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A SUFFICIENT CONDITION FOR NON-SOFICNESS

OF HIGHER-DIMENSIONAL SUBSHIFTS

STEVE KASS AND KATHLEEN MADDEN

(Communicated by Bryna Kra)

Abstract. A shift space is said to be sofic if it is the factor of a shift of
finite type. In one dimension, there are complete characterizations of sofic-
ness. There are no characterizations in higher dimensions, and there are few
examples of non-sofic Z

d shifts for d > 1. In this work we give a condition that
implies non-soficness in higher-dimensional shift spaces, and we apply it to a
variety of examples.

1. Background definitions

Let A = {1, . . . , n} be a finite alphabet, and let D ⊆ Z
d, d ≥ 1. For y ∈ AD,

�v ∈ D and S ⊆ D, we will denote the symbol appearing in y at �v as y�v and the
configuration of symbols appearing in y in the locations in S as yS . When S is
a one-dimensional subset of D of the form S = {�a + k�ei | 0 ≤ k < m} for some
1 ≤ i ≤ d, we will call configuration yS a word (of length m).

For d ≥ 1, the d-dimensional, full n-shift is the set AZ
d

together with the Z
d-

action defined by

σ�v(x)�w = x�v+�w

for any x ∈ AZ
d

and any �v, �w ∈ Z
d. A closed shift-invariant subset X of AZ

d

together with the restriction of the Z
d-action to X is called a Z

d-shift space and is
denoted by (X,Zd).

Shift spaces can be defined via a set of forbidden configurations. If this set of
forbidden configurations can be chosen to be finite, (X,Zd) is called a shift of finite
type. A shift space (Y,Zd) is sofic if and only if it is the image of a continuous,
shift commuting map φ : X → Y for some shift of finite type (X,Zd).

A matrix shift is defined by zero-one n× n transition matrices H1, H2, . . . , Hd;
symbols j, k ∈ A are forbidden from occurring adjacent to each other in the �ei
direction if and only if Hi(j, k) = 0.

Up to conjugacy, every shift of finite type is equivalent to a matrix shift and
every continuous, shift commuting map φ : X → Y can be taken to be a map on
symbols. (See [LM] for additional background, particularly in the one-dimensional
case.) So we may assume that a shift space (Y,Zd) is sofic with alphabet A′ if and
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only if there exists a matrix shift (X,Zd) with alphabet A and a map on symbols

Φ : A → A′

via which the factor map

φ : X → Y

applies Φ to the individual symbols of a point in X. In all that follows, we will
refer to both maps as φ. In addition, and without loss of generality, when we refer
to a map φ between shift spaces, we will mean that it is a 1-block code given by a
map Φ on symbols.

When (X,Zd) is a shift space and D ⊆ Z
d, we say a configuration C ∈ AD occurs

in X if there exists x ∈ X with xD = C. We say C is allowed if C does not contain
any of the defining forbidden configurations. Note that all occurring configurations
are necessarily allowed, but allowed configurations might or might not occur.

Special notation for several particular subsets of Zd will be helpful. Let Bd
k be

the kd-rectangular block with “lower left corner” (1, 1, . . . , 1) ∈ Z
d. That is,

Bd
k = {(a1, a2, . . . , ad) | 1 ≤ ai ≤ k for 1 ≤ i ≤ d}.

Denote the complement of Bd
k by F d

k = Z
d \ Bd

k . When the context is understood,
we will refer to Bd

k and F d
k simply as Bk and Fk.

We note that the number of lattice points in ∂(Bk), the boundary of Bk, is

kd − (k − 2)
d
, which is less than 2d · kd−1. This observation will be useful in the

proof of Theorem 2.3.
The following ideas will also be needed:

Definition 1.1. Let (Y,Zd) be a shift space and let C be a configuration on Bk.
The extender set of C, denoted EY (C), is given as follows:

EY (C) = {yFk
| y ∈ Y and yBk

= C}.

The collection of extender sets for all occurring configurations on Bk is denoted Ek
Y :

Ek
Y = {EY (C) |C is an occurring configuration on Bk}.

Because a matrix shift (X,Zd) is given by nearest-neighbor transitions, the ex-
tender set EX(C) depends only on the configuration on the boundary of Bk. If
(Y,Zd) is sofic with φ : X → Y , then Claim 1.2 shows that the extender sets of
(Y,Zd) can be characterized in terms of the extender sets of (X,Zd). (The proof of
Claim 1.2 is straightforward and is left to the reader.)

Claim 1.2. Let (X,Zd) be a matrix shift and let (Y,Zd) be sofic with φ : X → Y
a 1-block code. Let C be a configuration on Bk occurring in (Y,Zd). Let A1,
A2, . . . , Aj be the pre-images under φ of C that occur in (X,Zd). Then

EY (C) =
⋃

1≤i≤j

φ(EX(Ai)).

Claim 1.2 tells us that EY (C) is determined by the configurations on ∂(Bk) of
the pre-images of C. We will denote these “boundary pre-images” by BP (C). That
is,

BP (C) = {x∂(Bk) |x ∈ X and φ(x)Bk
= C}.
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2. A sufficient condition for non-soficness

in higher dimensions

For one-dimensional shift spaces, there is a simple characterization of soficness.
Let (Y,Z) be a shift space with alphabet A, and let w be a finite word that occurs
in Y . Define RY (w) (the right follower set of w) to be the set of half-infinite
configurations that occur in points of Y immediately to the right of w. That is,

RY (w) = {y[0,∞) |wy[0,∞) occurs in Y }.
It is well known that the shift space (Y,Z) is sofic if and only if the set

RY = {RY (w) |w is a finite occurring word in Y }
is finite ([LM], Theorem 3.2.10). (This is also true for the collection of “left prede-
cessor” sets.)

Informally, the intuition behind this fact is that in one dimension, (Y,Z) is sofic
and RY is finite exactly when the way in which a word can be extended depends
only on a finite amount of hidden state information on each boundary symbol of
the word.

There is no equivalent characterization of soficness in higher dimensions, nor is
there a single canonical generalization of the characterizing condition. However,
we might hope that a finite amount of hidden state information on the boundary
symbols of a higher-dimensional configuration C might also be enough to determine
EY (C). So, because |∂(Bk)| = 2dkd−1 grows with k for d > 1, it is natural to ask
whether there is some condition on the growth rate of |Ek

Y | (as k → ∞) that might
be useful in characterizing the soficness of (Y,Zd). A few examples illustrate the
idea.

We first observe that if (X,Zd) is a shift of finite type with alphabet A, then

|Ek
X | ≤ |A∂(Bk)| ≤ |A|2dkd−1

.

Thus in Z
d shifts of finite type, log(|Ek

X |) is in O(kd−1).
In addition, there are several higher-dimensional subshifts (Y,Zd) in the litera-

ture that are known to be strictly sofic (i.e. sofic but not a shift of finite type) for
which log(|Ek

Y |) ∈ O(kd−1). These include: the two-dimensional connected com-

ponents odd shift, Yodd ⊂ {0, 1}Z2

, where finite connected components of 1’s must
be of odd size ([H], [C]); the two-dimensional context-free shift ([LMN], Section

2.5); and the higher-dimensional even-run shifts contained in {0, 1}Zd

, where any
run of 1’s in a coordinate direction has even length. (We omit details of these
examples, but the interested reader can easily verify that their extender sets have
the aforementioned growth condition.)

However, there are also (unpublished) examples of subshifts ([HQ], [P2]) which
are strictly sofic but for which the asymptotic growth rate of log(|Ek

X |) is greater
than O(kd−1). So a log growth rate for extender sets greater than O(kd−1) is not by
itself enough to imply non-soficness. Our main result, Theorem 2.3, will show that
if we can find extender sets that grow more quickly than this and that also overlap
in a particular way, then (Y,Zd) must be non-sofic. This overlapping condition is
described in the following definition.

Definition 2.1. Let {Si}mi=1 be a finite sequence of non-empty sets. The sequence
{Si} is called union-increasing if the partial unions of the {Si} strictly increase:
if for 1 ≤ i ≤ m, Si ⊃

⋃
j<i Sj .
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Before stating Theorem 2.3, we include a lemma which will be useful in the
theorem’s proof. Lemma 2.2 will identify a condition in a sofic shift (Y,Zd) that
provides information about the sets BP (C), which we defined earlier. Roughly,
Lemma 2.2 states the following: If y ∈ Y and C is a configuration on Bk that
occurs in Y but does not “fit” into the middle of y (in place of yBk

), then BP (yBk
)

and BP (C) are disjoint.

Lemma 2.2. Let (Y,Zd) be a sofic shift space with φ : X → Y where (X,Zd) is a
matrix shift and φ is a 1-block code. Assume that C is a configuration on Bk that
occurs in (Y,Zd) and that y ∈ Y is a point for which yFk

/∈ EY (C). Let x be any
pre-image of y, and write P = x∂(Bk). Then P /∈ BP (C).

Proof. Let C, y, x, and P be as given in the hypothesis. For the purpose of
obtaining a contradiction, assume that P ∈ BP (C). Then there exists x′ ∈ X
where φ(x′)Bk

= C and P = x′
∂(Bk)

.

Consider the configuration z on Z
d that agrees with x′ on Bk and with x on Fk.

Note that z agrees with both x and x′ on ∂(Bk), because x∂(Bk) = x′
∂(Bk)

= P . As

a result (and because (X,Zd) is a matrix shift), z ∈ X.
Therefore φ(z) ∈ Y and φ(z)Fk

∈ EY (φ(z)Bk
). By the definition of z,

φ(z)Fk
= φ(zFk

) = φ(xFk
) = φ(x)Fk

= yFk

and
φ(z)Bk

= φ(zBk
) = φ(x′

Bk
) = φ(x′)Bk

= C,

and we have yFk
∈ EY (C), which is a contradiction. The assumption that P ∈

BP (C) must be false, as desired. �
Theorem 2.3. Let (Y,Zd) be a shift space. Suppose given any M > 0, there exists

a k > 0, an m > Mkd−1

, and occurring configurations {Ci}mi=1 on Bk for which
{EY (Ci)}mi=1 is a union-increasing sequence. Then (Y,Zd) is non-sofic.

Proof. Assume the hypothesis, but suppose contrary to the conclusion that there
exists a matrix shift (X,Zd) and a 1-block code φ : X → Y .

Let A be the alphabet for X, let M = |A|2d, and choose k > 0, m > Mkd−1

, and
occurring configurations {Ci}mi=1 on Bk for which {EY (Ci)}mi=1 is a union-increasing
sequence.

For each 1 ≤ i ≤ m, choose y(i) ∈ Y so that y
(i)
Bk

= Ci and y
(i)
Fk

/∈
⋃

j<i EY (Cj).

This is possible because {EY (Ci)}mi=1 is a union-increasing sequence.

For each i, let x(i) ∈ X be some pre-image of y(i) and write Pi = x
(i)
∂(Bk)

. Note

that Pi ∈ BP (Ci). For j < i, however, Lemma 2.2 implies that Pi /∈ BP (Cj), and
therefore Pi 
= Pj . This implies that the m configurations Pi are distinct.

On the other hand, there are fewer than 2d · kd−1 lattice points in ∂(Bk); hence

there are fewer than |A|2d·kd−1

=Mkd−1

distinct configurations on ∂(Bk) using sym-
bols from A.

This yields a contradiction, because m was chosen to be greater than Mkd−1

,
and thus (Y,Zd) is non-sofic. �

We conjecture that if (X,Zd) is sofic, then log(|Ek
X |) must grow more slowly than

kd; that is, that log(|Ek
X |) ∈ o(kd). For d > 1, the converse of this conjecture is

certainly not true. To see this, first note that the number of occurring configurations
on Bk is an upper bound for |Ek

Y |. Take (Y,Zd) to be any non-sofic shift space for
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which the number of occurring configurations on Bk is less than Mkd−1

for some
M > 0 and for all k ∈ N. One way to create such an example is to let (X,Zd−1)
be a non-empty shift space whose set of forbidden configurations is not recursively
enumerable. Then create (Y,Zd), where points in Y are constructed by “stacking”
copies of the same point from X in the d-direction. That is,

Y = {y | y{�v∈Zd | vd=0} = x for some x ∈ X and σ�ed(y) = y}.
Such counterexamples have zero entropy; we know of no positive entropy counterex-
amples to the converse of the conjecture.

We close this section with three non-sofic examples. In Example 2.4, the exten-
der sets used in Theorem 2.3 are disjoint. This is not the case for Example 2.5.
Example 2.6 is a one-dimensional example (that is known to be non-sofic because
RY is not finite) for which there do not exist configurations {Ci} satisfying the
hypotheses of Theorem 2.3. This example shows that Theorem 2.3 does not com-
pletely characterize non-soficness. Example 2.6 was first described in [P].

Example 2.4. Let A = {F,G, 0, 1} and let d > 1. Define a collection of configu-

rations W on Bd−1
k ⊂ Z

d−1 via

W ∈ W iff W�v =

⎧⎪⎨
⎪⎩
F for �v ∈ ∂(Bd−1

k ),

G for �v ∈ Bd−1
k \ ∂(Bd−1

k ).

Intuitively the configurations W ∈ W are “windows”, and the symbols F and G
stand for frame and glass respectively. Let Dk ⊂ Z

d be defined as

Dk = Bd−1
k × [−k, k] = (Bd−1

k × [−k,−1]) ∪ (Bd−1
k × {0}) ∪Bd

k .

Define Y ⊂ AZ
d

via forbidden blocks

F = {C ∈ ADk |CBd−1
k ×{0} ∈ W and CBd

k

= CBd−1

k ×[−k,−1] }.

Then (Y,Zd) is non-sofic.

Proof. Let M > 0. Choose k so that 2k−1 > M , and note that this implies

that 2(k−1)kd−1

> Mkd−1

. Let m = 2(k−1)kd−1

, and note that there are m distinct
configurations of 0’s and 1’s on Bd−1

k × [2, k]. Extend each of thesem configurations

to a configuration on Bd
k by placing a window at Bd−1

k × {1}. Let {Ci} be the

resulting set of configurations on Bd
k . These configurations contain no forbidden

blocks; hence they occur and their extender sets EY (Ci) are non-empty.
By the construction of the Ci, every configuration y ∈ EY (Ci) contains an

“imprint” of Ci. More precisely, yBd−1
k ×[−k+2,0] matches the configuration of 0’s

and 1’s within Ci. (Otherwise, extending Ci by y would create a forbidden block.)
As a result, y cannot extend Cj for j 
= i, because distinct Ci contain distinct
configurations of 0’s and 1’s.

The {EY (Ci)}mi=1 are then distinct non-empty sets which always form a union-
increasing sequence, and by Theorem 2.3, (Y,Zd) is non-sofic. �

Example 2.5. Let A = {0, 1, 2}. Define Y ⊂ AZ
2

via the following set of forbidden
configurations:

F =

{
C ∈ ABk

∣∣∣ k ∈ N and C�v =

{
1 for �v ∈ [1, k]× {1}
2 for �v ∈ [1, k]× {k}

}
.
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Intuitively F includes all configurations on Bk in which the first row of Bk consists
entirely of 1’s and the kth row of Bk consists entirely of 2’s. Then (Y,Z2) is non-
sofic.

Proof. Let M > 0 be given. Choose k = M + 1 and let m = (M + 1)M+1 = kk.
We will show that there exists {y(i)}mi=1 ⊂ Y with

y
(i)
Fk

/∈ EY (y
(j)
Bk

) for all 1 ≤ j < i ≤ m.

Then, for Ci = y
(i)
Bk

for 1 ≤ i ≤ m, the set {EY (Ci)}mi=1 is union-increasing, and

thus it will follow from Theorem 2.3 that (Y,Z2) is non-sofic.
For 1 ≤ i ≤ m, let �ai = (a1i , a

2
i , . . . , a

k
i ) be the i

th k-tuple in reverse lexicographic
order among all k-tuples with integer entries between 1 and k inclusive. That is, if
1 ≤ i < j ≤ m, then �ai comes after �aj in lexicographic order so that if 1 ≤ J ≤ k
is the first index for which aJi 
= aJj , then aJi > aJj .

We will first describe the points y(i) ∈ Y informally. On the jth row of y(i),
for 1 ≤ j ≤ k, there will be a word of length k + 2(k − j) consisting entirely of

1’s with the last aji of those 1’s intersecting the left side of Bk. Then, for each
1 ≤ j ≤ k, corresponding to the word consisting entirely of 1’s on the jth row as
described there will be a word of length k + 2(k − j) + 1 (exactly one unit longer
than the word of 1’s) consisting entirely of 2’s on the (3k − j)th row of y(i). This
word consisting of 2’s will be located with its leftmost 2 in the same column as the
leftmost 1 of the corresponding word consisting of 1’s and with its last aji + 1 2’s

on the left side of B3k. Elsewhere, y
(i) will contain 0’s.

Figure 1 illustrates y(i) for k = 5 and �ai = (5, 3, 4, 0, 5).

Figure 1. Example showing y(i) for k = 5 and �ai = (5, 3, 4, 0, 5),
with Bk outlined.
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More formally, define y(i) as follows:

(1) y
(i)
(�,j) = 1 for 1 ≤ j ≤ k and −k − 2(k − j) + aji − 1 ≤ � ≤ aji ;

(2) y
(i)
(�,3k−j) = 2 for 1 ≤ j ≤ k and −k − 2(k − j) + aji − 1 ≤ � ≤ aji + 1;

(3) y
(i)
�v = 0 elsewhere.

We leave it to the reader to verify that the points {y(i)}mi=1 are in Y and that

y
(i)
Fk

/∈ EY (y
(j)
Bk

) for all 1 ≤ j < i ≤ m. �

Example 2.6 ([P]). Let (Y,Z) be the one-dimensional reverse context-free shift
on the alphabet A = {a, b, c} given by forbidden blocks

F = {cambmc |m > 0}.
Then (Y,Z) is non-sofic, but there do not exist configurations whose extender sets
satisfy the hypotheses of Theorem 2.3.

A number of observations will be useful in the proof of this claim. The first
follows immediately from the definition of F :

Observation 2.7. Let w be a word occurring in the reverse context-free shift space
Y . Then:

(1) For i ≥ 0, wbic (respectively caiw) is forbidden if and only if w ends with
cai+jbj (begins with ajbi+jc) with j ≥ 0 and i+ j > 0;

(2) For 0 < i ≤ j, waibjc (cajbiw) is forbidden if and only if w ends with caj−i

(begins with bj−ic).

The following two observations are simple consequences of Observation 2.7.

Observation 2.8. Let w be a word occurring in the reverse context-free shift space
Y . Then wbic and wbjc (or caiw and cajw) are both forbidden if and only if j = i.

Proof. By Observation 2.7, wbic is forbidden if and only if w ends with cai+kbk for
some k ≥ 0. Again using Observation 2.7,

wbjc = w′cai+kbkbjc

is forbidden if and only if i+ k = j + k or i = j, as desired. �
Observation 2.9. Let w be a word occurring in the reverse context-free shift
space Y . Then waibjc and wa�bmc (or cajbiw and camb�w), where 0 < i ≤ j and
0 < � ≤ m, are both forbidden if and only if j − i = m− �.

Proof. By Observation 2.7, waibjc is forbidden if and only if w ends with caj−i.
Again using Observation 2.7,

wa�bmc = w′caj−ia�bmc

is forbidden if and only if j − i+ � = m or j − i = m− �, as desired. �
Let k > 0 be given and let W be all occurring words of length k in Y . In the

proof of Claim 2.10, it will be helpful to partition W into twelve subsets. The first
three subsets are Wa = {ak}, Wb = {bk}, and Wab = {aibk−i for 1 < i < k}.

The next eight subsets include all the words w that either begin with aibjc for
j ≥ 0 and i ≤ j or end with cajbi for j ≥ 0 and i ≤ j or both. These subsets can
be indexed by elements in

(L ×R) \ {(0, 0)} =
(
{bc, abc, 0} × {ca, cab, 0}

)
\ {(0, 0)}.
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The element from L indicates (respectively) whether w begins with bjc for j ≥ 0,
with aibjc for 0 < i ≤ j, or neither. Similarly, the element fromR indicates whether
w ends with caj for j ≥ 0, with cajbi for 0 < i ≤ j, or neither. For example, W(bc,0)

consists of all words of length k of the form b�cw′ for some � ≥ 0 where w′ does not
end in cajbi for j ≥ 0 and i ≤ j.

Let the twelfth subset of W , denoted Wfree, be all the elements of W that do not
fall into one of the previously defined subsets. (These are all the occurring words
of length k with the full extender set {yFk

| y ∈ Y }.)
We are now ready to prove Claim 2.10.

Claim 2.10. Let (Y,Z) be the reverse context-free shift. Let n > 84, k > 0,
and suppose that {Ci}ni=1 is a collection of occurring configurations on Bk. Then
{EY (Ci)}ni=1 is not a union-increasing sequence.

Proof. Suppose that {Ci}ni=1 is a collection of occurring configurations on Bk. We
will show that {EY (Ci)}ni=1 is not a union-increasing sequence.

The set {Ci}ni=1 can be partitioned into twelve different sets as previously de-
scribed. By the pigeonhole principle, at least one of those sets has more than seven
elements. Let {Cij}mj=1 ⊆ {Ci}ni=1, m > 7, be such that {Cij}mj=1 are all in the
same partition subset. In order to simplify notation in what follows, without loss
of generality we can relabel these Cij in a way that preserves the original ordering
as {Ci}mi=1.

There are twelve cases to check, depending on the partition element containing
the points {Ci}mi=1. We check one case in order to illustrate the nature of the
arguments involved and leave the remaining details to the reader.

Suppose {Ci}mi=1 ⊆ W(abc,cab). In this case, for each 1 ≤ i ≤ m,

Ci = a�ib�
′
ic · · · car′ibri

for 0 < �i ≤ �′i and 0 < ri ≤ r′i. We will show that {EY (Ci)}mi=1 is not union
increasing.

Because Cm occurs in Y , clearly there are points y ∈ Y with yBk
= Cm. If for

each of these points there exists 1 ≤ i < m for which yFk
∈ EY (Ci), we are done,

since in this case EY (Cm) ⊆
⋃m−1

i=1 EY (Ci) and {E(Ci)} is not union-increasing.

Thus we may choose y(m) ∈ Y so that y
(m)
Bk

= Cm and y
(m)
Fk

/∈ EY (Ci) for all
1 ≤ i < m.

So either y
(m)
(−∞,0]Ci is forbidden or Ciy

(m)
[k+1,∞) is forbidden (or both) for each

1 ≤ i < m. We will assume y
(m)
(−∞,0]Ci is forbidden for at least half of the i’s. (If this

is not the case, then Ciy
(m)
[k+1,∞) is forbidden for at least half of the i’s, and a similar

argument holds.) Using Observation 2.9, for these i’s we have �′i − �i = �′m − �m.
Again, without loss of generality, by relabeling in a way that preserves order, we
may let {Ci}pi=1 be such that �′i − �i = �′m − �m for all 1 ≤ i ≤ p with p > 3.

Because Cp occurs in Y , clearly there are points y ∈ Y with yBk
= Cp. If for each

of these points there exists 1 ≤ i < p for which yFk
∈ EY (Ci), we are done, since

in this case EY (Cp) ⊆
⋃p−1

i=1 EY (Ci) and {E(Ci)} is not union-increasing. Thus we

may choose y(p) ∈ Y so that y
(p)
Bk

= Cp and y
(p)
Fk

/∈ EY (Ci) for all 1 ≤ i < p.
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Because �′i − �i = �′m − �m for 1 ≤ i ≤ p, by Observation 2.9, y
(p)
(∞,0]Ci cannot

be forbidden for any 1 ≤ i < p. Thus we must have Ciy
(p)
[k+1,∞) forbidden for each

1 ≤ i < p. But then, by Observation 2.9, we must have r′i − ri = r′p − rp for all
1 ≤ i < p. In particular, this holds for i = 1 and i = 2. Thus, because

�′1 − �1 = �′2 − �2 = �′m − �m and r′1 − r1 = r′2 − r2 = r′p − rp,

we must have EY (C1) = EY (C2), and thus {EY (Ci)}ni=1 is not a union-increasing
sequence, as desired. �

3. Soficness and subshifts of the form (Y Z,Zd)

Let (Y,Zd) be a shift space. For

π(Y ) = {yZ×�v | y ∈ Y, �v ∈ Z
d−1},

the subshift (π(Y ),Z) is called the �e1-projection of (Y,Zd). Properties of projec-
tional dynamical systems have been studied in [JKM], [PS], and [S].

Let (Y,Zd−1) be a shift space and let Y Z be the usual infinite Cartesian product
of Y . It is easy to see that (Y Z,Zd) is a shift space.

Note that if (Y,Zd−1) is a (d−1)-dimensional shift space, then Y and π(Y Z) are
the same. On the other hand, for a d-dimensional shift space (Y,Zd), Y ⊆ (π(Y ))Z,
but (π(Y ))Z and Y may or may not be the same.

In this section we explore the relationship between the soficness of (Y,Zd−1) and
of (Y Z,Zd). It is not difficult to show that if (Y,Zd−1) is sofic, then (Y Z,Zd) is
sofic as well:

Observation 3.1. Let (Y,Zd−1) be sofic. Then (Y Z,Zd) is sofic.

Proof. Because (Y,Zd−1) is sofic, φ : X → Y for some matrix shift (X,Zd−1) where
φ is a 1-block code. Let A be the alphabet for X.

The subshift (XZ,Zd) is also a matrix shift with alphabet A. (The �ei-transition
rules, 1 ≤ i ≤ d − 1, for (XZ,Zd) are the �ei-transition rules for (X,Zd−1), and all
�ed-transitions are allowed.) With φ extended to XZ in the obvious way, we have
φ : XZ → Y Z. Thus, (Y Z,Zd) is sofic. �

The converse to Observation 3.1 was first stated as a conjecture by E. Jeandel
at Math-Info 2010 in Marseille [P2].

Conjecture 3.2. Let (Y,Zd−1) be non-sofic. Then (Y Z,Zd) is non-sofic.

This conjecture remains open; however, in this section, we will prove a partial
converse to Observation 3.1. Theorem 3.3 says that if a subshift (Y,Zd−1) satisfies
the hypotheses of Theorem 2.3, then the free product (Y Z,Zd) also satisfies those
hypotheses and thus is non-sofic.

Theorem 3.3. For d ≥ 2, let (Y,Zd−1) be a (d − 1)-dimensional shift space that
satisfies the hypotheses of Theorem 2.3. Then (Y Z,Zd) also satisfies the hypotheses
of Theorem 2.3 (and thus is non-sofic).

Proof. Suppose that (Y,Zd−1) satisfies the hypotheses of Theorem 2.3. Let M > 0

be given and, as described in Theorem 2.3, choose k > 0, m > Mkd−2

and a
collection of occurring configurations C = {Ci}mi=1 on Bd−1

k ⊂ Z
d−1 for which

{EY (Ci)}mi=1 is a union-increasing sequence.
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Because {EY (Ci)}mi=1 is a union-increasing sequence, we may choose points

{x(i)}mi=1 ⊆ Y with x
(i)

Bd−1
k

= Ci and

x
(i)

Fd−1
k

/∈ EY (Cj) whenever 1 ≤ j < i ≤ m.

We will use this collection of points in Y to create a collection of points in Y Z (and
from these a collection of occurring configurations on Bd

k) as follows:
For 1 ≤ i ≤ mk, let �ai = (a1i , a

2
i , . . . , a

k
i ) be the i

th k-tuple in lexicographic order
among all k-tuples with integer entries between 1 and m inclusive. For each �ai,
create y(i) ∈ Y Z with

y
(i)

Zd−1×{1,2,...,k} = x(a1
i ) × x(a2

i ) × . . .× x(ak
i ).

Because Y Z is a free product, such points clearly exist.

Consider the collection of configurations {y(i)
Bd

k

}mk

i=1 on Bd
k ⊂ Z

d which occur in

Y Z. Clearly

y
(i)

Bd
k

= Ca1
i
× Ca2

i
× . . .× Cak

i
.

Then the set {EY Z(y
(i)

Bd
k

)}mk

i=1 is union-increasing. To see this, let 1 ≤ j < i ≤ mk.

Then �aj is less than �ai in lexicographic order, and we may choose 1 ≤ J ≤ k to be
the smallest index for which aJj 
= aJi (and aJj < aJi ). But then

x
(aJ

i )

Fd−1
k

/∈ EY (CaJ
j
) and hence y

(i)

Fd
k

/∈ EY Z(y
(j)

Bd
k

).

Thus, k > 0, mk > (Mkd−2

)k = Mkd−1

and the collection of occurring config-

urations {y(i)
Bd

k

}mk

i=1 in Y Z on Bd
k ⊂ Z

d satisfy the hypotheses of Theorem 2.3, as

desired. �

We end this section with two examples. In the first example, we apply The-
orem 3.3 to the one-dimensional context-free shift, showing that its free product
is non-sofic. In the second example, we do the same thing for a variation on the
one-dimensional context-free shift.

Example 3.4. Let (Y,Z) be the one-dimensional context-free shift on the alphabet
A = {a, b, c} given by forbidden blocks

F = {canbmc, where n 
= m}.

Then (Y Z
d−1

,Zd) is non-sofic for all d ≥ 1.

Proof. We will show that (Y,Z) satisfies the hypotheses of Theorem 2.3. Repeated
applications of Theorem 3.3 then establish the claim.

Let M > 0 be given and choose k large enough that m = (k− 2) > M. Consider
the occurring words of length k in (Y,Z) of the form

Ci = ck−1−iaib, where 1 ≤ i ≤ k − 2.

Note that Ci can only be followed by a word of the form bjc if j = i − 1. Let
Ui = bi−1c.

For each 1 ≤ i ≤ m consider y(i) ∈ Y with y
(i)
Bk

= Ci, where

y(i) = · · · cccc.CiUiccccc · · · .
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Clearly y
(i)
Fk

/∈ EY (Cj) for all i 
= j. So {EY (Ci)}mi=1 is union-increasing and (Y,Z)
satisfies the hypotheses of Theorem 2.3, as desired. �

Example 3.5. Let (Y,Z) be the one-dimensional modified context-free shift on the
alphabet A = {a, b, c} given by forbidden blocks

F = {canbmc, where n < m}.

Then (Y Z
d−1

,Zd) is non-sofic for all d ≥ 1.

Proof. Let M > 0 be given, and let k, m, {Ci}mi=1 and {y(i)}mi=1 be as described in

the proof found in Example 3.4. Then clearly y
(i)
Fk

∈ EY (Ci), but y
(i)
Fk

/∈ EY (Cj) for
all j < i. Thus {EY (Ci)}mi=1 is union-increasing, and by repeated applications of

Theorem 3.3, (Y Z
d−1

,Zd) is non-sofic, as desired. �

Note that it remains an open question whether or not (Y Z
d−1

,Zd), d ≥ 2, is sofic
when (Y,Z) is the reverse context-free shift (Example 2.6).

4. Further observations

4.1. An alternative partial converse to Observation 3.1. In Observation 4.1,
we provide a partial converse to Observation 3.1 that does not rely on Theorem 2.3.
Together with Theorem 3.3, this provides information on the nature of a counter-
example to Conjecture 3.2, should one exist.

Observation 4.1. Let (Y,Zd−1) be a shift space. Suppose that φ : X → Y Z is
a 1-block code where (X,Zd) is a matrix shift given by matrices H1, H2, . . . , Hd.
Suppose any word allowed by H1, H2, . . . , Hd−1 occurs in X. Then (Y,Zd−1) is
sofic.

Proof. Let A be the alphabet of X and let (X ′,Zd−1) be the (d − 1)-dimensional
matrix shift with alphabet A and transition rules given by H1, H2, . . . , Hd−1. We’d
like to show that φ : X ′ → Y .

Points in X must satisfy the transition rules given by H1, H2, . . . , Hd, which
implies that π(X) ⊆ X ′ where π(X) = {xZd−1×{0} |x ∈ X }. In addition, the
assumption that all words allowed by H1, H2, . . . , Hd−1 occur in X implies that
X ′ ⊆ π(X) as well.

Taken together, π(X) ⊆ X ′ and X ′ ⊆ π(X) give X ′ = π(X), but then

φ(X ′) = φ(π(X)) = π(φ(X)) = π(Y Z) = Y,

as desired. �

4.2. Synchronizing words and non-soficness. Here we identify a class of one-
dimensional shifts (Y,Z) that satisfy the hypotheses of Theorem 2.3. We note that

by Theorem 3.3, this implies (Y Z
d−1

,Zd) is non-sofic for all d ≥ 1. We begin with
a definition.

Definition 4.2. Let (Y,Z) be a shift space. A word w occurring in Y is said to
be a synchronizing word if any time uw and wv occur in Y for words u and v,
then uwv occurs in Y as well.

Observation 4.3. Let (Y,Z) be a shift space that contains no synchronizing word.
Then the hypotheses of Theorem 2.3 are satisfied.
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Proof. Suppose (Y,Z) is a shift space that contains no synchronizing word. Let

M > 0. We will construct a collection of occurring configurations {Ci}M+1
i=1 whose

extender sets form a union-increasing sequence.
To do this, first let w1 be any finite word that occurs in Y . Inductively define a

sequence of occurring words {wi}M+1
i=1 as follows. Because wi is not synchronizing,

there exist words ui and vi for which uiwi and wivi occur in Y , but uiwivi does
not occur in Y . Define wi+1 = uiwi.

Note that for each 1 ≤ i < j ≤ M + 1, wivi occurs in Y but wjvi does not.
This is by construction when j = i + 1. When j > i + 1, it follows from the fact
that it holds for j = i+1 and also from the fact that words that can follow wj can
necessarily follow w� for any � < j since, by construction, wj = ww� for some word
w.

Let K be the length of wM+1 (the longest wi), and let k > K. Because wivi
occurs in Y for each 1 ≤ i ≤ M + 1, we can find points {y(i)} ⊆ Y with

y
(i)
Bk

= tiwi for some word ti

and

y(i) = · · · .tiwivi · · · .
Note that the preceding paragraph tells us that y

(i)
Fk

/∈ EY (y
(j)
Bk

) whenever j > i.

Consider {Ci}M+1
i=1 where the Ci are the y

(i)
Bk

listed in reverse order; that is,

Ci = y
(M+2−i)
Bk

. Then k > 0, m = M + 1, and {Ci}mi=1 satisfy the hypotheses of
Theorem 2.3. �

Corollary 4.4. Let (Y,Z) be a shift space that contains no synchronizing word.

Then (Y Z
d−1

,Zd) is non-sofic for all d ≥ 1.

Proof. This follows immediately from Observation 4.3 and Theorem 3.3. �

We note that while Observation 4.3 shows that the lack of synchronizing words

in (Y,Z) is a sufficient condition for the non-soficness of (Y Z
d−1

,Zd), Examples 3.4
and 3.5 show that it is not a necessary condition. For both of these examples, the

word w = c is synchronizing, and yet (Y Z
d−1

,Zd) is non-sofic for all d ≥ 1.

4.3. An alternative characterization of non-soficness. R. Pavlov has given
a sufficient condition for the non-soficness of (Y,Zd) under certain assumptions
(Theorem 1.1, [P]); this result is stated below (for d = 2) in Theorem 4.6. In
this subsection we observe that this result is a consequence of Theorem 2.3. In
order to simplify notation, we prove that assertion only for d = 2. We will show
that Theorem 4.6 is a consequence of Theorem 2.3 using a proof that is similar
in structure to the one used to prove Theorem 3.3. We begin with a necessary
definition.

Definition 4.5. A shift space (Y,Z2) is said to be block-gluing in the �e2 direction
with gluing distance g ∈ N if, given any pair of occurring configurations C1 and C2

on horizontal strips S1, S2 ⊂ Z
2:

S1={(a, b) | a ∈ Z and n ≤ b ≤ m} and S2 = {(a, b) | a ∈ Z and m+ g′ ≤ b ≤ p}

with g′ ≥ g, there is a point y ∈ Y with ySi
= Ci for i = 1, 2.
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Theorem 4.6 ([P]). Let (Y,Z2) be a shift space where (1) (Y,Z2) is block gluing
in the �e2 direction with gluing distance g, and (2) the projection (π(Y ),Z) has no
synchronizing word. Then (Y,Z2) is non-sofic.

Proof. We merely sketch the proof of this theorem in order to show the parallels
with the proof of Theorem 3.3. The reader may fill in the details.

Let M > 0 be given. Because (π(Y ),Z) has no synchronizing words, by Observa-
tion 4.3, the hypotheses of Theorem 2.3 are satisfied. Thus we can find k = gK > 0,
m > Mg and occurring configurations {Ci}mi=1 on B1

k ⊂ Z for which {Eπ(Y )(Ci)}mi=1

is a union-increasing sequence.
Because {Eπ(Y )(Ci)}mi=1 is a union-increasing sequence, we may choose points

S = {x(i)}mi=1 ⊆ π(Y ) with x
(i)

B1
k

= Ci and

x
(i)

F 1
k
/∈ Eπ(Y )(Cj) whenever 1 ≤ j < i ≤ m.

We will use this collection of points in π(Y ) to create a collection of points in Y
(and from these a collection of occurring configurations on B2

k) as follows:

Let ŷ(I) ∈ SK be given by

ŷ(I) = (x(I1), x(I2), . . . , x(IK)),

where (I1, I2, . . . , IK) is the Ith element in the lexicographic ordering on {1, 2, . . . ,
m}K . Note that if 1 ≤ J < I ≤ mK with � the first index for which J� 
= I�, we
have J� < I� and

x
(I�)

F 1
k

/∈ Eπ(Y )(x
(J�)

B1
k
) = Eπ(Y )(CJ�

).

Choose points {y(I)}mK

I=1 ⊆ Y where the (rg)th rows, 1 ≤ r ≤ K, of y(I) are ŷ(I);
that is, for all 1 ≤ r ≤ k,

y(I)|Z×{rg} = ŷ(I)|Z×{r}.

Because Y is block gluing in the �e2-direction with gluing distance g, such a collection

of points {y(I)}mK

I=1 exists.
As in the proof of Theorem 3.3, the collection of occurring configurations

{y(I)
B2

k
}mk

I=1 satisfies the hypotheses of Theorem 2.3 with k = gK > 0 and mk >

(Mg)K = MgK = Mk. Thus, (Y,Z2) is non-sofic, as desired. �
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