 	 C2 × C2 × S3 and Iλ(K/Q) 	 C6, so mK = 3 by Lemma 5.6(i).
If F is the maximal subfield of L abelian over K, the ray class conductor of F/K
divides (1 + i)4OK = 4OK by Lemma 5.8. Then Gal(F/K) 	 C2 × C2 × C4 and
the decomposition type of 2 is eλ(F/Q) = 48, fλ(F/Q) = 2 and gλ(F/Q) = 4.

A group of order 3 · 2a admits a unique quotient isomorphic to C3 or S3. If
[L :K0] = 3 · 2a, there is a C3 or S3 extension of K0. The latter provides a central
quadratic M0/K0, with M0/Q Galois and Gal(M0/Q) 	 D6. In both cases, we find
that Gal(M0K/K) 	 C3, contradicting [F :K] = 16.

We claim that Gal(L/F ) is a 2-group. If not, since [L : F ] ≤ 31 from Table 2
and [L :F ] �= 3 · 2a, the wild ramification degree |Iλ(L/F )1| divides 4. Example 5.7
and (5.4) imply that Iλ(F/Q)9 �= 1. Use Remark 6.6 with cF ≥ 9 to show that the
only remaining case is [L :F ] = 10, with tame degree tλ(L/F ) = 5 and wild degree
2. It is precluded by Lemma 6.5.
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Thus the kernel of the surjection G
η→ Gal(Q(J0(11)[2])/Q) 	 S3 is a 2-group

and irreducible representations V of G factor through Image η, of conductor 11, so
there is no V of conductor 77.

N = 79: The strict class fields H± of Q(
√
±79) have respective orders 3 and 5,

and so E1 = H+H−. Let K± be the maximal subfields of L abelian respectively
over H±(i). Since eλ(H

±(i)/Q) = 2, the ray class conductors of K±/H±(i) divide
(1 + i)2OH±(i) by Lemma 5.8. Magma provides the following information:

Gal(K+/H+(i)) 	 C2
2 × C3, with eλ = 2, fλ = 2, gλ = 3;

Gal(K−/H−(i)) 	 C4
2 × C5, with eλ = 16, fλ = 5, gλ = 1.

If Gal(E1/E) = 〈τ 〉, then τ5 and τ3 act trivially on K+ and K− respectively.
Hence τ is trivial on K+ ∩ K− and (K+ ∩ K−)/E is abelian. Since K+ ∩ K−

contains E1, equality holds by maximality of E1. For F = K+K−, we therefore have
[F :E1] = 26, [F :Q] = 3840 and [L :Q] = 3840r, with r ≤ 3. Because Frobenius
acts irreducibly on Iλ(K−/E1) 	 C4

2 but trivially on Iλ(K+/E1) 	 C2, we see that
Iλ(F/E1) 	 C5

2 and eλ(F/Q) = 64. By Lemma 6.5, tλ(L/F ) = 1, so [L : F ] ≤ 2
by Remark 6.6. Thus the kernel of G � Gal(H+/Q) × Gal(H−/Q) 	 D3 ×D5 is
a 2-group.

N = 97: There is a subfield K of Q(J0(97)[2]) with Gal(K/Q) 	 SL2(F8) and
decomposition type eλ(K/Q) = 8, fλ(K/Q) = 7, gλ(K/Q) = 9. A Frobenius in
Dλ(K/Q) acts irreducibly on Iλ(K/Q) 	 C3

2 but reducibly on Iλ(E1/Q) 	 C2
2 , so

Iλ(F/Q) 	 C5
2 for the compositum F = E1K. Table 2 implies that [L : F ] ≤ 58,

since [F :Q] = 504 · 16 = 8064. Thus the dimensions of irreducible representations
of SL2(F8) over Fp for small p force the action of Gal(F/E1) on the maximal abelian
quotient of Gal(L/F ) to be trivial. But no central extension of SL2(F8) is perfect
[1, 11]. Hence L is the compositum of F with a solvable extension of E1. The
ray class extension of E1 whose conductor divides

∏
λ2, as λ runs over the primes

above 2 in OE1
, turns out to be trivial, whence L = F by Lemmas 5.6(ii) and 5.8.

The asymptotic root discriminant bound of [19] is 8πeγ ≈ 44.763, where γ is
Euler’s constant. Hence, by (6.1), the degree of L is finite for odd squarefree N
at most 123. It would thus be entertaining to find L when N = 127. Below, we
exhibit a subfield F of L of degree 161280 whose root discriminant �F just exceeds
the asymptotic bound.

To construct F , we begin the solvable tower with E0 = E = Q(i,
√
127) and find

successive maximal abelian extensions Ej+1/Ej in L/Q. For ray class conductor
(1 + i)2OE , we have [E1 : E] = 5. Thus E1 is the compositum of Q(i) and the
Hilbert class field over Q(

√
−127). Now eλ(E1/Q) = 2, so the ray class conductor

of E2/E1 divides (1 + i)2OE1
and we have Gal(E2/E1) = C4

2 . Moreover, any
Frobenius in Dλ(E2/Q) has irreducible action of order 5 on this ray class group.
The decomposition type over 2 is eλ(E2/Q) = 32, fλ(E2/Q) = 5, gλ(E2/Q) = 2.
The ray class conductor of E3/E2 divides

∏
λ2, as λ runs over the primes of OE2

above 2, but we do not know whether E3 = E2.
Also, there is a subfield K of Q(J0(127)[2]) with Gal(K/Q) 	 SL2(F8) and

eλ(K/Q) = 8, fλ(K/Q) = 7, gλ(K/Q) = 9. Any Frobenius in Dλ(K/Q) has irre-
ducible action of order 7 on Iλ(K/Q) 	 C3

2 . For the compositum F = E2K, of
degree 320 · 504 = 161280, we therefore have Iλ(F/Q) 	 C8

2 , and so cF = mF = 1

by Lemma 5.6. Then �F = 22−
1

128

√
127 ≈ 44.834 by Remark 5.9.
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Ph.D. Thesis, Publ. Math. Orsay, 1980.

[6] R.H. Dye, Interrelations of symplectic and orthogonal groups in characteristic two, J. of
Algebra, 59 (1979) 202–221. MR541675 (81c:20028)
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