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ABSTRACT. Let H]% denote the three dimensional hyperbolic space over F,
where F denotes either the complex numbers C or the quaternions H. We offer
an algebraic characterization of isometries of H]%.

1. INTRODUCTION

For a group G, let PG denote the quotient by its center, i.e. PG = G/Z(G).
Let F denote the complex numbers C or the quaternions H. Let Hf denote the
n-dimensional hyperbolic space over F. For F = C and H], the linear groups which
act as the isometries of H} are denoted by U(n,1) and Sp(n, 1) respectively. The
corresponding isometry groups are identified with PU(n, 1) and PSp(n, 1) respec-
tively.

Classically, the dynamical types of isometries of the two and three dimensional
real hyperbolic spaces were classified as elliptic, parabolic and hyperbolic according
to the dynamics of their fixed points. This trichotomy of the isometries can be
characterized algebraically in terms of their traces; c¢f. [Bel Theorems 4.3.1 and
4.3.4]. It is a natural question to ask for similar characterizations in the complex and
the quaternionic hyperbolic geometries. An algebraic characterization of isometries
of H2 is now well-known due to the work of Giraud and Goldman [Gol, Theorem
6.2.4]. Recently, Cao and Gongopadhyay [CaGo] have offered a counterpart of
Goldman’s theorem in the quaternionic setting. However, it is interesting to obtain
a similar characterization for the isometries of H3. In the complex case, such
a characterization may be useful to calculate the limit sets of the 4-dimensional
complex Kleinian groups; cf. [SV]. In this context, Goldman’s characterization
has been generalized to SL(3,C) action on P? in [Na]. In order to generalize
this classification in dimension 4, the starting point is to look for counterparts of
Goldman’s theorem in three dimensional complex hyperbolic geometry. In this
paper, we offer an algebraic characterization of the isometries of H2. Along the
way we obtain a simple criterion to determine the fixed-point trichotomy of the
isometries in all dimensions.
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TABLE 1. Classification of elliptic isometries of HY

Classification Nature of eigenvalues

Regular elliptic mutually distinct (classes of) eigenvalues

Compound elliptic two and only two equal eigenvalues

Complex elliptic a pair of equal eigenvalues
Screw elliptic has an eigenvalue of multiplicity three
Simple elliptic has a single class of eigenvalues

When F = H, the underlying Hermitian space H?! is always assumed to be a
right vector space over H. Accordingly, the eigenvalues of ¢ in Sp(3,1) are assumed
to be right eigenvalues.

Let g be an isometry of H3. This lifts to a unitary transformation § in the
linear group of isometries. In the projective model of the hyperbolic space, the
fixed points of g on H2 correspond to (right) eigenvectors of §. In the following, we
shall forget the ‘tilde’ from the lift of an isometry and shall use the same symbol
for both. When ¢ is an element in Sp(3,1), note that the eigenvalues occur in
similarity classes. Hence an eigenvalue of g in Sp(3,1) will be understood as a
similarity class of eigenvalues. We say that two eigenvalues of g are distinct if the
corresponding similarity classes of the eigenvalues are disjoint. Two eigenvalues are
equal if they belong to the same similarity class. Further note that each similarity
class of eigenvalues contains a unique pair of complex conjugate numbers. We
further adopt the convention of choosing the eigenvalue e, 0 < # < 7 from the
similarity class, and we identify the similarity class with this complex eigenvalue.
By the Brouwer fixed-point theorem, every isometry of H3 has a fixed point in
H2 UOH2. An isometry g is elliptic if it has a fixed point in H2, parabolic if
it is non-elliptic and has a unique fixed point on OHZ, and hyperbolic if it is non-
elliptic and has exactly two fixed points on 9HZ. The conjugacy classification of the
isometries follows from [ChGrl section 3|. In particular, every element in Sp(3,1)
is conjugate to a complex matrix. Using the conjugacy classes, we further refine
the above trichotomy of the isometries as follows:

(e) An elliptic element g is regular elliptic if it has mutually distinct eigenvalues;
it is compound elliptic if it has two and only two equal eigenvalues. g¢ is
called complex elliptic if it has a pair of equal eigenvalues. If g has three
equal eigenvalues, it is called screw elliptic. If g has only one similarity class
of eigenvalues, it is called simple elliptic. See Table [l for the classification
of elliptic elements. Note that simple elliptics occur only if F = H. In the
complex case, they belong to the center of the group and hence act as the
identity.

(h) Suppose g is hyperbolic. It follows from the conjugacy classification that it
has a complex eigenvalue outside the unit disc, and one eigenvalue inside
the unit disc. The other eigenvalues lie on the unit circle. A hyperbolic
isometry g is called a regular hyperbolic if it has a non-real eigenvalue whose
norm is different from 1 and the eigenvalues are mutually distinct. g is semi-
regular if it has a non-real eigenvalue of norm # 1 and two equal eigenvalues
of norm 1. A non-regular hyperbolic isometry has a real eigenvalue different
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TABLE 2. Classification of hyperbolic isometries of HY,

Classification Nature of eigenvalues

Regular hyperbolic has a non-real eigenvalue of norm # 1 and

eigenvalues are mutually distinct

Semi-regular has a non-real eigenvalue of norm # 1 and
hyperbolic two equal eigenvalues of norm 1
Screw hyperbolic two and only two real eigenvalues (of norm # 1)

Complez if two distinct eigenvalues of norm 1

Simple if the eigenvalue of norm 1 has multiplicity two

Stretch all eigenvalues are real numbers

Complez if both 1 and —1 are eigenvalues

Simple if either 1 or —1 is an eigenvalue of multiplicity two

from 1 or —1. Suppose g is non-regular. If g has two and only two real
eigenvalues, it is called screw hyperbolic. A screw hyperbolic element has
two eigenvalues on the unit circle. ¢ is a complex screw hyperbolic if it
has two distinct eigenvalues on the unit circle; otherwise it is simple screw
hyperbolic. g is called a stretch if it has only real eigenvalues: if both 1 and
—1 are eigenvalues of a stretch g, it is called a complex stretch; if g has either
1 or —1 as an eigenvalue with multiplicity 2, it is called a simple stretch.
See Table [2 for the classification of hyperbolic elements. Note that screw
hyperbolics occur only if F = H. When F = C, the action of the regular
hyperbolics and the screw hyperbolics on H? are dynamically the same.
It can be seen from the conjugacy classification that a regular hyperbolic
can be obtained from a screw hyperbolic by multiplying a central element
of the form AI, where |A\| = 1, and vice versa. Hence we identify the two
classes in U(3,1) and call them lozodromic.

(p) Suppose g is parabolic. If g is unipotent, i.e. all eigenvalues of g are 1, then
it is called a wvertical translation or a non-vertical translation according
as the minimal polynomial of g is (z — 1)? or (z — 1)3. If g has a non-
real eigenvalue of multiplicity four, then it is called an ellipto-translation
or ellipto-parabolic according as the minimal polynomial (of its complex
conjugacy class representative) has degree 2 or 3. When F = C, these
classes do not occur, as their actions on H3 are the same as the vertical
or non-vertical translations. If g has at least two distinct eigenvalues, it
is called a screw translation or a screw parabolic according as the minimal
polynomial contains a factor of the form (x — \)? or (z — \)3, |A| = 1. Thus
a screw translation has at least two equal eigenvalues. If a screw translation
g has three equal eigenvalues, it is called a simple screw translation; it is
called a complex screw translation if it has a pair of equal eigenvalues; it
is called a compound screw translation if it has two and only two equal
eigenvalues. See Table [3 for the classification of parabolic elements.

Given any isometry g of H2, it belongs to one of the above classes.
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TABLE 3. Classification of parabolic isometries of HY

Classification Nature of eigenvalues

Unipotent all eigenvalues are 1
Vertical translation if minimal polynomial is (z — 1)2

Non-vertical translation if minimal polynomial is (z — 1)3

Ellipto-translation | minimal polynomial is of the form (z — \)%, |\ =1, A # +1

Ellipto-parabolic | minimal polynomial is of the form (z — A\)3, |\| = 1, A # +1

Screw parabolic exactly two distinct eigenvalues

minimal polynomial is of the form (z — \)(x — p)

Screw translation at least two distinct eigenvalues
characteristic polynomial is of the form (z —\)?(z —p)(z —v)
Simple if either A\=por A=v, p#v
Complex if u =v and A # pu
Compound if pu # v # A

We make use of the embedding of H into 2 x 2 complex matrices My(C). This
gives an embedding A — Ac of Sp(3,1) into GL(8,C); cf. (ZI)) in section [ and
also see [Gol, p. 160], [L| section 2], [Z, section 2]. Using this embedding we obtain
the following characterization of the isometries.

Theorem 1.1. Let A be an element in Sp(3,1). Let Ac be the corresponding
element in GL(8,C).

(A) Let B, = trace(A). Then A acts as a hyperbolic isometry of HY if and
only if {Bn} is a divergent sequence. For A elliptic or parabolic, {B,} is bounded;
in fact, for all n, |B,| < 8.

(B) The characteristic polynomial of Ac is of the form

xa(@) = 2% —az” 4+ b5 — ca® + da* — ca® + ba® —ax +1,

where a, b, ¢, d are real numbers. Define

Slb— 4~ a¥,
1 1 1
G = [Ba—c)+ galb —4) — 2a”],

H =

I= 1—12(b—4)2+ia(3a—0)+2(1—b)+d,
J=HI—-G?—-4H3 and A =13 —27J%

Then we have the following:

1. A acts as a regular hyperbolic if and only if A < 0.

2. A acts as a regular elliptic if and only if A >0 and I < 12H?.

8. A acts as either complex screw hyperbolic, complex stretch, compound elliptic,
or compound screw translation if and only if A =0, H < 0 and 0 < I < 12H?.
Suppose A is not hyperbolic. Then A acts as a compound elliptic, resp. compound
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screw translation, if the degree of the minimal polynomial of Ac is 3, resp. 4. A
acts as semi-reqular hyperbolic if and only if A =0, H <0 and I > 12H?.

4. A acts as either simple screw hyperbolic, simple stretch, complex screw trans-
lation, or complex elliptic if and only if A =0, H < 0 and I = 12H?. Suppose
A is not hyperbolic. Then A acts as a complex elliptic, resp. a complex screw
translation, if the degree of the minimal polynomial of Ac is 2, resp. 3.

5. Suppose A acts as either screw hyperbolic or stretch. Then A acts as a screw
hyperbolic if and only if 4(a+c)? # (2b+d+2)2. Suppose the equality holds; i.e. A
acts as a stretch. Then A acts as a simple or complex stretch according as a # —c,
ora = —c.

6. A acts as either screw elliptic, simple screw translation, or screw parabolic if
and only if A=0, H <0 and I =0. Further A acts as screw elliptic, resp. simple
screw translation, resp. screw parabolic, if the degree of the minimal polynomial of
Ac is 2, resp. 3, resp. 4.

7. A acts as either simple elliptic, unipotent, ellipto-translation, or ellipto-
parabolic if and only if A =0, H=0 and I =0. In these cases, |a| < 8, |b|] < 28,
le] <56 and |d| < 70. The equality holds if and only if A # +I and A is unipotent.

Suppose A is non-unipotent. Then A acts as a simple elliptic, resp. ellipto-
translation, resp. ellipto-parabolic, if the degree of the minimal polynomial of Ac is
1, resp. 2, resp. 3.

8. Suppose A is unipotent. Then A acts as a vertical translation, resp. non-
vertical translation, if the degree of the minimal polynomial of Ac is 2, resp. 3.

Note that the well-known Newton’s formulas (see [Rl Theorem 1.3.19], [Md])
express the numbers 3, in terms of the coefficients of the characteristic polynomials
of Ac. The approach used above also restricts to U(3,1). In this case, the above
embedding restricts to the embedding A — Ag of U(3,1) into GL(8;R). This
provides the following characterization of the isometries of HZ.

Corollary 1.2. Let A be an element in U(3,1). Let Ar be the corresponding
element in GL(8,R).

(A) Let o, = trace(A™). Then A acts as a hyperbolic isometry of HE if and
only if {an} is a divergent sequence. For A elliptic or parabolic, {c,} is bounded;
in fact, for all n, |ay| < 4.

(B) The characteristic polynomial of Agr is of the form

xa(z) =28 — az” + bxb — ca® 4+ dat — ca® + ba? —az + 1,

where a, b, c,d are real numbers. Let G, H, I, J and A be as in the above theorem.
Then we have the following:
1. A acts as a regular elliptic if and only if A > 0 and I < 12H?2.
2. A acts as a lozodromic if and only if one of the following conditions holds.
(1) A<DO.

(ii) A is hyperbolic, A = 0, H < 0, and either I > 12H?, trace(A) # r\ for

r>0, [A|=1,0r 0<I<12H? 4(a+c)*# (2b+d+2)2.

3. A acts as a stretch if and only if A is hyperbolic, and A <0, H <0,0< 1<
12H?, 4(a+c)? = (2b+d+2)2. Further A is simple or complex according as a # —c
ora = —c. Also, if A =0,H < 0,1 > 12H? and trace(A) = r\,7 > 0|\ = 1,
then A acts as simple stretch.

4. A acts as either compound elliptic or compound screw translation if and only
if A is not hyperbolic and A =0, H <0 and 0 < I < 12H?. Further, A acts as a
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compound elliptic, resp. a compound screw translation, if the degree of the minimal
polynomial of Ac is 3, resp. 4.

5. A acts as either a complex screw translation or complex elliptic if and only if
A is not hyperbolic and A =0, H < 0 and I = 12H?. Further, A acts as a complex
elliptic, resp. complex screw translation, if the degree of the minimal polynomial of
Ac is 2, resp. 3.

6. A acts as either screw elliptic, simple screw translation, or screw parabolic if
and only if A =0, H <0 and I = 0. Further A acts as a screw elliptic, resp. simple
screw translation, resp. screw parabolic, if the degree of the minimal polynomial of
Ac is 2, resp. 3, resp. 4.

7. A acts as a unipotent element if and only if A # N, |\ =1 and A =0,
H =0 and I = 0. Further, A acts as a vertical translation, resp. non-vertical
translation, if the degree of the minimal polynomial of Ac is 2, resp. 3.

8. A acts as the identity if and only if A =X, |\ = 1.

2. A SIMPLE CHARACTERIZATION OF THE ISOMETRIES OF H]?

For the definition and basic properties of the complex and quaternionic hyper-
bolic spaces, see [ChGr], [Mo]. The conjugacy classification of the isometries of Hf
can be obtained in [ChGil section 3].

Lemma 2.1. Let A be an element in U(n,1). Forn > 1, let a,, = trace A™.

(1) A acts as a hyperbolic isometry of HR if and only if there exists a positive
integer m such that |, | > n—+ 1. Alternatively, A acts as a hyperbolic isometry if
and only if {a,} is a divergent sequence.

(ii) A acts as an elliptic or parabolic element if and only if for alln, |a,| < n+1.
Further, A acts as a unipotent element if and only if |an| =n + 1.

Proof. Let A act as a hyperbolic isometry. Hence A must have eigenvalues A, A™*
such that |A| > 1. The other eigenvalues, say u1, ..., u,—1, belong to the unit circle;
i.e. for each 4, |u;| = 1. Hence

n—1
trace T =X+ X1 + Zui,
i=1
n—1
trace T" = A" + A7 " + Z ur.
i=1

Since |A| = 1 and |u;| = 1, we have
[trace T"| > |A|" —n > 71" —n,
where r € R is such that |A| > r > 1. Since r > 1, by the Archimedean property of

the real numbers, one can choose m such that ™ > 2n + 1; hence |ay,| > n + 1.
For A elliptic or parabolic, all the eigenvalues lie on the unit circle S'; hence

n+1

D u

i=1

[trace T"| = <n+1.

Thus the sequence {a,,} is bounded.

Note that a unipotent element has only 1 as an eigenvalue. For each n, «,, is the
sum of n-th powers of eigenvalues of A. Hence |a,| =n + 1 for all n if and only if
A acts as a unipotent element. (Il
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Let A € Sp(n,1). Write H = C @ jC. Express A = A; + jAs, where A1, Ay €
M 41)(C). This gives an embedding A — Ac of Sp(n,1) into GL(2(n + 1),C),
where

(2.1) Ac = ( Av 4 )
Az Ay

Lemma 2.2. Let A be an element in Sp(n,1). Let Ac be the corresponding element
in GL(2(n+1),C). Forn > 1, let 5, = trace Ag.

(i) A acts as a hyperbolic isometry if and only if there exists a positive integer
m such that |8y | > 2(n+ 1). Alternatively, A acts as a hyperbolic isometry if and
only if {Bn} is a divergent sequence.

(ii) A acts as an elliptic or parabolic element if and only if for all n, |B,| <
2(n+1). Further, A is unipotent if and only if |Bn| = 2(n + 1).

Proof. Suppose A is hyperbolic. Then A, consequently Ac, must have eigenvalues
A, A~! such that [A| > 1. For A elliptic or parabolic, all the eigenvalues of Ac
are unit complex numbers. Now, the proof is completely analogous to the proof of
Lemma 211 |

Remark 2.3. In the above lemmas, it is, in fact, possible to determine the numbers
a, and B, from the coefficients of the characteristic polynomials of A and Ac
respectively. This is possible by virtue of the well-known Newton’s identities; cf.
[RL Theorem 1.3.19], [Md].

3. PrROOF OF THEOREM [LL1]

In order to prove Theorem [[L1] we shall heavily use the well-known criterion of
the nature of roots of a quartic or a bi-quadratic equation. We follow the criterion
in [Re]; also see [Dl, Chapter IV], [BP, Chapter VI].

Let A be an element in Sp(3,1). Note that the characteristic polynomial x 4. ()
of Ac is an invariant of the conjugacy class of A. It follows from the conjugacy class
representatives in Sp(3,1) that x a.(z) is self-dual; i.e. if A € C is a root of x 4. (z),
so is A™1. Further, if ) is an eigenvalue, then so is A™1; cf. [Gol, Lemma 6.2.5,
p. 205]. It follows that if A is a root of the characteristic polynomial, so is A\. Hence
the characteristic polynomial of A¢ is of the form

(3.1) Xae () = 2® —ax” + 025 — cx® + dat — ca® + br? —ax + 1,
where a,b,c,d € R. Write ya.(x) = z*g(x), where
g@) =@+ —a@®+ 273 +b(@? +27?) —clz+27) +d.
Expanding the terms in the brackets, we have
g(x) = (r+r DY —a(z+27 )3+ (0—4)(z+27 1) —(c—3a)(z+z" ')+ (d—2b+2).

Thus g(z) can be expressed as a polynomial in (z + 2~ 1), and we consider g4 in
terms of the variable t = (z + z71),

(3.2) ga(t) =t* —at® + (b —4)t* — (c — 3a)t + (d — 2b + 2).

Since xa.(x) is a conjugacy invariant, so is ga(t). If « is a root of xa.(z), then
a+a~tis aroot of ga(t). Hence the nature of the roots of ga(t) is determined by
the nature of the roots of xa.(z).
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We write ga(t) in the standard form as
ga(t) =t* +4Bt* + 6Ct* + 4Dt + E,

where B=—%a, C = $(b—4), D=1Ba—c¢), E=d—2b+2. Set H=C — B?
G =D —-3BC+2B3 I =FE—4BD + 3C?. In terms of a,b, c,d,

1 3,
H = 6[(1)_4)_ ga ]7
(3.3) G = i[(?»a _o+ %a(b— 1) - écﬁ],
= %(b—4)2+ %a(3a—c)+2(1—b)+d.

Setting Z = At 4+ B, one may further reduce the equation ga(t) = 0 to the form
(see [BP} p. 116])

Z*+QZ>+RZ+ S =0,

where

(3.4) Q =6H, R =4G, S:I—%QQ.
The discriminant of the equation ga(t) = 0 is given by
(3.5) A=1—27J%

where J = HI — G? —4H3. The nature of the roots of g4(t) = 0 can be completely
determined in terms of H, G, T and the discriminant A; see [Rel [BP].

Suppose A acts as a hyperbolic isometry. Suppose the roots of ya.(x) are re?,
re B rleif pleiB 0 =i ¢i% and e~*?. The roots of ga(t) are given by

tr =re? +r7 ety =re P 4 1r71e tg = 2cosb, ty = 2cos ¢.

(1) Thus g4 (t) has two distinct real and two distinct non-real roots if and only
if A < 0. From the expression of the roots it is clear that this is precisely the case
when 8 # 0; i.e. A is regular hyperbolic.

If A is semi-regular, then § = ¢ and it follows from [Re] that H < 0, I > 12H?2.

(2) Suppose 8 = 0 or m; i.e. A acts as a screw hyperbolic or a stretch. Thus
ga(t) has at least two real and equal roots r+r~1. For r > 0, note that r+r=1 > 2.

First suppose that A acts as a stretch. Then there are two cases: either A is
simple or A is complex, i.e. either g (¢) has a root 2, or —2, of multiplicity two or
ga(t) has both 2 and —2 as roots. Suppose both g4(2) =0 and g4(—2) = 0. This
implies that

2b+d+2=2(a+c), 2b+d+2=-2(a+c),

which is possible if and only if a = —c. Thus if @ # —c and (2b+d+2)? = 4(a+c)?,
then either g4(2) = 0 or ga(—2) = 0, but not both, and hence A acts as a simple
stretch. If g4(t) has at least one root in the open interval (—2,2), then A acts as a
screw hyperbolic.

(i) Suppose A acts as a complex screw hyperbolic or a complex stretch, i.e.
0 # ¢. In this case ga(t) has two and only two equal roots. Hence, A = 0,
H <0, and —3H? < S < 9H% i.e. 0 < I < 12H?. Further, if A acts
as a complex stretch, then it follows from the above that a = —c and
(2b+d+2)2 =4(a +c)? = 0.
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(ii) Suppose A acts as a simple screw hyperbolic or a simple stretch, i.e. § = ¢.
Since g4 (t) has two pairs of equal real roots, A =0, H < 0, and S = 9H?,
i.e. I = 12H?. Further, if A acts as a simple stretch, then a # —c and
(2b 4 d +2)? = 4(a + ¢)2.

Suppose A acts as an elliptic or a parabolic isometry. Suppose the roots of
Xac(x) are €% e7Wr k=123 4.

(3) Suppose A acts as a regular elliptic; i.e. for all 4,7, 6; # 6;. Thus ga(t) has
four real and mutually distinct roots. Hence, A > 0 and I < 12H?.

(4) Suppose A acts as a compound elliptic or a compound screw translation; i.e.
exactly two of the 6;’s are equal. Thus ga(t) has two and only two equal roots.
Hence A =0, H < 0 and 0 < I < 12H?. Further if A is a compound elliptic, Ac
has a minimal polynomial of the form (z — A)(z — p)(x — §). If A is a compound
screw translation, the minimal polynomial is of the form (z — \)?(x — p)(z — 9).

(5) Suppose A acts as a screw elliptic, or a simple screw translation, or a screw
parabolic. Then it has three equal eigenvalues, and hence ga(t) has three equal
roots; hence A =0, H < 0 and I = 0. If A acts as a simple screw translation, then
Ac has minimal polynomial m () of the form (z — X\)?(x — u), A\, u € St. If A
acts as a screw parabolic, ma.(z) is of the form (z — \)3(z — pu), A\, u € St. For
A a screw elliptic, ma.(x) is of the form (z — A)(z — p). Thus the degree of the
minimal polynomial distinguishes the three classes.

(6) Suppose A acts as a simple elliptic, or a unipotent, or an ellipto-translation, or
an ellipto-parabolic. Then g (t) has four equal roots. Consequently, we have A = 0,
H =0 and I = 0. Next the degree of m4.(z) distinguishes a vertical translation or
ellipto-translation from a non-vertical translation or ellipto-parabolic. Further, A
is a vertical or non-vertical translation if and only if 1 is the only eigenvalue. Hence
we must have |a] = 8, |b] =28, |c¢| = 56, |d| = 70. For A non-unipotent, |a| < 8,
|b] < 28, |¢| < 56, |d| < 70.

(7) Suppose A acts as a complex screw translation or a complex elliptic. Then
ga(t) has a pair of equal roots; hence A = 0, H < 0, and I = 12H?. Further the
degree of m . () distinguishes these classes.

Finally, Lemma distinguishes a hyperbolic isometry from a parabolic or an
elliptic isometry.

This completes the proof of the theorem.

4. SUMMARY

For the reader’s convenience, we summarize the algorithm to characterize isome-
tries of H3. The complex hyperbolic case is similar.

Let A € Sp(3,1) be given.

1. First use Table[d If A > 0 or A < 0, we are done. Otherwise proceed to the
next step.

2. Suppose A = 0. Compute H.

Case A. Suppose H = 0. If (A —I)* = 0, i.e. all the eigenvalues are 1, then A
is unipotent. It is vertical or non-vertical according as the minimal polynomial is
(x —1)2 or (z —1)3.

Suppose A is not unipotent. Then it is simple elliptic or parabolic according
as the minimal polynomial of Ac is linear or non-linear. If A is parabolic, then
it is ellipto-translation or ellipto-parabolic according as the degree of the minimal
polynomial is 2 or 3.
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TABLE 4. A-classification of isometries of H%I

A Type of isometry

<0 Regular hyperbolic

>0 Regular elliptic

= 0| Parabolic, non-regular hyperbolic or non-regular elliptic

Case B. Suppose H # 0. Then we must have H < 0. Compute I.

(a) Suppose I = 0. If A¢ has a minimal polynomial of degree 2, then A is screw
elliptic. It is a simple screw translation, resp. screw parabolic, if the degree of the
minimal polynomial is 3, resp. 4.

(b) Suppose I # 0. Compute I — 12H2.

(b (1)) Suppose I — 12H? > 0. Then A is semi-regular hyperbolic. Suppose
I—12H? < 0. If {B,} is divergent, then A is complex screw hyperbolic or complex
stretch. Otherwise, it is a compound elliptic, resp. compound screw translation, if
the degree of the minimal polynomial is 3, resp. 4.

(b (ii)) Suppose I — 12H% = 0. If {B,} is divergent, then A is simple screw
hyperbolic or simple stretch. Suppose A is non-hyperbolic. Then it is a complex
elliptic, resp. complex screw translation, if the degree of the minimal polynomial
of Ac is 2, resp. 3.

Suppose A is a screw hyperbolic or a stretch in the above two cases. Then A is
a screw hyperbolic if and only if x.(1) # 0 and xa.(—1) # 0. If A is a stretch,
then it is simple if either x4.(1) = 0 or xa.(—1) = 0, but not both; it is complex
if xa.(1) =0 and xa.(-1) = 0.
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