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A MARCINKIEWICZ MAXIMAL-MULTIPLIER THEOREM

RICHARD OBERLIN

(Communicated by Michael T. Lacey)

ABSTRACT. For r < 2, we prove the boundedness of a maximal operator
formed by applying all multipliers m with ||m|ly~ < 1 to a given function.

1. INTRODUCTION

Given an exponent r and a function f defined on R, consider the r-variation
norm
N 1/r

Ifllve =IIflle +  sup Do) - fE-lr)
Ngo<<én \ =
where the supremum is over all strictly increasing finite length sequences of real
numbers.
The classical Marcinkiewicz multiplier theorem states that if r = 1 and a function
m is of bounded r-variation uniformly on dyadic shells, then m is an LP multiplier
for 1 < p < oo and

(1) Imf) s < Cp.rsup Lo, mly | £

where Dy, = [—2F+1 —2F) U (2% 28+1] and *,~ denote the Fourier-transform and its
inverse. Later, Coifman, Rubio de Francia, and Semmes [2] (see also []]) showed
that the requirement of bounded 1-variation can be relaxed to allow for functions
of bounded 2-variation, and in fact (LI} holds whenever r» > 2 and |% —1< i

The estimate [2] does not discriminate between multipliers of bounded 2-variation
and those of bounded r-variation where r < 2, and so one might ask whether there
is anything to be gained by controlling the variation norm of multipliers in the
latter range of exponents.

Defining the maximal-multiplier operator

(1.2) M [fl(z) = sup [(mf) (z)],

m:||m|lyr <1
where the supremum is over all functions in the V" unit ball, we have

Theorem 1.1. Suppose 1 <r <2 andr < p < oco. Then
(1.3) M flllze < Copll fllLo-

Received by the editors October 4, 2011.
2010 Mathematics Subject Classification. Primary 42A45; Secondary 42A20.
The author is supported in part by NSF Grant DMS-1068523.

(©2013 American Mathematical Society
Reverts to public domain 28 years from publication

2081



2082 RICHARD OBERLIN

The case r = 1 was observed independently by Lacey [4].

Note that in the definition of M,., each m is required to have finite r-variation
on all of R rather than simply on each dyadic shell as in ({II]). This is necessary for
boundedness, as can be seen from the counterexamples of Christ, Grafakos, Honzik
and Seeger [1].

Although the maximal operator (2] would seem to be fairly strong, we do not
yet know of an application for the bound above. We will, however, quickly illustrate
a strategy for its use that falls an (important) e short of success. Let ¥ be (say)
a Schwartz function, and for each &,z € R and k € Z, consider the 2F-truncated
partial Fourier integral

Sklf1(€, x) = p.v. / flx — t)eZwigt\I/(Z,kt)

It was proven by Demeter, Lacey, Tao, and Thiele [3] that for ¢ = 2 and 1 < p < o0,
(1.4) | sup |l sup [(SkLfIC2)) Nzl e < Cpgll fllze-

llgllLa=1

1

— dt.
t

If we had the bound
(1.5) ISKLAE @)Lz vy < Cprllfllee

for some r < 2, then an application of Theorem [Tl would give (4] for ¢ > r by
rather different means than [3]. In fact, one can see by applying the method in
Appendix D of [6] that (I5]) holds for » > 2 and p > r’. Unfortunately, it does fail
for r < 2.

2. ProOF OF THEOREM [[]]
The following lemma was proven in [2]; see also [5].

Lemma 2.1. Let m be a compactly supported function on R of bounded r-variation
for some 1 < r < oo. Then for each integer j > 0, one can find a collection Y; of
pairwise disjoint subintervals of R and coefficients {b, }ver, C R so that |T;| < 27,
[bo] < 279/7|mlly,, and
(21) =" b,
>0 veY,

where the sum in j converges uniformly.

The lemma above was applied in concert with Rubio de Francia’s square function
estimate [7] to obtain (II]). Here, we will argue similarly, exploiting the analogy
between the Rubio de Francia square function estimate and the variation-norm

Carleson theorem.
It was proven in [7] that for p > 2,

Ao 1/2
sup | 1) 1) e < Coll fllo,
T Iez

where the supremum above is over all collections of pairwise disjoint subintervals
of R. Consider the partial Fourier integral

S ) = (Lo ) (2)-



A MARCINKIEWICZ MAXIMAL-MULTIPLIER THEOREM 2083

It was proven in [6] that for s > 2 and p > ¢/,
ISUUE D) ve) < Cposll fllze

or, equivalently,
Ae1s\1/s
(2.2) [sup (D 1) 1) " lee < Cpsll fllo-
T ez

Note that by standardizing limiting arguments, taking the supremum in (2]
to be over all compactly supported m such that ||m|/y» < 1 does not change the
definition of M,.. Applying the decomposition ([ZI), we see that for any compactly
supported m with |[[m|ly+- <1 we have

(mf) @) <7 D Ibo(Luf) (@)l

J>0veT,
1 Ao s\1/s
<3 sup bl (S 10 ()F)
j>0VETS =

< Crwsup (3101 Y @))",

IeT

where, for the last inequality, we require s < r’.
Provided that 7 < 2 and p > r we can choose an s < r’ with s > 2 and p > ¢/,

giving ([222)) and hence (3.

The argument of Lacey [] for r = 1 follows a similar pattern, except with
Marcinkiewicz’s method in place of [2] and the standard Carleson-Hunt theorem in
place of [6].
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