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A MARCINKIEWICZ MAXIMAL-MULTIPLIER THEOREM

RICHARD OBERLIN

(Communicated by Michael T. Lacey)

Abstract. For r < 2, we prove the boundedness of a maximal operator
formed by applying all multipliers m with ‖m‖V r ≤ 1 to a given function.

1. Introduction

Given an exponent r and a function f defined on R, consider the r-variation
norm

‖f‖V r = ‖f‖L∞ + sup
N,ξ0<···<ξN

(
N∑
i=1

|f(ξi)− f(ξi−1)|r
)1/r

,

where the supremum is over all strictly increasing finite length sequences of real
numbers.

The classical Marcinkiewicz multiplier theorem states that if r = 1 and a function
m is of bounded r-variation uniformly on dyadic shells, then m is an Lp multiplier
for 1 < p < ∞ and

(1.1) ‖(mf̂ )̌ ‖Lp ≤ Cp,r sup
k∈Z

‖1Dk
m‖V r‖f‖Lp ,

where Dk = [−2k+1,−2k)∪ (2k, 2k+1] and ,̂ˇ denote the Fourier-transform and its
inverse. Later, Coifman, Rubio de Francia, and Semmes [2] (see also [8]) showed
that the requirement of bounded 1-variation can be relaxed to allow for functions
of bounded 2-variation, and in fact (1.1) holds whenever r ≥ 2 and | 1p − 1

2 | <
1
r .

The estimate [2] does not discriminate between multipliers of bounded 2-variation
and those of bounded r-variation where r < 2, and so one might ask whether there
is anything to be gained by controlling the variation norm of multipliers in the
latter range of exponents.

Defining the maximal-multiplier operator

(1.2) Mr[f ](x) = sup
m:‖m‖V r≤1

|(mf̂ )̌ (x)|,

where the supremum is over all functions in the V r unit ball, we have

Theorem 1.1. Suppose 1 ≤ r < 2 and r < p < ∞. Then

(1.3) ‖Mr[f ]‖Lp ≤ Cp,r‖f‖Lp .
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The case r = 1 was observed independently by Lacey [4].
Note that in the definition of Mr, each m is required to have finite r-variation

on all of R rather than simply on each dyadic shell as in (1.1). This is necessary for
boundedness, as can be seen from the counterexamples of Christ, Grafakos, Honźık
and Seeger [1].

Although the maximal operator (1.2) would seem to be fairly strong, we do not
yet know of an application for the bound above. We will, however, quickly illustrate
a strategy for its use that falls an (important) ε short of success. Let Ψ be (say)
a Schwartz function, and for each ξ, x ∈ R and k ∈ Z, consider the 2k-truncated
partial Fourier integral

Sk[f ](ξ, x) = p.v.

∫
f(x− t)e2πiξtΨ(2−kt)

1

t
dt.

It was proven by Demeter, Lacey, Tao, and Thiele [3] that for q = 2 and 1 < p < ∞,

(1.4) ‖ sup
‖g‖Lq=1

‖ sup
k

|(Sk[f ](·, x)ĝ)̌ |‖Lq‖Lp
x
≤ Cp,q‖f‖Lp .

If we had the bound

(1.5) ‖Sk[f ](ξ, x)‖Lp
x(�

∞
k (V r

ξ )) ≤ Cp,r‖f‖Lp

for some r < 2, then an application of Theorem 1.1 would give (1.4) for q > r by
rather different means than [3]. In fact, one can see by applying the method in
Appendix D of [6] that (1.5) holds for r > 2 and p > r′. Unfortunately, it does fail
for r ≤ 2.

2. Proof of Theorem 1.1

The following lemma was proven in [2]; see also [5].

Lemma 2.1. Let m be a compactly supported function on R of bounded r-variation
for some 1 ≤ r < ∞. Then for each integer j ≥ 0, one can find a collection Υj of
pairwise disjoint subintervals of R and coefficients {bυ}υ∈Υj

⊂ R so that |Υj | ≤ 2j,

|bυ| ≤ 2−j/r‖m‖Vr
, and

(2.1) m =
∑
j≥0

∑
υ∈Υj

bυ1υ,

where the sum in j converges uniformly.

The lemma above was applied in concert with Rubio de Francia’s square function
estimate [7] to obtain (1.1). Here, we will argue similarly, exploiting the analogy
between the Rubio de Francia square function estimate and the variation-norm
Carleson theorem.

It was proven in [7] that for p ≥ 2,

sup
I

‖
( ∑
I∈I

|(1I f̂ )̌ |2
)1/2‖Lp ≤ Cp‖f‖Lp ,

where the supremum above is over all collections of pairwise disjoint subintervals
of R. Consider the partial Fourier integral

S[f ](ξ, x) = (1(∞,ξ]f̂ )̌ (x).
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It was proven in [6] that for s > 2 and p > s′,

‖S[f ](ξ, x)‖Lp
x(V s

ξ ) ≤ Cp,s‖f‖Lp

or, equivalently,

(2.2) ‖ sup
I

( ∑
I∈I

|(1I f̂ )̌ |s
)1/s‖Lp ≤ Cp,s‖f‖Lp .

Note that by standardizing limiting arguments, taking the supremum in (1.2)
to be over all compactly supported m such that ‖m‖V r ≤ 1 does not change the
definition of Mr. Applying the decomposition (2.1), we see that for any compactly
supported m with ‖m‖V r ≤ 1 we have

|(mf̂ )̌ (x)| ≤
∑
j≥0

∑
υ∈Υj

|bυ(1υf̂ )̌ (x)|

≤
∑
j≥0

sup
υ∈Υj

|bυ||Υj |
1
s′

( ∑
υ∈Υj

|(1υf̂ )̌ (x)|s
)1/s

≤ Cr,s sup
I

( ∑
I∈I

|(1I f̂ )̌ (x)|s
)1/s

,

where, for the last inequality, we require s < r′.
Provided that r < 2 and p > r we can choose an s < r′ with s > 2 and p > s′,

giving (2.2) and hence (1.3).
The argument of Lacey [4] for r = 1 follows a similar pattern, except with

Marcinkiewicz’s method in place of [2] and the standard Carleson-Hunt theorem in
place of [6].
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