
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 141, Number 11, November 2013, Pages 3681–3688
S 0002-9939(2013)11601-1
Article electronically published on July 17, 2013

SYMMETRY IN THE SEQUENCE

OF APPROXIMATION COEFFICIENTS

AVRAHAM BOURLA

(Communicated by Matthew A. Papanikolas)

Abstract. Let {an}∞1 and {θn}∞0 be the sequences of partial quotients and
approximation coefficients for the continued fraction expansion of an irrational
number. We will provide a function f such that an+1 = f(θn±1, θn). In
tandem with a formula due to Dajani and Kraaikamp, we will write θn±1 as a
function of (θn∓1, θn), revealing an elegant symmetry in this classical sequence

and allowing for its recovery from a pair of consecutive terms.

1. Introduction

Given an irrational number r and a rational number written as the unique quo-
tient p

q of the two integers p and q with gcd(p, q) = 1 and q > 0, our fundamental

object of interest from diophantine approximation is the approximation coeffi-

cient θ(r, pq ) := q2
∣∣∣r − p

q

∣∣∣. Small approximation coefficients suggest high quality

approximations, combining accuracy with simplicity. For instance, the error in
approximating π using the fraction 355

113 = 3.14159203539823008849557522124 is

smaller than the error of its decimal expansion to the fifth digit, 3.14159 = 314159
100000 .

Since the former rational also has a much smaller denominator, it is of far greater
quality than the latter. Indeed θ

(
π, 355

113

)
< 0.0341, whereas θ

(
π, 314159100000

)
> 26535.

We obtain the high quality approximations for r by using the euclidean algorithm
to write r as an infinite continued fraction:

r = a0 + [a1, a2, ...] := a0 +
1

a1 +
1

a2 + ... ,

where the partial quotients a0 = a0(r) ∈ Z and an = an(r) ∈ N := Z∩ [1,∞) for
all n ≥ 1 are uniquely determined by r. This expansion also provides us with the
infinite sequence of rational numbers

p0
q0

:=
a0
1
,

pn
qn

:= a0 + [a1, ..., an], n ≥ 1,

tending to r known as the convergents of r. Define the approximation coefficient
of the nth convergent of r by

θn := θ

(
r,
pn
qn

)
= q2n

∣∣∣r − pn

qn

∣∣∣
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and refer to the sequence {θn}∞0 as the sequence of approximation coefficients.
Since adding an integer to a fraction does not change its denominator, the number
x0 := r−a0 shares the same sequences {an}∞1 and {θn}∞0 as r, allowing us to restrict
our attention solely to the unit interval. Throughout this paper, we fix an initial
seed x0 ∈ (0, 1)−Q and let {an}∞1 and {θn}∞0 be its sequences of partial quotients
and approximation coefficients. While the rest of this section is not a prerequisite,
the following results illustrate some of the key properties for this classical sequence
and are given for motivation as well as for sake of completeness.

For all n ≥ 0, it is well known [2, Theorem 4.6] that∣∣∣x0 − pn

qn

∣∣∣ < 1

qnqn+1
<

1

q2n
.

We conclude that θn < 1 for all n ≥ 0. Conversely, Legendre [2, Theorem
5.12] proved that if θ(x0,

p
q ) < 1

2 , then p
q is a convergent of x0. In 1891, Hur-

witz proved that there exist infinitely many pairs of integers p and q, such that
θ(x0,

p
q ) <

1√
5
≈ 0.4472 and that this constant, known as the Hurwitz Constant,

is sharp. Therefore, all irrational numbers possess infinitely many high quality ap-
proximations using rational numbers whose associated approximation coefficients
are less than 1√

5
. Using Legendre’s result, we see that all these high quality ap-

proximations must belong to the sequence of continued fraction convergents for
x0.

We may restate Hurwitz’s theorem as the sharp inequality lim inf
n→∞

{θn} ≤ 1√
5
. In

general, we use the value of lim inf
n→∞

{θn} to measure how well x0 can be approximated

by rational numbers. The set of values taken by lim inf
n→∞

{
θn(x0)

}
, as x0 varies in

the set of all irrational numbers in the interval, is called the Lagrange Spectrum,
and those irrational numbers x0 which construe the spectrum, that is, for which
lim inf
n→∞

{
θn(x0)

}
> 0, are called badly approximable numbers. It is known [2,

Theorem 7.3] that x0 is badly approximable if and only if its sequence of partial
quotients {an}∞1 is bounded. For more details about the Lagrange Spectrum, refer
to [3].

In 1895, Vahlen [4, Corollary 5.1.13] proved that for all n ≥ 1 we have the sharp
inequality

(1) min{θn−1, θn} <
1

2
,

and in 1903, Borel [4, Theorem 5.1.5] proved the sharp inequality

min{θn−1, θn, θn+1} < 5−.5.

More recent improvements include the sharp inequalities

min
{
θn−1, θn, θn+1

}
< (a2n+1 + 4)−.5

and

max
{
θn−1, θn, θn+1

}
> (a2n+1 + 4)−.5,

due to Bagemihl and McLaughlin [1] and Tong [7]. Therefore, this sequence exhibits
a bounding symmetry on a triple of consecutive terms, which stems from its internal
connection with the sequence of partial quotient.
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For instance, we write

π − 3 =
1

7 +
1

15 +
1

1 +
1

292 + ... .

= [7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, ...]

The first ten convergents
{

pn

qn

}9

0
are{

0

1
,
1

7
,
15

106
,
16

113
,
4687

33102
,
4703

33215
,
9390

66317
,
14093

99532
,
37576

265381
,
51669

364913

}
,

and the best upper bounds for {θn}90 using a four digit decimal expansion are

{0.1416, 0.0612, 0.9351, 0.0034, 0.6237, 0.3641, 0.5363, 0.2885, 0.6045, 0.2134}.
In particular, the small approximation coefficient θ3 = 0.0034 helps explain why
the rational number 355

113 = 3+ 16
113 , first discovered by Archimedes (c. 287–212 BC),

was a popular approximation for π throughout antiquity.

2. Preliminary results

In 1921, Perron [6] proved that

(2)
1

θn−1
= [an+1, an+2, ...] + an + [an−1, an−2, ..., a1], n ≥ 1,

where we take [∅] := 0 when n = 1. Thus, as far as the flow of information goes, the
entire sequence of partial quotients is needed in order to generate a single member
in the sequence of approximation coefficients. In 1978, Jurkat and Peyerimhoff [5]
showed that for all irrational numbers and for all n ≥ 1, the point (θn−1, θn) lies
in the interior of the triangle with vertices (0, 0), (0, 1) and (1, 0). As a result, we
have

(3) θn−1 + θn < 1,

which is an improvement of Vahlen’s result (1). In addition, they proved that an+1

can be written as a function of (θn−1, θn) but came up short of providing a simple
expression that applies to all cases. Combining this observation with the pair of
symmetric identities

θn+1 = θn−1 + an+1

√
1− 4θn−1θn − a2n+1θn, n ≥ 1,

and

θn−1 = θn+1 + an+1

√
1− 4θn+1θn − a2n+1θn, n ≥ 1,

due to Dajani and Kraaikamp [4, Proposition 5.3.6], allows us to recover the tail of
the sequence of approximation coefficients from a pair of consecutive terms.

We abbreviate the last two equations to the single working formula

(4) θn±1 = θn∓1 + an+1

√
1− 4θn∓1θn − a2n+1θn, n ≥ 1.

Our goal, obtained in Theorem 3, is to provide a real valued function f such that
an+1 = f(θn±1, θn). This will enable us, as expressed in Corollary 4, to eliminate
an+1 from formula (4) without disrupting its elegant symmetry. This will enable
us to recover the entire sequence {θn}∞0 from a pair of consecutive terms.
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3. Symbolic dynamics

The continued fraction expansion is a symbolic representation of irrational num-
bers in the unit interval as an infinite sequence of positive integers. Let 	·
 be the
floor function, whose value on a real number r is the largest integer smaller than
or equal to r. Then we obtain this expansion for the initial seed x0 ∈ (0, 1)−Q by
using the following infinite iteration process:

(1) Let n := 1.
(2) Set the reminder of x0 at time n to be rn := 1

xn−1
∈ (1,∞).

(3) Define the digit and future of x0 at time n to be the integer part and
fractional part of rn respectively, that is, an := 	rn
 ∈ N and xn := rn −
an ∈ (0, 1)−Q. Increase n by one and go to step (2).

Using this iteration scheme, we obtain

x0 =
1

r1
=

1

a1 + x1
=

1

a1 +
1

r2

=
1

a1 +
1

a2 + x2

=
1

a1 +
1

a2 +
1
r3

= ... ;

hence, the quantity an is no other than the nth partial quotient of x0. We relabel
an as the digit for x0 at time n in order to emphasize the underlying dynamical
structure at hand and write

(5) x0 = [r1] = [a1, r2] = [a1, a2, r3] = ... .

The quantity xn = rn − an is the value of xn−1 under the Gauss Map

(6) T :
(
(0, 1)−Q

)
→

(
(0, 1)−Q

)
, T (x) :=

1

x
−

⌊
1

x

⌋
.

This map is realized as a left shift operator on the set of infinite sequences of digits,
i.e.

[an, an+1, rn+2] = xn−1
T�→ xn = [an+1, rn+2], n ≥ 1.

We preserve the n digits that the map Tn erases from this symbolic representation
of x0 by defining the past of x0 at time n ≥ 1 to be

(7) yn := −an − [an−1, an−2, ..., a1] < −1.

The natural extension map

T (x, y) :=

(
1

x
−

⌊
1

x

⌋
,

1

y
−

⌊
1

x

⌋)
=

(
T (x),

1

y
−

⌊
1

x

⌋)

is well defined whenever x is an irrational number and y < −1, providing us with
the relationship

(xn+1, yn+1) = T (xn, yn), n ≥ 1.

Since xn is uniquely determined by {an}∞n+1 and yn is uniquely determined by
{an}n1 , this map can be thought of as one tick of the clock in the symbolic repre-
sentation of x0 using the sequence {an}∞1 :

[[a1, a2, ..., an|an+1, an+2, ...]]
T�→ [[a1, a2, ..., an, an+1|an+2, ...]],

advancing the present time denoted by | one step into the future.
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4. Dynamic pairs vs. Jager pairs

Using the dynamical terminology of the last section, we restate Perron’s result
(2) as

(8) θn−1 =
1

xn − yn
, n ≥ 1.

Define the region Ω := (0, 1)× (−∞,−1) ⊂ R
2 and the map

(9) Ψ : Ω → R
2, Ψ(x, y) :=

(
1

x− y
,− xy

x− y

)
,

which is clearly well-defined and continuous. Since for all n ≥ 1, we have (xn, yn) ∈
Ω, we use formulas (6) and (8) to obtain

1

θn
= xn+1 − yn+1 =

(
1

xn
− an+1

)
−

(
1

yn
− an+1

)
= −xn − yn

xnyn
, n ≥ 0,

so that

(10) Ψ(xn, yn) = (θn−1, θn).

We call (θn−1, θn) the Jagger Pair of x0 at time n. We also denote the image
Ψ(Ω) by Γ. Then

Proposition 1. The set Γ is the open region interior to the triangle in R2 with
vertices (0, 0), (1, 0) and (1, 0).

Proof. For every positive integer k ≥ 2, define the open region Ωk := ( 1k , 1) ×
(−k,−1), whose boundary contains the open line segments ( 1k , 1) × {−1}, {1} ×
(−k,−1),

(
1
k , 1

)
× {−k} and { 1

k} × (−k,−1). Since Ψ is continuous, Γk := Ψ(Ωk)
is the open region interior to the image of the boundary for Ωk under Ψ, which we
will now find explicitly.

From definition (9) of Ψ, we have

(11) x =
1

u
+ y

and

(12) v = − xy

x− y
= −uxy.

Set y := −1 and x ∈
(
1
k , 1

)
so that, by definition (9) of Ψ, we have u = 1

x−y =

1
x+1 ∈

(
1
2 ,

k
k+1

)
. Formulas (11) and (12) now yield v = u

(
1
u − 1

)
= 1 − u ∈(

1
2 ,

1
k+1

)
. Conclude that Ψ maps the open line segment ( 1k , 1) × {−1} in the xy-

plane to the open line segment between the points
(
1
2 ,

1
2

)
and

(
k

k+1 ,
1

k+1

)
in the

uv-plane.
Set x := 1 and y ∈ (−k,−1) so that, by definition (9) of Ψ, we have u = 1

1−y ∈(
1
2 ,

1
k+1

)
. Formulas (11) and (12) now yield v = u

(
1
u − 1

)
= 1 − u ∈

(
1
2 ,

k
k+1

)
.

Conclude that Ψ maps the open line segment {1}× (−k,−1) in the xy-plane to the

open line segment between the points
(
1
2 ,

1
2

)
and

(
1

k+1 ,
k

k+1

)
in the uv-plane.
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Set y := −k and x ∈
(
1
k , 1

)
, so that, by definition (9) of Ψ, we have u = 1

x−y =

1
x+k ∈

(
1

k+1 ,
k

k2+1

)
. Formulas (11) and (12) now yield v = −u

(
1
u − k

)
(−k) =

k − k2u ∈
(

k
k2+1 ,

k
k+1

)
. Conclude that Ψ maps the open line segment (0, 1) ×

{−k} in the xy-plane to the open line segment between the points
(

1
k+1 ,

k
k+1

)
and(

k
k2+1 ,

k
k2+1

)
in the uv-plane.

Finally, set x := 1
k and y ∈ (−k,−1), so that, by definition (9) of Ψ, we have

u ∈
(

k
k2+1 ,

k
k+1

)
. Formulas (11) and (12) now yield v = u

k

(
1
u − 1

k

)
= 1

k − u
k2 ∈(

k
k2+1 ,

k
k+1

)
. Conclude that Ψ maps the open line segment

{
1
k

}
× (−k,−1) in the

xy-plane to the open line segment between the points
(

k
k2+1 ,

k
k2+1

)
and

(
k

k+1 ,
1

k+1

)
in the uv-plane. From the continuity of Ψ, we have

Γ = Ψ(Ω) = Ψ

(∞⋃
2

Ωk

)
=

∞⋃
2

Ψ(Ωk) =

∞⋃
2

Γk.

Therefore, we conclude the desired result after letting k → ∞. �

Note that since (θn−1, θn) = Ψ(xn, yn) ∈ Γ, this observation is in accordance
with formula (3).

Lemma 2. The map Ψ : Ω → Γ is a homeomorphism with inverse:

(13) Ψ−1(u, v) :=

(
1−

√
1− 4uv

2u
,−1 +

√
1− 4uv

2u

)
.

Proof. First, we will show that Ψ is a bijection. Since the map Ψ is surjective onto
its image Γ, we need only show injectiveness. Let (x1, y1), (x2, y2) be two points in
Ω such that(

1

x1 − y1
,− x1y1

(x1 − y1)

)
= Ψ(x1, y1) = Ψ(x2, y2) =

(
1

x2 − y2
,− x2y2

(x2 − y2)

)
.

By equating the first and then the second components of the exterior terms, we
obtain that

(14) x1 − y1 = x2 − y2

and then that x1y1 = x2y2. Therefore,

(x1 + y1)
2 = (x1 − y1)

2 + 4x1y1 = (x2 − y2)
2 + 4x2y2 = (x2 + y2)

2.

Since both these points are in Ω, they must lie below the line x + y = 0; hence
x1 + y1 = x2 + y2 < 0. Another application of condition (14) now proves that
x1 = x2 and y1 = y2; hence Ψ is injective.

Since both Ψ and Ψ−1 are clearly continuous, it is left to prove that Ψ−1 is
well-defined and that it is the inverse for Ψ. Given (u0, v0) ∈ Γ, set

(x0, y0) := Ψ−1(u0, v0) =

(
1−

√
1− 4u0v0
2u0

,−1 +
√
1− 4u0v0
2u0

)
.

From Proposition 1, we know that Γ lies entirely underneath the line u + v = 1
in the uv plane. The only point of intersection for this line and the hyperbola
4uv = 1 is the point (u, v) =

(
1
2 ,

1
2

)
; hence Γ must lie underneath this hyperbola as

well. We conclude that 4u0v0 < 1, so that both x0 and y0 must be real. Another
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implication of the inequality u + v < 1 is that 4uv < 4u − 4u2; hence 1 − 4uv >
4u2 − 4u + 1 = (2u − 1)2. Conclude that 1 +

√
1− 4uv > 2u, so we must have

y0 = − 1+
√
1−4u0v0
2u0

< −1.

To prove that x0 ∈ (0, 1), we first observe that
√
1− 4u0v0 < 1 implies that

1 −
√
1− 4u0v0 > 0; hence x0 is positive. If we further assume by contradiction

that x0 ≥ 1, then the definition of Ψ−1 (13) will imply the inequality

1 +
√
1− 4u0v0 ≤ x0

(
1 +

√
1− 4u0v0

)
=

1

2u0

(
1−

√
1− 4u0v0

) (
1 +

√
1− 4u0v0

)
= 2v0,

so that we obtain the inequality

4v20 − 4v0 + 1 = (2v0 − 1)2 ≥ 1− 4u0v0.

After the appropriate cancellations and rearrangements, we obtain the inequality
u0 + v0 ≥ 1, which is in contradiction to Proposition 1. Conclude that (x0, y0) ∈ Ω
and Ψ−1 : Γ → Ω is well-defined.

Finally, we will show that Ψ−1 is the inverse for Ψ. Let (u, v) ∈ Γ and set
(x, y) := Ψ−1(u, v) ∈ Ω. Using the definitions (9) and (13) of Ψ and Ψ−1, the first
component of Ψ(x, y) is

1

x− y
=

(
1−

√
1− 4uv

2u
+

1 +
√
1− 4uv

2u

)−1

=

(
2

2u

)−1

= u,

and its second component is

− xy

(x− y)
= −u(xy) = u

(
1

4u2

(
1−

√
1− 4uv

2))
=

1

4u
· 4uv = v;

hence Ψ−1 is the right inverse for Ψ. Since Ψ is a bijection, we conclude it is the
(two-sided) inverse for Ψ, completing the proof. �

5. Result

Theorem 3. Let x0 be an irrational number in the unit interval and let n ∈ N.
If an+1 is the digit at time n+ 1 in the continued fraction expansion for x0 and if
(θn−1, θn, θn+1) are the approximation coefficients for x0 at time n−1, n and n+1,
then

(15) an+1 =

⌊
1 +

√
1− 4θn−1θn

2θn

⌋
=

⌊
1 +

√
1− 4θn+1θn

2θn

⌋
.

Proof. Let (xn, yn) be the dynamic pair of x0 at time n. Formula (10), the fact
that Ψ is a homeomorphism and definition (13) of Ψ−1 yield

(16) (xn, yn) = Ψ−1(θn−1, θn) =

(
1−

√
1− 4θn−1θn

2θn−1
,−1 +

√
1− 4θn−1θn

2θn−1

)
.

Using formula (5), we write xn = [an+1, rn+2] = 1
an+1+[rn+2]

, so that the first

components in the exterior terms of formula (16) equate to

an+1 + [rn+2] =
2θn−1

1−
√
1− 4θn−1θn

=
1 +

√
1− 4θn−1θn

2θn
.
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But since [rn+2] = xn+1 < 1, we have

an+1 =
⌊
an+1 + [rn+2]

⌋
=

⌊
1 +

√
1− 4θn−1θn

2θn

⌋
,

which is the first equality in (15).
Next, we equate the second components in the exterior terms of formula (16),

which, after using formula (7), yields

an + [an−1, ..., a1] =
1 +

√
1− 4θn−1θn
2θn−1

.

But since [an−1, ..., a1] < 1, we conclude that

an =
⌊
an + [an−1, ..., a1]

⌋
=

⌊
1 +

√
1− 4θn−1θn
2θn−1

⌋
.

Adding one to all indices establishes the equality of the exterior terms in (15) and
completes the proof. �

As a direct consequence of this theorem and formula (4), we obtain:

Corollary 4. Assuming the hypothesis of the theorem, we have

θn±1 = θn∓1 +

⌊
1 +

√
1− 4θn∓1θn
2θn

⌋√
1− 4θn∓1θn −

⌊
1 +

√
1− 4θn∓1θn
2θn

⌋2

θn.
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