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Abstract. In this paper, a formula for the number of right cosets contained
in a double coset with respect to the unimodular group of invertible (2 × 2)-
matrices over a Dedekind domain is developed. As applications we derive
an index formula for congruence subgroups and an algorithm for the explicit
calculation of products in Hecke algebras.

1. Introduction and statement of results

Since the first implicit appearance of Hecke operators in the context of modular
forms ([1]), Hecke operators and thus Hecke algebras have become an indispens-
able instrument in the theory of automorphic forms (see e.g. [2] and [3]). Thus the
structure of abstract Hecke algebras has been investigated in a variety of settings
(see e.g. [4] for an overview and [5] as well as [6] for the analysis of special cases).
Following the traditional approach for matrix groups (as depicted e.g. in [4], Chap-
ter V), this article first focuses on the structure of the elements themselves, namely
the decomposition of double cosets into right cosets. It will later turn out that
the gained insight into these building blocks of a Hecke algebra can be used as a
means to further investigate the multiplicative structure both computationally and
theoretically.

In the development of Hecke theory, the first abstract Hecke algebras to appear
were constructed with respect to unimodular groups over the rational integers.
Later, generalisations to other underlying rings became of interest for the theory
of modular forms (see e.g. [7]). In order to provide means for the theory of auto-
morphic forms over number fields, the present paper deals with Hecke algebras over
norm-finite Dedekind domains, i.e. Dedekind domains in which every principal ideal
has a finite norm. In this setting, the first main results are obtained by adapting
the considerations for the analogous results for matrices over Z (see Example 3.1)
to Dedekind domains, where right cosets with respect to unimodular groups no
longer need to have a triangular representative. To begin with, a formula for the
number of special right cosets contained in a double coset is derived.
1.1. Theorem. Let o be a norm-finite Dedekind domain, A ∈ o2×2 with nonzero
determinant and a an ideal in o. Denote by d1(A) and d2(A) the ideals generated by
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the entries of A and by the determinant, respectively, and let N(·) denote the norm
of an ideal. Then, if d1(A) | a | d2(A)d1(A)−1, the double coset GL2(o)AGL2(o)
contains exactly

N(d2(A))
N(a) N(d1(A))

∏

p prime ideal
p|ad1(A)−1+d2(A)d1(A)−1

a
−1

(1 − N(p)−1)

cosets GL2(o)B, where the first column entries of B generate the ideal a. Otherwise,
the double coset of A does not contain any such right coset. �

Theorem 1.1 is a main step towards an algorithmic approach to Hecke algebras:
If we want to carry out computations in abstract Hecke algebras, we need an algo-
rithm that allows us to multiply two elements. Since the product can be calculated
by a multiplication of representatives of right cosets, the task of multiplying el-
ements of an abstract Hecke algebra can essentially be reduced to the search for
decompositions of double cosets into right cosets. Knowing how many cosets we
have to find allows us to state a randomised algorithm which carries out the de-
composition. In order to obtain a formula for this quantity, we sum over all ideals
a in Theorem 1.1, which yields the following.

1.2. Theorem. In Theorem 1.1, the coset system GL2(o)\GL2(o)AGL2(o) con-
tains exactly

N(d2(A))
N(d1(A))2

∏

p prime ideal
p|d2(A)d1(A)−2

(1 + N(p)−1)

elements. �
Since there exist algorithms for the calculation of all data that occur in this

formula, programmes for the computation of products in the Hecke algebra can
now be stated.

As has already been mentioned, this article will not only focus on algorithmic
questions, but will also deal with theoretical results that can be derived from The-
orem 1.1: A principal question in the theory of abstract Hecke algebras is whether
a certain formal power series over this algebra can be written as a quotient of two
polynomials (see e.g. the rationality theorem in [4] on page 123). To this end, in
the “classic” Hecke algebra Hn related to GLn(Z), the reduction of certain prod-
ucts in Hn to products in Hn−1 is analysed. We are currently not able to give the
full proof for a generalised rationality theorem, but a first step can be taken: By
counting right cosets with representatives whose first column entries are coprime,
a general reduction theorem can be proved for n = 2. This result is sketched in
the following; after the required notation has been introduced in Section 5, the
Theorem is rendered more precisely as Theorem 5.6.

Theorem. Let a, b, c ∈ o for a norm-finite Dedekind domain o, and let A = ( 1 0
0 a ),

B = ( 1 0
0 b ) as well as C = ( 1 0

0 c ). Then the double coset of C has a nonzero coefficient
in the Hecke product of the double cosets of A and B, if and only if abc−1 is a unit
in o; moreover, the nonzero coefficient is always equal to 1.

Another theoretical result can be derived from the coset counting formulae via
a relation between representatives in a double coset and elements of certain right
transversals (a set of representatives of right cosets) of GL2. For special choices
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of the double coset an index formula for congruence subgroups is obtained from
Theorem 1.2.

1.3. Corollary. Let m ∈ o with m �= 0 for a Dedekind domain o, and define the
subgroup U0[m] = {( a b

c d ) ∈ GL2(o) | b ∈ mo} of GL2(o). Then the index of U0[m]
in GL2(o) can be calculated by

[U : U0[m]] = N(mo)
∏

p prime ideal
p|m

(1 + N(p)−1).

�

The main content of this article is organised as follows: In the following section,
the notation is fixed and some basic facts which are used throughout this article
are assembled. After that, the two already discussed formulae for numbers of right
cosets contained in a double coset are proved in Section 3. The application of these
formulae to congruence subgroups will shortly be dealt with in Section 4, and the
already mentioned applications to Hecke algebras are finally depicted in Section 5.

2. Preliminaries and notation

Denote by o a norm-finite Dedekind domain, i.e. a Dedekind domain in which
|o/ao| < ∞ holds for every a ∈ o (where |M | is the cardinality of the set M).
Furthermore, denote by K the field of fractions of o, and by o∗ the group of units
of o. Then denote by vp(a) the multiplicity of a prime ideal p in the ideal a of o
(fundamental properties of Dedekind domains and multiplicities can be found for
example in [8], Chapter II).

Let I be the set of (2×2) matrices with entries in o and with nonzero determinant;
furthermore, denote by U the set of matrices in I with determinant in o∗ (in other
words, U = GL2(o) and I = GL2(K) ∩ o2×2). For A = ( a b

c d ) ∈ o2×2 one defines
the first and second determinantal divisor of A by d1(A) = ao + bo + co + do and
d2(A) = (detA)o, respectively. Furthermore, one introduces the notation g(A) for
the g.c.d. of the first column of A, i.e. g(A) = ao+ co. By μ(A) denote the number
of right cosets UA′ contained in UAU , and let μa(A) for an ideal a of o count such
right cosets in UAU with g(A′) = a.

The relation between determinantal divisors and double cosets of U is given in
the following theorem, which goes back to Steinitz ([9]; see also [10], Theorem 2.2).

2.1. Theorem. Let A,B ∈ o2×2.
a) If A and B have rank 2 (i.e., if A,B ∈ I), the following assertions are equivalent:

(i) UAU = UBU , (ii) d1(A) = d1(B) and d2(A) = d2(B).
b) If A and B have rank 1 and the first columns of A and B both contain at least

one nonzero element, the following assertions are equivalent: (i) UAU = UBU ,
(ii) d1(A) = d1(B) and g(A) = g(B). �

This theorem can not only be used to characterise the equality of double cosets,
but also has an application in the proof of the following corollary which allows us
to state a relation between different generators of the same ideal in o.

2.2. Corollary. Let a, b, c, d ∈ o be such that ao + bo = co + do. Then there exists
an R ∈ U satisfying R( a

b ) = ( c
d ). �
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Proof. In the case c = d = 0 we also have a = b = 0 and can choose R = ( 1 0
0 1 ).

For the remaining part of the proof assume c �= 0 (without loss of generality).
Let A = ( a 0

b 0 ) and B = ( c 0
d 0 ). Since A and B both have rank 1 and satisfy

d1(A) = d1(B) as well as g(A) = g(B), Theorem 2.1 yields the existence of P,Q ∈ U
such that PAQ = B and thus PA = BQ−1. Writing P = ( p1 p2

p3 p4 ) and Q−1 = ( q1 q2
q3 q4 )

and calculating PA as well as BQ−1, we obtain
(
p1a + p2b 0
p3a + p4b 0

)
=

(
cq1 cq2
dq1 dq2

)
.

In particular, we have cq2 = 0, and since c �= 0, this implies q2 = 0. Thus
detQ−1 = q1q4, which implies q1 ∈ o∗. If we define R = q−1

1 P , we thus have
R ∈ U . Furthermore,

R

(
a 0
b 0

)
= q−1

1 PA = q−1
1

(
p1a + p2b 0
p3a + p4b 0

)
= q−1

1

(
cq1 0
dq1 0

)
=

(
c 0
d 0

)
,

which proves R( a
b ) = ( c

d ) and completes the proof. �

2.3. Remark. Since there exists a version of Theorem 2.1 for A,B ∈ on×n for
arbitrary n ∈ N (see e.g. [10], Theorem 2.2), Corollary 2.2 can easily be generalised
from two generators to an arbitrary number of generators of an ideal as long as the
number of generators on both sides of the equation is the same. �

3. Counting right cosets

In this section a formula for the number of right cosets in a given double coset of
U is derived. To begin with, a short example shows how coset counting is carried
out in the classic case o = Z. This will serve as a guideline for the subsequent
analysis of the general case.

3.1. Example. Let o = Z. Since o is a principal ideal domain, every right coset
UB for B ∈ I has a unique representative

B′ =
(
a b
0 d

)
with a, d > 0 and 0 ≤ b < d,

known as the Hermite normal form of B. Given this normal form, the number of
right cosets in a given double coset UAU can be obtained by generating all possible
normal forms (in a sensible way) and deciding whether they belong to UAU . The
latter can be carried out using Theorem 2.1 to test for UB′U = UAU , so it has to
be checked whether d1(B′) = d1(A) and d2(B′) = d2(A) hold.

As a concrete example construct every right coset representative B′ as above
contained in UAU , where A = ( 1 0

0 4 ). Since d2(A) = d2(B′) is a necessary condition
for UB′U = UAU , the equation (detA)Z = (detB′)Z and thus 4 = ad has to
be satisfied. So there are three possible cases: (i) a = 4 and d = 1, (ii) a = 2
and d = 2, and (iii) a = 1 and d = 4. For these cases determine for which
values of b the equation UB′U = UAU is fulfilled. To this end, it suffices to test
whether d1(B′) = d1(A) holds since a and d have already been constructed to
satisfy d2(B′) = d2(A).

Case (i). Since d = 1 and 0 ≤ b < d = 1, only the case b = 0 has to be analysed.
Then we have d1(B′) = aZ+ bZ+ dZ = 4Z+ 0Z+ 1Z = 1Z = 1Z+ 4Z = d1(A), so
( 4 0

0 1 ) is a right coset representative in UAU .
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Case (ii). Since d = 2 and 0 ≤ b < d = 2, the cases b = 0 and b = 1 have to
be considered. For b = 0 we have d1(B′) = 2Z �= 1Z = d1(A), so ( 2 0

0 2 ) is not an
element of UAU . For b = 1, however, we have d1(B′) = 1Z = d1(A), so ( 2 1

0 2 )
belongs to UAU .

Case (iii). Since d = 4 and 0 ≤ b < d = 4, the cases b ∈ {0, 1, 2, 3} have to be
analysed. Due to a = 1 we have d1(B′) = 1Z = d1(A) in any of these cases, so
( 1 b

0 4 ) belongs to UAU for every b ∈ {0, 1, 2, 3}.

Summarising, in UAU we have found the 6 right coset representatives ( 4 0
0 1 ),

( 2 1
0 2 ), ( 1 0

0 4 ), ( 1 1
0 4 ), ( 1 2

0 4 ), and ( 1 3
0 4 ).

Generalising these considerations, a formula for the number μ(A) of right cosets
contained in UAU can be stated:

μ(A) =
∑

d∈N

d|detA

|{b ∈ N0 | b < d and detA
d Z + bZ + dZ = d1(A)}|

(where N = {1, 2, 3, . . . , } and N0 = {0, 1, 2, . . .}). The cardinality of a set {b ∈
N0 | b < d and aZ + bZ + dZ = d1(A)} can be calculated explicitly, which finally
leads to a product formula for μ(A) (not presented in detail since the same steps
are to be done for the general case in the following). �

The first main ingredient of the approach taken in Example 3.1 in the classic
case is the Hermite normal form. In the general case, another normal form can be
constructed – not as “nice” as in the classic case, but nevertheless solving the issue
of a uniquely determined representative.

3.2. Lemma. Let a be an ideal in o and b ∈ a. Choose an a ∈ a satisfying a �= 0
and ao + bo = a (always possible since o is a Dedekind domain) and a transversal
T of (o ∩ ab−1o)/(ba−1o ∩ ab−1o). This transversal is finite, and for every A ∈ I
satisfying g(A) = a and d2(A) = bo there exists a uniquely determined c ∈ T such
that

U

(
a c− 1
b ba−1c

)
= UA.

�

Proof. The finiteness of T follows from the norm-finiteness of o since ba−1o∩ab−1o

is an ideal in o.
To prove the uniqueness of c, assume

U

(
a c− 1
b ba−1c

)
= U

(
a d− 1
b ba−1d

)

for c, d ∈ T . Since
(
a d− 1
b ba−1d

)(
a c− 1
b ba−1c

)−1

=
(

c− d + 1 ab−1(d− c)
ba−1(c− d) 1 − c + d

)

then has to be an element of U , we obtain in particular that ab−1(d − c) ∈ o and
ba−1(c−d) ∈ o, which yields d−c ∈ ba−1o∩ab−1o. Since T is a transversal modulo
ba−1o∩ ab−1o and c, d ∈ T , this shows c = d and thus proves the uniqueness of the
representative.

In the remaining part of the proof the existence of the desired representative is
shown. Let A ∈ I satisfying g(A) = a and d2(A) = bo. Since ao + bo = g(A),
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by Corollary 2.2 there exists a P1 ∈ U such that P1A = ( a ∗
b ∗ ). Then let ε =

b(det(P1A))−1 ∈ o∗ and P2 = ( ε 0
0 1 ) ∈ U such that det(P2P1A) = b. Furthermore,

the Chinese Remainder Theorem allows us to choose a p ∈ o satisfying p ∈ (o ∩
ba−1o) + ε−1 and p ∈ (o ∩ ab−1o) + 1 since o ∩ ba−1 and o ∩ ab−1o are relatively
prime. The matrix

P3 =
(

p ab−1(1 − εp)
ba−1(p− 1) ε + 1 − εp

)

is then an element of o2×2 with detP3 = 1, and we have

P3P2P1A = P3P2

(
a ∗
b ∗

)
= P3

(
εa ∗
b ∗

)
=

(
a ∗
b ∗

)

with det(P3P2P1A) = b, so if the second column of P3P2P1A is denoted by ( r
s ), we

have as− br = b and thus 1 + r = ab−1s ∈ ab−1o. Since furthermore 1 + r ∈ o, by
the choice of T there exists a c ∈ T satisfying 1 + r ∈ c+ (ba−1o∩ ab−1o). Now let

P4 =
(
ab−1s− c + 1 ab−1(c− r − 1)
s− ba−1c c− r

)
.

Then P4 ∈ o2×2 and detP4 = 1 (since ab−1s = 1+r and c−r−1 ∈ ba−1o∩ab−1o),
and putting everything together we have P4P3P2P1 ∈ U and

P4P3P2P1A = P4

(
a r
b s

)
=
(
a(ab−1s− r) ab−1s(c− 1) − cr + r

as− br ba−1c(ab−1s− r)

)
=
(
a c− 1
b ba−1c

)
,

which shows the existence of a representative with the desired form and thus com-
pletes the proof. �

With this normal form, a first elementary formula for the number of right cosets
with a prescribed g.c.d. of the first column can be given. (All elements of a right
coset with respect to U have the same g.c.d. of the first column, so it is possible to
talk about the g.c.d. of the first column of a right coset.)

3.3. Corollary. Let A ∈ I and a an ideal of o such that d1(A) | a | d2(A). Choose
an a ∈ a satisfying ao + d2(A) = a (possible since a | d2(A) and o is a Dedekind
domain), let q = a−1a as well as b = a−1d2(A), and choose a transversal T of
q/qb. Then the number μa(A) of right cosets in UAU with a as a g.c.d. of the first
column can be calculated by

μa(A) = |{c ∈ T |a+(c−1)o+cq−1
b = d1(A)}|. �

Proof. Since a = ao+d2(A) = aq+ab, the ideals q and b are relatively prime, which
yields o∩ad2(A)−1 = o∩qb−1 = q as well as d2(A)a−1∩ad2(A)−1 = bq−1∩qb−1 =
bq. Thus T is a transversal of (o ∩ ad2(A)−1)/(d2(A)a−1 ∩ ad2(A)−1).

If UB for some B ∈ I is a right coset in UAU satisfying g(B) = a, then in
particular d2(B) = d2(A), and according to Lemma 3.2 there exists a uniquely
determined representative C of UB of the form described in that lemma (with
b = detA and c ∈ T , the latter according to the first paragraph of this proof).
Thus

{UB |B ∈ I with g(B) = a and UB ⊆ UAU}

=
{
UB

∣∣∣∣B =
(

a c− 1
detA (detA)a−1c

)
for some c ∈ T and B ∈ UAU

}
,
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and since d2(B) = d2(A) for those B, Theorem 2.1 and ao + d2(A) = a yield

μa(A) =
∣∣∣∣

{
c ∈ T

∣∣∣∣ d1

((
a c− 1

detA (detA)a−1c

))
= d1(A)

}∣∣∣∣

= |{c ∈ T | a + (c− 1)o + cq−1
b = d1(A)}|. �

The formula presented in Corollary 3.3 is only a first step, since it is not very
far from a mere enumeration of right cosets. The next step is the establishment of
a product formula for the cardinality on the right-hand side. To achieve this, we
first need some auxiliary results.

3.4. Lemma. In the setting of Corollary 3.3 the following assertions are equivalent:
(i) c | a + (c− 1)o + cq−1b.
(ii) c | a and ac | d2(A) and c | c− 1. �

Proof. First assume that (i) is satisfied and show that (ii) is fulfilled. Since (i)
implies c | (c − 1)o + cq−1b and c and c − 1 are relatively prime, we have c | q−1b

and thus ac | aq−1b = a−1ad2(A), which implies ac | d2(A) since a ∈ a. The
remaining parts of (ii) follow obviously.

Now assume that (ii) is fulfilled. For the proof of (i) it remains to show c | cq−1b.
But this follows from ac | d2(A) and c ∈ q, since the latter implies c | a−1d2(A) = b

and cq−1 ⊆ o, so the proof is complete. �

The second auxiliary result gives an explicit formula for the cardinality of a
certain subset of T needed in the calculation of μa(A).

3.5. Lemma. In the setting of Corollary 3.3 we have

|{c ∈ T | c− 1 ∈ c}| = N(b) N(c)−1

for every ideal c of o satisfying c | a | d2(A)c−1. �

Proof. In the given setting we have c | b, and b and q are relatively prime, so
c and q are relatively prime. By the Chinese Remainder Theorem there exists a
d ∈ q ∩ (c + 1). Then {c − d | c ∈ T, c − 1 ∈ c} is a transversal of cq/bq: All
those c− d are elements of c ∩ q = cq, the (c− d) + bq are pairwise different since
T is a transversal of q/bq, and for every x ∈ cq there exists a c ∈ T satisfying
x ∈ (c− d) + bq, namely the one satisfying x + d ∈ c + bq, which exists in T since
x + d ∈ q, and is an element of {c ∈ T | c− 1 ∈ c} since x + d ∈ c + bq ⊆ c + c and
thus c− 1 ∈ x + (d− 1) + c = c. Now the definition and the multiplicativity of the
norm yield |{c ∈ T | c− 1 ∈ c}| = |cq/bq| = N(b) N(c)−1. �

Now we are prepared to prove the product formula for μa(A), which has been
stated as Theorem 1.1.

Proof of Theorem 1.1. If μa(A) > 0, then there exists a B ∈ UAU having a as
a g.c.d. of the first column. Then d1(A) = d1(B) | a and a | d2(B) = d2(A), so
Corollary 3.3 is applicable. Thus, using the notation introduced in Corollary 3.3,
there exists a c ∈ T satisfying a+ (c− 1)o+ cq−1b = d1(A). So Lemma 3.4 implies
ad1(A) | d2(A), which shows that a | d2(A)d1(A)−1 is necessary for μa(A) > 0.
Thus it is proved that μa(A) = 0 if d1(A) | a | d2(A)d1(A)−1 does not hold.
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In the following assume d1(A) | a | d2(A)d1(A)−1. Denote by Q the set of all
prime ideals of o dividing d2(A)d1(A)−2, let M = {c ∈ T | a + (c − 1)o + cq−1b =
d1(A)} and M(c) = {c ∈ T | c divides a+ (c− 1)o+ cq−1b} for all ideals c of o. By
the inclusion-exclusion principle we then have

|M | =
∑

M⊆Q

(−1)|M|

∣∣∣∣∣∣
M

⎛

⎝d1(A)
∏

q∈M

q

⎞

⎠

∣∣∣∣∣∣
.

If for a product q′ of pairwise distinct prime ideals d1(A)q′ | a | d2(A)(d1(A)q′)−1

does not hold, then for c = d1(A)q′ the first or second condition in Lemma 3.4 (ii)
is violated, which implies |M(c)| = 0. Since d1(A)q′ | a | d2(A)(d1(A)q′)−1 is
equivalent to q′ | ad1(A)−1 and q′ | d2(A)d1(A)−1a−1, in the above formula Q

can be replaced by Q′, where Q′ denotes the set of all prime ideals of o dividing
ad1(A)−1 +d2(A)d1(A)−1a−1. In the case where q′ is a product of pairwise distinct
prime ideals in Q′, the condition d1(A)q′ | a | d2(A)(d1(A)q′)−1 is satisfied, and
Lemma 3.4 and Lemma 3.5 yield M(d1(A)q′) = |{c ∈ T | d1(A)q′ divides c− 1}| =
N(b) N(d1(A)q′)−1. Plugging this into the above formula and using the multiplica-
tivity of the norm and the distributive law, we obtain

|M | = N(b)
N(d1(A))

∑

M⊆Q′

(−1)|M| N

⎛

⎝
∏

q∈M

q

⎞

⎠
−1

= N(b)
N(d1(A))

∑

M⊆Q′

∏

q∈M

(−N(q)−1)

= N(b)
N(d1(A))

∏

q∈Q′

(1 − N(q)−1).

Since |M | = μa(A) according to Corollary 3.3 and b = d2(A)a−1, the proof is
complete. �

The just-proved formula will be applied in the following.

3.6. Example. Let o = Z and A = ( 1 0
0 4 ) as well as a = 2Z. Theorem 1.1 then

yields

μa(A) = N(4Z)
N(2Z) N(Z)

∏

p prime ideal
p|2Z

(1 − N(p)−1) = 4
2 · 1

(
1 − 1

2

)
= 1,

which corresponds to the results of Example 3.1, where we had exactly one repre-
sentative of type ( 2 ∗

0 ∗ ), namely ( 2 1
0 2 ). �

Since Theorem 1.1 is just an intermediate result, more interesting cases than
o = Z will not be discussed at this point.

The formula for μa(A) given in Theorem 1.1 has several applications. Later we
will see how it can be used to prove a reduction theorem in the context of Hecke
algebras, but for now we will stick to the already announced goal of a formula for
the number of right cosets contained in a given double coset. The desired result
has already been stated as Theorem 1.2.
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Proof of Theorem 1.2. To calculate the number μ(A) of right cosets with respect
to U contained in UAU , we have to sum over all μa(A). Then we use Theorem 1.1
and rewrite the obtained sum to use a′ = d2(A)d1(A)−1a−1 as a summation index:

μ(A) =
∑

a ideal in o

μa(A)

=
∑

d1(A)|a|d2(A)d1(A)−1

N(d2(A))
N(a) N(d1(A))

∏

p prime ideal
p|ad1(A)−1+d2(A)d1(A)−1

a
−1

(1 − N(p)−1)

=
∑

o|a′|d2(A)d1(A)−2

N(a′)
∏

q prime ideal
q|(a′)−1

d2(A)d1(A)−2+a
′

(1 − N(q)−1).

Using this equality, we can prove the theorem by showing that

S(b) :=
∑

o|a|b
N(a)

∏

q prime ideal
q|a−1

b+a

(1 − N(q)−1) = N(b)
∏

q prime ideal
q|b

(1 + N(q)−1)

holds for every ideal b in o (since b = d2(A)d1(A)−2 yields the assertion). We carry
out an induction on the number of prime ideals dividing b. The initial case b = o is
obvious, so we now assume that there exists a prime ideal p which divides b. Write
b = pmr with p � r. Analogously split up every a as the product of a power of p and
the rest not divided by p. Introducing the set Qc of prime ideals dividing c−1b+ c,
we then have

S(b) =
∑

o|a|b
N(a)

∏

q∈Qa

(1 − N(q)−1) =
m∑

k=0

∑

o|c|r
N(pkc)

∏

q∈Q
pkc

(1 − N(q)−1).

If p � c and q is a prime ideal in o, the definition of Qpkc yields

q ∈ Qpkc ⇔ (q = p and 1 ≤ k < m) or (q �= p and q ∈ Qc).

Using this equivalence in the above expression for S(b), by splitting up the outer
sum we obtain

S(b) =
m−1∑

k=1

∑

o|c|r
N(p)k N(c)(1 − N(p)−1)

∏

q∈Qc

(1 − N(q)−1)

+
∑

o|c|r
N(c)

∏

q∈Qc

(1 − N(q)−1) +
∑

o|c|r
N(p)m N(c)

∏

q∈Qc

(1 − N(q)−1).

Since the double sum on the right-hand side is a telescoping sum, the equation
simplifies to

S(b) =
∑

o|c|r
N(p)m−1 N(c)

∏

q∈Qc

(1 − N(q)−1) +
∑

o|c|r
N(p)m N(c)

∏

q∈Qc

(1 − N(q)−1)

= N(p)m(1 + N(p)−1)
∑

o|c|r
N(c)

∏

q∈Qc

(1 − N(q)−1)

= N(p)m(1 + N(p)−1)S(r).
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Applying the induction hypothesis, we have

S(b) = N(p)m(1 + N(p)−1)S(r) = N(p)m(1 + N(p)−1) N(r)
∏

q prime ideal
q|r

(1 + N(q)−1)

= N(b)
∏

q prime ideal
q|b

(1 + N(q)−1),

which completes the proof. �

In the following examples Theorem 1.2 is applied in a case where o is not a
principal ideal domain.

3.7. Examples. Let o = Z + Zω, where ω =
√
−5 and A = ( 1 0

0 3 ). Since 3o = p1p2
with p1 = 3o + (ω + 1)o and p2 = 3o + (ω + 2)o, where p1 and p2 are prime ideals
of norm 3 in o, Theorem 1.2 yields

μ(A) = N(3o)
∏

p prime ideal
p|3o

(1 + N(p)−1) = 9
(

1 + 1
3

)(
1 + 1

3

)
= 16.

Since 2o has the prime ideal decomposition (2o + (ω + 1)o)2, one similarly ob-
tains μ(( 1 0

0 2 )) = 6. Possible choices for the six representatives are calculated in
Example 5.4.

The above examples can be generalised: If o is a quadratic number field and p
a rational prime, we have μ(( 1 0

0 p )) = (p + 1)2 if p is split and μ(( 1 0
0 p )) = p(p + 1)

otherwise. �

To complete this section, already existing results similar to Theorem 1.2 are
shortly reviewed in the following.

3.8. Remark. In the case o = Z we have a so-called rationality theorem for abstract
Hecke algebras with respect to unimodular groups (see e.g. [4], Theorem V (9.3)).
The proof of this theorem uses the fact that the double coset GLn(Z)Pj GLn(Z),
where Pj is a diagonal matrix with j diagonal entries equal to p (for a fixed rational
prime p) and the other diagonal entries equal to 1, decomposes into exactly

p−
j(j+1)

2
∑

1≤v1<···<vj≤n

pv1+···+vj

right cosets with respect to GLn(Z). (One easily checks that for n = 2 and j ∈
{0, 1, 2}, this yields the same values for μ(Pj) as Theorem 1.2.)

Another similar theorem does not count right cosets in double cosets but right
cosets in the set of all matrices with the same determinant (modulo units). Ac-
cording to [11], Theorem II.4, the set {A ∈ on×n | detA ∈ do∗} decomposes into
exactly

∏

p∈P
p|d

n−1∏

j=1

N(p)vpo(d)+j − 1
N(p)j − 1

right cosets with respect to GLn(o) (where P denotes a system of representatives
of prime elements in o modulo o∗). �



COMPUTATIONS IN HECKE ALGEBRAS OVER DEDEKIND DOMAINS 3719

4. Applications to congruence subgroups

In this short section, an application of Theorem 1.2 to the calculation of indexes
of certain congruence subgroups is presented. The result has already been stated
as Corollary 1.3.

Proof of Corollary 1.3. Let A = ( 1 0
0 m ). A simple calculation using A( a b

c d )A−1 =
( a m−1b
mc d

) shows that U ∩ A−1UA = U0[m]. Since [U : U ∩ A−1UA] = μ(A) (see
e.g. [12], Lemma 3.1.2), the assertion immediately follows from Theorem 1.2. �

4.1. Remark. Corollary 1.3 generalises a similar formula for the index of congruence
subgroups in SL2(Z) which is of interest in the theory of modular forms (see e.g.
[13], Section 1.2). However, such index formulae are also studied in other contexts
(see e.g. [14]). �

5. Applications to Hecke algebras

As has already been mentioned, Theorem 1.2 has been developed with the theory
of Hecke algebras in mind. The applications in this field will be presented here.

Denote by H the complex vector space spanned by {1UAU | A ∈ I} where 1M :
G → {0, 1} is the characteristic function of the set M . For A,A1, . . . , Ak, B,B1, . . . ,
Bm ∈ I with UAU = UA1 ∪ · · · ∪ UAk and UBU = UB1 ∪ · · · ∪ UBm, where the
unions are pairwise disjoint, define

1UAU ∗ 1UBU =
k∑

k=1

m∑

j=1
1UAiBj

and extend this operation bilinearly to a (well-defined(!)) operation on H. The
obtained algebra is called an (abstract) Hecke algebra; for details see e.g. [4]. The
formula

(1UAU ∗ 1UBU )(C) = |{(i, j) |AiBj ∈ UC, 1 ≤ i ≤ k, 1 ≤ j ≤ m}|,
which can be found in [4], I.4.4, immediately yields an algorithm for the calculation
of 1UAU ∗ 1UBU .

5.1. Algorithm. Input: A,B ∈ I; output: D ⊆ I and cC ∈ N for every C ∈ D
such that

1UAU ∗ 1UBU =
∑

C∈D

cC1UCU .

(1) Decompose UAU and UBU into pairwise disjoint right cosets UA1, . . . , UAk

and UB1, . . . , UBm, respectively.
(2) Let D = ∅.
(3) For every pair (i, j) with 1 ≤ i ≤ k and 1 ≤ j ≤ m, test whether there exists a

C ′ ∈ D with UAiBjU = UC ′U . If this is not the case, add the element AiBj

to D and set cAiBj
= 1; otherwise, if additionally UC ′ = UAiBj is fulfilled,

increase cC′ by 1. �
For the execution of this algorithm, a right coset decomposition of UAU and

UBU has to be constructed explicitly in step (1). Using Theorem 1.2 we can give
an algorithm that carries out this task.

5.2. Algorithm. Input: A ∈ I and an enumeration (Qn)n∈N of U ; output: right
transversal R of U \ UAU .
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(1) Calculate k = μ(A) (using Theorem 1.2).
(2) Set R = {A} and n = 1.
(3) If there exists no B ∈ R with UAQn = UB, add the element AQn to R.
(4) If |R| < k, increase n by 1 and go back to (3); otherwise stop. �
5.3. Remark. In order to implement Algorithm 5.2, we have to enumerate all ele-
ments of U , which might not be feasible. To avoid this problem, one can use random
elements instead of enumerated elements for Qn. Then Algorithm 5.2 is turned into
a probabilistic algorithm which produces the desired output if it terminates. The
remaining problem of the generation of random unimodular matrices will not be
discussed here but is delegated to Sage ([15]).

Another idea for the implementation of an algorithm for the construction of a
right transversal is to use Lemma 3.2: With the notation of Lemma 3.2, run over
all possible a and c ∈ T and verify whether the given representative is an element
of UAU by checking the determinantal divisors. However, Algorithm 5.2 seems to
be easier to implement. �

Using Algorithm 5.2 and Remark 5.3, we can calculate some
5.4. Examples. Let o = Z + Zω for ω =

√
−5. For A = ( 1 0

0 2 ) the probabilistic
decomposition algorithm terminates after an average of 14 loop cycles and yields
for example

{(
1 0
0 2

)
,

(
1 1
0 2

)
,

(
1 ω
0 2

)
,

(
1 1 + ω
0 2

)
,

(
2 0
0 1

)
,

(
2 0

1 + ω 1

)}

as a system of representatives of U\UAU (with 6 elements according to Exam-
ples 3.7). With this transversal it is then possible to use Algorithm 5.1 to calculate
1UAU ∗ 1UAU ; one obtains

1UAU ∗ 1UAU = 1UA1U + 6 · 1UA2U + 1UA3U ,

with A1 = ( 1 0
0 4 ) and A2 = ( 2 0

0 2 ) as well as A3 = ( 2 1+ω
0 2 ).

In order to get a feeling for the complexity of the decomposition algorithm (a
detailed analysis has to take into account the strategy for choosing the elements of
U and will not be carried out in this paper), we execute this algorithm for some
more A and obtain the following table:

A d1(A) d2(A) μ(A) avg. loop cycles

( 1 0
0 2 ) o 2o 6 14

( 1 0
0 1+ω ) o (ω + 1)o 12 39
( 1 0

0 3 ) o 3o 16 53
( 2 1

0 2 ) o 4o 24 110
( ω 1

0 ω ) o 5o 30 130
( ω 1

1 2 ) o (1 + 2ω)o 32 124
( ω 0

0 2 ) o 2ωo 36 171

�
After these algorithmic applications, the remaining part of this article will deal

with the reduction theorem announced in the introduction. First, an auxiliary
result has to be proved.
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5.5. Lemma. For all f ∈ H define μo(f) =
∑

A∈R f(A)·μo(A), where R is a system
of representatives of U\I/U . Then μo(f ∗ g) = μo(f)μo(g) for all f, g ∈ H. �

Proof. By the definition of μo and ∗ it suffices to prove the assertion for f = 1UAU

and g = 1UBU , where A,B ∈ I. For C ∈ I with (1UAU ∗1UBU )(C) �= 0 we have C ∈
UAUBU by the definition of ∗, and [10], Theorem 3.1 yields d1(A)d1(B) | d1(C)
and thus d1(A)d1(B) | g(C). This implies that in the case d1(A) �= o or d1(B) �= o

both sides of the equation μo(1UAU ∗1UBU ) = μo(1UAU )μo(1UBU ) evaluate to zero,
so it remains to analyse the case d1(A) = o = d1(B). In this case let A1, . . . , Ak

and B1, . . . , Bm be systems of representatives of U\UAU and U\UBU , respectively,
where the Bj with g(Bj) = o have the form ( 1 ∗

0 ∗ ) (without loss of generality due
to Corollary 2.2). Let 1 ≤ i ≤ k and 1 ≤ j ≤ m. If g(Bj) �= o, then g(AiBj) �= o

since the first column of AiBj consists of linear combinations of entries of the first
column of Bj . If g(Bj) = o, then the special structure of Bj yields that the first
column of AiBj equals the first column of Ai. So we have g(AiBj) = o if and only
if g(Ai) = o and g(Bj) = o. Since according to the definition of μo and ∗ we have

μo(1UAU ∗ 1UBU ) = |{(i, j) | g(AiBj) = o, 1 ≤ i ≤ k, 1 ≤ j ≤ m}|,

the just-proved characterisation of g(AiBj) = o used to split up the right-hand side
as a product of two cardinalities yields the assertion. �

Now the desired reduction theorem can be stated and proved.

5.6. Theorem. Let a, b, c ∈ o and A = ( 1 0
0 a ), B = ( 1 0

0 b ) as well as C = ( 1 0
0 c ).

Then (1UAU ∗1UBU )(C) = 1 if c ∈ abo∗, and (1UAU ∗1UBU )(C) = 0 otherwise. �

Proof. With R as in Lemma 5.5 write

μo(1UAU ∗ 1UBU ) =
∑

D∈R

(1UAU ∗ 1UBU )(D) · μo(D)

=
∑

D∈R
D/∈UABU

(1UAU ∗ 1UBU )(D) · μo(D)

+ (1UAU ∗ 1UBU )(AB) · μo(AB).

Using Lemma 5.5, Theorem 1.1 and the multiplicativity of the norm, we have

μo(1UAU ∗ 1UBU ) = μo(1UAU )μo(1UBU )
= N(d2(A)) N(d2(B)) = N(d2(AB)) = μo(AB),

so
∑

D∈R
D/∈UABU

(1UAU ∗ 1UBU )(D) · μo(D) + (1UAU ∗ 1UBU )(AB) · μo(AB) = μo(AB).

Since all numbers in this equation are nonnegative integers and (1UAU ∗1UBU )(AB)
≥ 1 by the definition of ∗, we have (1UAU ∗1UBU )(AB) = 1 and (1UAU ∗1UBU )(D) ·
μo(D) = 0 for all D ∈ R with D /∈ UABU . Since μo(C) ≥ 1 as g(C) = o, these
equations imply (1UAU ∗ 1UBU )(C) = 0 if C /∈ UABU and (1UAU ∗ 1UBU )(C) = 1
if C ∈ UABU , where the latter condition is equivalent to c ∈ abo∗, which proves
the assertion. �
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