A MARCINKIEWICZ MAXIMAL-MULTIPLIER THEOREM

RICHARD OBERLIN

(Communicated by Michael T. Lacey)

ABSTRACT. For r < 2, we prove the boundedness of a maximal operator formed by applying all multipliers m with $||m||_{V^r} \le 1$ to a given function.

1. Introduction

Given an exponent r and a function f defined on \mathbb{R} , consider the r-variation norm

$$||f||_{V^r} = ||f||_{L^{\infty}} + \sup_{N,\xi_0 < \dots < \xi_N} \left(\sum_{i=1}^N |f(\xi_i) - f(\xi_{i-1})|^r \right)^{1/r},$$

where the supremum is over all strictly increasing finite length sequences of real numbers.

The classical Marcinkiewicz multiplier theorem states that if r=1 and a function m is of bounded r-variation uniformly on dyadic shells, then m is an L^p multiplier for 1 and

(1.1)
$$\|(m\hat{f})^{\check{}}\|_{L^p} \leq C_{p,r} \sup_{k \in \mathbb{Z}} \|1_{D_k} m\|_{V^r} \|f\|_{L^p},$$

where $D_k = [-2^{k+1}, -2^k) \cup (2^k, 2^{k+1}]$ and $\hat{\ }$, denote the Fourier-transform and its inverse. Later, Coifman, Rubio de Francia, and Semmes [2] (see also [8]) showed that the requirement of bounded 1-variation can be relaxed to allow for functions of bounded 2-variation, and in fact (1.1) holds whenever $r \geq 2$ and $|\frac{1}{p} - \frac{1}{2}| < \frac{1}{r}$.

The estimate [2] does not discriminate between multipliers of bounded 2-variation and those of bounded r-variation where r < 2, and so one might ask whether there is anything to be gained by controlling the variation norm of multipliers in the latter range of exponents.

Defining the maximal-multiplier operator

(1.2)
$$\mathcal{M}_r[f](x) = \sup_{m: ||m||_{V^r} \le 1} |(m\hat{f})\check{}(x)|,$$

where the supremum is over all functions in the V^r unit ball, we have

Theorem 1.1. Suppose $1 \le r < 2$ and r . Then

(1.3)
$$\|\mathcal{M}_r[f]\|_{L^p} \le C_{p,r} \|f\|_{L^p}.$$

Received by the editors October 4, 2011.

2010 Mathematics Subject Classification. Primary 42A45; Secondary 42A20.

The author is supported in part by NSF Grant DMS-1068523.

The case r = 1 was observed independently by Lacey [4].

Note that in the definition of \mathcal{M}_r , each m is required to have finite r-variation on all of \mathbb{R} rather than simply on each dyadic shell as in (1.1). This is necessary for boundedness, as can be seen from the counterexamples of Christ, Grafakos, Honzík and Seeger [1].

Although the maximal operator (1.2) would seem to be fairly strong, we do not yet know of an application for the bound above. We will, however, quickly illustrate a strategy for its use that falls an (important) ϵ short of success. Let Ψ be (say) a Schwartz function, and for each $\xi, x \in \mathbb{R}$ and $k \in \mathbb{Z}$, consider the 2^k -truncated partial Fourier integral

$$S_k[f](\xi, x) = p.v. \int f(x - t)e^{2\pi i \xi t} \Psi(2^{-k}t) \frac{1}{t} dt.$$

It was proven by Demeter, Lacey, Tao, and Thiele [3] that for q = 2 and 1 ,

(1.4)
$$\|\sup_{\|g\|_{L^q}=1} \|\sup_{k} |(\mathcal{S}_k[f](\cdot, x)\hat{g})|\|_{L^q}\|_{L^p_x} \leq C_{p,q} \|f\|_{L^p}.$$

If we had the bound

(1.5)
$$\|\mathcal{S}_k[f](\xi, x)\|_{L^p_x(\ell^\infty_k(V^r_\xi))} \le C_{p,r} \|f\|_{L^p}$$

for some r < 2, then an application of Theorem 1.1 would give (1.4) for q > r by rather different means than [3]. In fact, one can see by applying the method in Appendix D of [6] that (1.5) holds for r > 2 and p > r'. Unfortunately, it does fail for $r \le 2$.

2. Proof of Theorem 1.1

The following lemma was proven in [2]; see also [5].

Lemma 2.1. Let m be a compactly supported function on \mathbb{R} of bounded r-variation for some $1 \leq r < \infty$. Then for each integer $j \geq 0$, one can find a collection Υ_j of pairwise disjoint subintervals of \mathbb{R} and coefficients $\{b_v\}_{v \in \Upsilon_j} \subset \mathbb{R}$ so that $|\Upsilon_j| \leq 2^j$, $|b_v| \leq 2^{-j/r} ||m||_{V_r}$, and

(2.1)
$$m = \sum_{j \ge 0} \sum_{v \in \Upsilon_j} b_v 1_v,$$

where the sum in j converges uniformly.

The lemma above was applied in concert with Rubio de Francia's square function estimate [7] to obtain (1.1). Here, we will argue similarly, exploiting the analogy between the Rubio de Francia square function estimate and the variation-norm Carleson theorem.

It was proven in [7] that for $p \geq 2$,

$$\sup_{\mathcal{I}} \| \left(\sum_{I \in \mathcal{I}} |(1_I \hat{f}) \check{}|^2 \right)^{1/2} \|_{L^p} \le C_p \| f \|_{L^p},$$

where the supremum above is over all collections of pairwise disjoint subintervals of \mathbb{R} . Consider the partial Fourier integral

$$\mathcal{S}[f](\xi, x) = (1_{(\infty, \xi]}\hat{f})\check{}(x).$$

It was proven in [6] that for s > 2 and p > s',

$$\|\mathcal{S}[f](\xi, x)\|_{L_x^p(V_{\varepsilon}^s)} \le C_{p,s} \|f\|_{L^p}$$

or, equivalently,

(2.2)
$$\|\sup_{\mathcal{I}} \left(\sum_{I \in \mathcal{T}} |(1_I \hat{f})^{\check{}}|^s \right)^{1/s} \|_{L^p} \le C_{p,s} \|f\|_{L^p}.$$

Note that by standardizing limiting arguments, taking the supremum in (1.2) to be over all compactly supported m such that $||m||_{V^r} \leq 1$ does not change the definition of \mathcal{M}_r . Applying the decomposition (2.1), we see that for any compactly supported m with $||m||_{V^r} \leq 1$ we have

$$\begin{aligned} |(m\hat{f})\check{}(x)| &\leq \sum_{j\geq 0} \sum_{v\in \Upsilon_j} |b_v(1_v\hat{f})\check{}(x)| \\ &\leq \sum_{j\geq 0} \sup_{v\in \Upsilon_j} |b_v| |\Upsilon_j|^{\frac{1}{s'}} \Big(\sum_{v\in \Upsilon_j} |(1_v\hat{f})\check{}(x)|^s\Big)^{1/s} \\ &\leq C_{r,s} \sup_{\mathcal{I}} \Big(\sum_{I\in \mathcal{I}} |(1_I\hat{f})\check{}(x)|^s\Big)^{1/s}, \end{aligned}$$

where, for the last inequality, we require s < r'.

Provided that r < 2 and p > r we can choose an s < r' with s > 2 and p > s', giving (2.2) and hence (1.3).

The argument of Lacey [4] for r=1 follows a similar pattern, except with Marcinkiewicz's method in place of [2] and the standard Carleson-Hunt theorem in place of [6].

References

- Michael Christ, Loukas Grafakos, Petr Honzík, and Andreas Seeger, Maximal functions associated with Fourier multipliers of Mikhlin-Hörmander type, Math. Z. 249 (2005), no. 1, 223–240. MR2106977 (2005h:42024)
- 2. Ronald Coifman, José Luis Rubio de Francia, and Stephen Semmes, Multiplicateurs de Fourier de $L^p(\mathbf{R})$ et estimations quadratiques, C. R. Acad. Sci. Paris Sér. I Math. **306** (1988), no. 8, 351–354. MR934617 (89e:42009)
- 3. Ciprian Demeter, Michael T. Lacey, Terence Tao, and Christoph Thiele, *Breaking the duality in the return times theorem*, Duke Math. J. **143** (2008), no. 2, 281–355. MR2420509
- 4. Michael T. Lacey, personal communication.
- ______, Issues related to Rubio de Francia's Littlewood-Paley inequality, NYJM Monographs, vol. 2, State University of New York, University at Albany, Albany, NY, 2007. MR2293255 (2007k:42048)
- Richard Oberlin, Andreas Seeger, Terence Tao, Christoph Thiele, and James Wright, A variation norm Carleson theorem, J. Eur. Math. Soc. 14 (2012), no. 2, 421–464. MR2881301
- 7. José L. Rubio de Francia, A Littlewood-Paley inequality for arbitrary intervals, Rev. Mat. Iberoamericana 1 (1985), no. 2, 1–14. MR850681 (87j:42057)
- 8. Terence Tao and James Wright, Endpoint multiplier theorems of Marcinkiewicz type, Rev. Mat. Iberoamericana 17 (2001), no. 3, 521–558. MR1900894 (2003e:42014)

Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803-4918

E-mail address: oberlin@math.lsu.edu