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EXPONENT BOUNDS FOR A CONVOLUTION INEQUALITY

IN EUCLIDEAN SPACE WITH APPLICATIONS

TO THE NAVIER-STOKES EQUATIONS

CHRIS ORUM AND MINA OSSIANDER

(Communicated by Walter Craig)

Abstract. The convolution inequality h ∗ h(ξ) ≤ B|ξ|θh(ξ) defined on Rn

arises from a probabilistic representation of solutions of the n-dimensional
Navier-Stokes equations, n ≥ 2. Using a chaining argument, we establish
in all dimensions n ≥ 1 the nonexistence of strictly positive fully supported
solutions of this inequality for θ ≥ n/2. We use this result to describe a chain of
continuous embeddings from spaces associated with probabilistic solutions to
the spaces BMO−1 and BMO−1

T associated with the Koch-Tataru solutions
of the Navier-Stokes equations.

1. Introduction

Convolution inequalities of the form

(1) h ∗ h(ξ) =
∫
Rn

h(ξ − η)h(η)dη ≤ B|ξ|θh(ξ), ξ ∈ Rn, θ ≥ 0, B > 0,

arise in the analysis of the incompressible Navier-Stokes equations via probabilistic
representations of solutions. Our main theorem shows that if h : Rn → (0,∞]
is a fully supported function satisfying (1), then the range of the exponent θ is
constrained by the dimension n. Letting Hθ(Rn) denote the class of solutions of
(1) on Rn we obtain:

Theorem 1. If h ∈ Hθ(Rn), n ≥ 1, then θ < n/2.

Our study of this inequality is motivated by an effort to better understand the
structure and limitations of the stochastic cascade representation of solutions to the
Navier-Stokes equations as first introduced by Le Jan and Sznitman [14] and then
extended by later authors. Essentially, any h satisfying (1) induces a Banach space
Fh (the initial value space) and another space Fh,T = B(0, T ;Fh) of bounded Fh-
valued functions defined on [0, T ] (the path space) that supports a Picard iteration
scheme for establishing existence and uniqueness of solutions of the Navier-Stokes
initial value problem. The function h, which we refer to as a majorizing kernel,
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must be fully supported to correspond to real-valued solutions. Additionally, if the
particular h inducing Fh has θ = 1, then the solutions so obtained are global in time
under the restriction that the data are sufficiently small. If h has 0 ≤ θ < 1, then
the Picard iteration scheme accommodates arbitrarily large data, but the solutions
are restricted to being local in time; i.e. take values in Fh,T where T depends on the
size of the initial datum in the Fh-norm. In the case θ = 1 there is an equivalent
stochastic cascade model providing solutions to the Cauchy problem operative for
all t ≥ 0.

The authors of [3] give examples of majorizing kernels and analyze some prop-
erties of classes of majorizing kernels. In all cases considered however the fully
supported examples with exponent θ = 1 are in dimensions n ≥ 3. The results
presented here provide further understanding of this phenomena by demonstrating
that there are no fully supported solutions with θ = 1 in R2. Correspondingly,
there is no direct analogue of the global 3-dimensional stochastic cascades model
in dimension n = 2. On the other hand, the Picard iteration method applied with
Fh,T , 0 ≤ θ < 1, is sufficient to show the existence of classes of solutions that
are local in time in any dimension n ≥ 2. In other words, Theorem 1 imposes no
limitations on these local solutions (in any dimension n ≥ 2); it only limits the
approach for global solutions in dimension n = 2.

The organization of this paper is as follows. Section 2 reviews the origins and
importance of the convolution inequality (1). Section 3 contains a short proof of
Theorem 1. In Section 4 we consider the continuous embeddings of certain Fh into
the pseudomeasure spaces PMn−θ, which Theorem 1 plays a role in establishing,
as well as successive embeddings into Besov spaces and the spaces BMO−1 and
BMO−1

T associated with the Koch-Tataru solutions.

2. Background and motivation

Consider the incompressible Navier-Stokes equations formulated as a Cauchy
problem on all of Rn where n ≥ 2. This system models the flow of an idealized
incompressible viscous fluid issued from an initial velocity field u0 = u0(x) at
time t = 0. Dimension n = 3 is of central importance, but the formulation is
of interest in arbitrary dimension n ≥ 2. The unknowns are the velocity vector
u = u(x, t) = (ui(x, t))

n
i=1 and scalar pressure p = p(x, t), where x = (x1, . . . , xn).

The system consists of n+ 1 coupled nonlinear equations

∂ui

∂t
(x, t) +

n∑
j=1

uj(x, t)
∂ui

∂xj
(x, t) = ν

n∑
j=1

∂2ui

∂x2
j

(x, t)− ∂p

∂xi
(x, t) + gi(x, t),(2a)

n∑
j=1

∂uj

∂xj
(x, t) = 0,(2b)

supplemented by the initial condition limt→0 u(x, t) = u0(x). Here ν denotes the
kinematic viscosity and g(x, t) = (gi(x, t))

n
i=1 is an external forcing term. For

simplicity we may assume that ∇ · u0(x) = 0 and ∇ · g(x, t) = 0 for all t.
In 1997 Le Jan and Sznitman [14] introduced a representation of the solutions of

a Fourier space integral formulation of (2) in three spatial dimensions as a multi-
plicative functional defined on a continuous-time branching process. These Fourier
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transformed Navier-Stokes equations (FNS ) may be written

û(ξ, t) = e−ν|ξ|2tû0(ξ) +

∫ t

0

e−ν|ξ|2(t−s)ĝ(ξ, s)ds

+ (2π)−n/2

∫ t

0

|ξ|e−ν|ξ|2(t−s)

∫
Rn

[−i
ξ

|ξ| · û(η, s)]P̂(ξ)û(ξ − η, s)dηds,(3)

where ξ = (ξ1, . . . , ξn) is the Fourier space variable, û(ξ, t) denotes the spatial
Fourier transform of the unknown velocity field (and similarly for ĝ(ξ, t) and û0(ξ)),

and P̂(ξ) denotes the Leray-Helmholtz projection whose pointwise action in Fourier
space is to project a vector z ∈ Cn onto the subspace orthogonal to ξ 	= 0:

P̂(ξ)z = z − (eξ · z)eξ; eξ =
ξ

|ξ| .

A key device in the R3 representation in [14] is the dimension specific rescaling of
û and ĝ,

χ(ξ, t) =
2

ν

(π

2

)3/2

|ξ|2û(ξ, t), ϕ(ξ, t) =
4

ν2

(π

2

)3/2

ĝ(ξ, t),

which allows the simultaneous description of a ‘splitting distribution’ for a pair of
particles {Ξ1,Ξ2} replacing ξ in the branching process, namely

(4) Pr(Ξi ∈ A) =
1

π3

∫
A

|ξ|
|ξ − η|2|η|2 dη, A ⊆ R3, i = 1, 2, Ξ1 + Ξ2 = ξ,

and the normalization of |ξ| exp{−ν|ξ|2s} to the density of an exponential random
variable describing the random lifetime of the particle of type ξ so replaced.

Details of this construction may be found in [14], [3]; extensions may be found
in [4], [5], [9], [10], [18], [19]. Related analytical papers are [2], [12], [20], [21], [22].
Essentially the solution is represented in the form of an expected value

(5) û(ξ, t) = h(ξ)EX(ξ, t),

where h(ξ) = π−3|ξ|−2 solves the convolution equation h∗h(ξ) = |ξ|h(ξ) on R3 and
X(ξ, t) is defined by a backward recursion arising from a probabilistic interpretation
of the rescaled formulation of (3). Figure 1 illustrates the branching process and the
construction of the multiplicative functional X(ξ, t). The ⊗ξ-operation performed
at each of the binary nodes in the branching process encodes the algebraic structure
of the bilinear term on the right-hand side of (3): for two vectors z, w ∈ C3 we

define z ⊗ξ w ∈ C3 by z ⊗ξ w = −i[z · eξ]P̂(ξ)w.
This representation provides existence and uniqueness results for the solutions

of (3) in the space of pseudomeasures (PM2)3. The scale of pseudomeasure spaces
is defined by

(6) PMa =
{
f ∈ S ′(Rn) : f̂ ∈ L1

loc(R
n), ‖f ;PMa‖ = ess sup

ξ∈Rn

|ξ|a|f̂(ξ)| < ∞
}
,

where a ≥ 0 is a given parameter and S ′(Rn) denotes the space temperate distri-
butions on Rn. Alternatively, the spaces PMa may be regarded as homogeneous
Besov-type spaces based on the classical space of pseudomeasures PM = PM0:

PMa = Ḃa,∞
PM = {f ∈ S ′(Rn) : supj∈Z 2aj‖Δjf‖PM < ∞}.

Here Δjf is the j th dyadic block of the Littlewood-Paley decomposition of f .
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t ↑

← Rn →

}
λ−1
ξ Sθ

(Ξθ = ξ, t)

•

◦ ◦

•

}
λ−1
Ξ2

S2

◦ (Ξ2, t− λ−1
ξ Sθ − λ−1

Ξ2
S2)

Ξ1 Ξ2

Ξ11 Ξ12

Figure 1. A schematic illustration of the branching process and
the construction of X(ξ, t): a particle of type ξ = Ξθ lives for a ran-
dom length of time λ−1

ξ Sθ and then dies out. Depending on the

outcome of a Bernoulli random variable with mean 1/2, it is either
not replaced at all or replaced by two correlated particles Ξ1 and
Ξ2 distributed as (4), or more generally (8). The two new particles
in turn live for independent random lifetimes, and so the process
continues. There are two types of nodes: input nodes (◦) accept
data when a particle dies out without replacement or when its life-
time extends below the horizontal axis at time t = 0. Operational
nodes (•) combine data according to z, w �→ m(Ξv)z ⊗Ξv

w and
send the output upward. Here m(ξ) is a multiplicative factor that
arises from the rescaling of û by h, λξ = ν|ξ|2, v ∈ {θ, 1, 2, 11, . . . },
and Sθ, S1, S2, . . . are i.i.d. standard exponential random variables.

Returning to the stochastic cascade, it was later recognized [6] that the same
existence and uniqueness results could be obtained by applying the Picard it-
eration argument with the Banach space B(0, T ; (PM2)3) of bounded functions
f(t) : [0, T ] → (PM2)3. This argument is notable for the continuity of

(7) B = B(u, v)(x, t) =

∫ t

0

eν(t−s)ΔP∇ · (u⊗ v)(s)ds.

That is, B : E×E → E is continuous if E = B(0, T ; (PM2)3) but is not continuous
in general, in which case the Picard iteration argument typically requires the use
of an embedded subspace with a second norm; see e.g. [1, p. 220], [7], [15], [16].

The authors of [3] generalize this approach by showing that the h in (5) may
belong to a more general class of FNS majorizing kernels which are positive solu-
tions of (1) parameterized by the exponent θ. There are two natural Banach spaces
associated with a given majorizing kernel. The first is the majorization space

Fh =
{
f ∈ S ′(Rn)n : f̂(ξ) ∈ L1

loc(R
n)n, ‖f ;Fh‖ = sup

ξ∈Rn

[h(ξ)]−1|f̂(ξ)| < ∞
}
.

The initial data for the Cauchy problem belongs to this space. The second is
the path space Fh,T = B(0, T ;Fh) of bounded Fh-valued functions defined on the
interval [0, T ] with norm

‖f(t);Fh,T ‖ = sup
0≤t≤T

‖f(t);Fh‖.
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The solutions belong to this space. It turns out that B : Fh,T × Fh,T → Fh,T is
again continuous for any majorizing kernel of exponent 0 ≤ θ ≤ 1, and the Picard
iteration argument is directly applicable without the introduction of a second norm.
This yields global existence and uniqueness results in the case θ = 1 (with small
data) and local existence and uniqueness results in the case 0 ≤ θ < 1 (with
arbitrarily large data). The argument works for the FNS equations formulated in
any dimensions n ≥ 2 subject to the constraint θ < n/2 of Theorem 1.

For majorizing kernels with exponent θ = 1, the Picard iteration scheme can
be connected to stochastic cascades as follows. A solution h of (1) provides the
following splitting distribution for a branching process generalizing (4):

(8) Pr(Ξ1 ∈ A) =

∫
A

h(ξ − η)h(η)

h ∗ h(ξ) dη, A ⊆ Rn, Ξ1 + Ξ2 = ξ.

This specializes to (4) in dimension n = 3 with h(ξ) = π−3|ξ|−2. For the more
general branching processes and X(ξ, t) defined accordingly, one can define a se-
quence of events {Gk}k≥0 pertaining to the branching process so that the sequence
E(X(ξ, t);Gk) and the iterates of the Picard contraction argument are in one-to-
one correspondence. This is established in [3] with the conclusion that for global
solutions with θ = 1, the existence of the expected value representation and the
convergence of the Picard iteration scheme are essentially equivalent.

3. Main theorem

The majorizing kernels considered in [3] are allowed to be supported on various
convex additive semigroups W ⊂ Rn. Here however we focus entirely on fully
supported majorizing kernels: those h with

∫
A
h(ξ)dξ > 0 for all subsets A ⊆ Rn

having positive Lebesgue measure. Fully supported majorizing kernels correspond
to majorization spaces Fh and Fh,T that contain real data and solutions.

Definition 2. A majorizing kernel with exponent θ is a tempered function (a tem-
pered distribution that is also a function) h : Rn → (0,∞] satisfying the following
conditions:

(i) h ∗ h(ξ) ≤ B|ξ|θh(ξ) for all ξ ∈ Rn with constants B > 0 and θ ≥ 0;
(ii) h−1(∞) has n-dimensional Lebesgue measure zero.

We set Ωh = Rn \ h−1(∞). If B is such that supξ h ∗ h(ξ)/|ξ|θh(ξ) = B, then B is
sharp. If B = 1 is sharp, then h is standardized.

The set of majorizing kernels of exponent θ defined on Rn is denoted Hθ(Rn).
It is possible for a given majorizing kernel to have a range of exponents.

The invertible map h �→ B−1h on Hθ(Rn) has the effect of standardizing any
nonstandardized majorizing kernel with sharp constant B; hence for the purpose
of proving Theorem 1 we assume, without loss of generality, that h is standardized.
We also make this assumption in the proofs of the lemmas in this section.

Lemma 3. Let h ∈ Hθ(Rn), θ ≥ 0. Then for all R > 0, h(ξ) is bounded away
from zero on the closed ball B(0, R) = {ξ ∈ Rn : |ξ| ≤ R}.
Proof. We assume that h is standardized. Fix R > 0, and define g(ξ) : Rn → [0, 1]
by restricting and truncating h(ξ):

g(ξ) =

{
0 if ξ /∈ B(0, R),

min{h(ξ), 1} if ξ ∈ B(0, R).
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Since h(ξ) ≥ g(ξ) ≥ 0 for all ξ ∈ Rn, we have h ∗ h(ξ) ≥ g ∗ g(ξ) ≥ 0 as well. Let
ξ0 ∈ B(0, R), the closed ball. Since 0 < g(ξ) ≤ 1 on B(ξ0/2, R/2) ⊂ B(0, R), it
follows that

g ∗ g(ξ0) ≥
∫
|η|<R/2

g
(ξ0
2

− η
)
g
(ξ0
2

+ η
)
dη > 0.

In other words, for J = g ∗ g(B(0, R)) we have J ⊂ (0,∞). But since g ∈ L2(Rn)
it follows that g ∗ g(ξ) is continuous on Rn, and hence J is compact and connected;
i.e., J is a closed subinterval of (0,∞) that is necessarily bounded away from zero.
Then on B(0, R) we have

h(ξ) ≥ |ξ|−θh ∗ h(ξ) ≥ |ξ|−θg ∗ g(ξ) ≥ R−θg ∗ g(ξ),
giving that h(ξ) is also bounded away from zero on B(0, R). �

Corollary 4. If h ∈ Hθ(Rn), θ ≥ 0, then for all ξ0 ∈ Ωh, ξ0 	= 0 there exist
δ = δ(ξ0) > 0 and ε = ε(ξ0) > 0 such that inf |η|<δ h(ξ0 − η) ≥ εh(ξ0).

In the following two lemmas B∗(r) = {ξ ∈ Rn : 0 < |ξ| < r} denotes the
punctured ball of radius r > 0 in Rn centered at the origin.

Lemma 5. Suppose h(ξ) ∈ Hθ(Rn) with θ ≥ n/2. Then h(ξ) has the following
behavior at the origin: either lim infξ→0 |ξ|θh(ξ) = 0 or lim infξ→0 |ξ|θh(ξ) = ∞.

Proof. Assume h is standardized. Suppose that lim infξ→0 |ξ|θh(ξ) > 0. Then for
some L > 0 there exists a δ > 0 such that |ξ|θh(ξ) > L for all ξ ∈ B∗(δ). Then for
ξ ∈ B∗(δ),

|ξ|θh(ξ) ≥
∫

|η|<δ/2

h(η)h(ξ − η)dη ≥
∫

|η|<δ/2

L2dη

|η|θ|ξ − η|θ .

Applying Fatou’s Lemma with any convergent sequence ξn → 0 gives

lim inf
ξn→0

|ξn|θh(ξn) ≥
∫

|η1|<δ/2

lim inf
ξn→0

L2dη

|η|θ|ξn − η|θ =

∫
|η|<δ/2

L2dη

|η|2θ = ∞.

�

Lemma 6. If h ∈ Hθ(Rn) and θ ≥ n/2, then lim infξ→0 |ξ|θh(ξ) 	= ∞.

Proof. Fix n ≥ 1 and take θ ≥ n/2. Suppose for contradiction that there exists
h ∈ Hθ(Rn) with lim infξ→0 |ξ|θh(ξ) = ∞. We may assume h is standardized. For
x > 0, let

ρ(x) = sup{r > 0 : |ξ|θh(ξ) > x ∀ξ ∈ B∗(r)}.
Notice that ρ is a nonincreasing function of x with limx→∞ ρ(x) = 0. Furthermore,
for any ξ ∈ B∗(ρ(x)/2),

|ξ|θh(ξ) ≥
∫
|η|<ρ(x)/2

h(η)h(ξ − η)dη ≥
∫
|η|<ρ(x)/2

x2

|η|θ|ξ − η|θ dη

≥ x2

[ρ(x)]θ

∫
|η|<ρ(x)/2

dη

|η|θ .(9)

The cases θ ≥ n and n/2 ≤ θ < n are now considered separately. We can easily
dispense with the first case. If θ ≥ n and ρ(x) > 0, then

∫
|η|<ρ(x)/2

|η|−θdη = ∞,
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giving h(ξ) ≡ ∞ on B∗(ρ(x)/2) and violating Definition 2. Therefore if h ∈ Hθ(Rn)
and θ ≥ n, then lim infξ→0 h(ξ) 	= ∞.

For θ ∈ [n/2, n), the calculation in (9) gives

(10) |ξ|θh(ξ) ≥ Cn,θx
2[ρ(x)]n−2θ for ξ ∈ B∗(ρ(x)/2),

where Cn,θ = πn/2((n− θ)2n−θΓ(n/2))−1 depends only on n and θ. This will give
a lower bound on the rate at which |ξ|θh(ξ) → ∞ as |ξ| → 0. In particular, if we
define

λ(x) = Cn,θ[ρ(x)]
n−2θ,

then inspection of (10) gives

(11) ρ(x2λ(x)) ≥ 2−1ρ(x).

We now define a rapidly increasing sequence {xk} iteratively in a way that allows
inequality (11) to control the corresponding decrease in ρ(xk). This will yield a
contradiction with the assumption that lim infξ→0 |ξ|θh(ξ) = ∞. First observe that
for n/2 < θ < n, λ(x) is a nondecreasing function of x with λ(x) → ∞ as x → ∞.

If θ = n/2, then λ(x) = Cn,n/2 = 2(π/2)n/2 (nΓ(n/2))
−1

. Accordingly, these two
cases are treated separately in defining {xk}. For θ ∈ (n/2, n), fix x0 ≥ 2 large
enough to also have λ(x0) ≥ 2 and define {xk}k≥1 iteratively via

xk = x2
k−1λ(xk−1) for k ≥ 1.

Then x1 ≥ 2x2
0 ≥ 23 and by induction,

xk ≥ 2x2
k−1 ≥ 22

k+1−1.

For θ = n/2, take x0 = max{2, 2(Cn,n/2)
−1} and define {xk}k≥1 iteratively via

xk = Cn,n/2x
2
k−1 = x2

k−1λ(xk−1) for k ≥ 1.

Then x1 = max{22Cn,n/2, 2
2(Cn,n/2)

−1} and by induction,

xk = max{22k(Cn,n/2)
2k−1, 22

k

(Cn,n/2)
−1}.

Since max{(Cn,n/2)
2k−1, (Cn,n/2)

−1} ≥ 1, in both cases the sequence satisfies both

(12) xk ≥ 22
k

, k ≥ 0,

and

(13) xk = x2
k−1λ(xk−1), k ≥ 1.

In particular, (12) gives ρ(xk) → 0 as k → ∞. On the other hand, (13) combined
with (11) controls the rate of decrease of ρ(xk) via

ρ(xk) ≥ 2−1ρ(xk−1) ≥ 2−kρ(x0).
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To conclude the proof, fix ξ0 ∈ Ωh, ξ0 	= 0. By Corollary 4 there exists δ, ε > 0
such that inf |η|<δ h(ξ0 − η) ≥ εh(ξ0). Take k large enough to have ρ(xk) < δ. Then

|ξ0|θh(ξ0) ≥
∫

|η|<ρ(xk)

h(η)h(ξ0 − η)dη ≥ εh(ξ0)

∫
|η|<ρ(xk)

h(η)dη

≥ εh(ξ0)

∫
|η|<ρ(xk)

xk

|η|θ dη = εh(ξ0)C
′
n,θxkρ

n−θ(xk)(14)

≥ εh(ξ0)C
′
n,θ2

2k
(
2−kρ(x0)

)n−θ
,

where C ′
n,θ = 2n−θCn,θ depends only on n and θ. As the right-hand side of (14)

becomes arbitrarily large as k → ∞, contradicting the finiteness of the left-hand
side, we conclude that if h ∈ Hθ(Rn) with θ ≥ n/2, then lim infξ→0 |ξ|θh(ξ) 	=
∞. �

Proof of Theorem 1. Suppose for contradiction that h ∈ Hθ(Rn) with θ ≥ n/2.
Assume that h is standardized. By Lemmas 5 and 6, lim infξ→0 |ξ|θh(ξ) = 0.
Applying Fatou’s Lemma we find that

0 = lim inf
ξ→0

|ξ|θh(ξ) ≥ lim inf
ξ→0

∫
Rn

h(η)h(ξ − η)dη

≥
∫
Rn

h(η) lim inf
ξ→0

h(ξ − η)dη =

∫
Rn

h(η) lim inf
ξ→−η

h(ξ)dη,

implying that for almost all η ∈ Rn,

(15) h(η) lim inf
ξ→−η

h(ξ) = 0.

In particular, this holds for almost all η ∈ Rn such that −η ∈ Ωh. For any such
−η ∈ Ωh, h(ξ) is bounded away from zero in a neighborhood of −η by Corollary 4,
and since h(η) > 0 for all η,

h(η) lim inf
ξ→−η

h(ξ) > 0.

This contradicts (15). Therefore if θ ≥ n/2, then Hθ(Rn) = ∅, or equivalently, if
h ∈ Hθ(Rn), then θ < n/2. �

4. Embedding properties and relation to Koch-Tataru solutions

In this section we discuss properties of majorizing kernels and majorization
spaces implied by Theorem 1. One consequence in particular is that for a given
majorizing kernel that behaves algebraically at the origin and at infinity we have
the continuous embedding Fh ↪→ PMn−θ (a slight modification is needed if θ = 0).
This is part of a chain of continuous embeddings from Fh up to the spaces BMO−1,
BMO−1

T and VMO−1, the initial value spaces for the Koch-Tataru solutions of the
Navier-Stokes equations. If θ = 1, then we have

Fh ↪→ PMn−1 ↪→ Ḃ
−1+n

p ,∞
p ↪→ BMO−1 (n < p < ∞),

and if 0 < θ < 1, then for 0 < T < 1 we have

Fh ↪→ PMn−θ ↪→ Ḃ
−θ+n

p ,∞
p ↪→ B

−θ+n
p ,∞

p ↪→ BMO−1
T (

n

θ
< p < ∞),
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and Fh ⊂ VMO−1. Here, as in the sequel, it is convenient to ignore the distinction
between spaces of scalar-valued and vector-valued functions. We follow the index
convention in [11] for the homogeneous and inhomogeneous Besov spaces, Ḃs,q

p and

Bs,q
p respectively. Although the successive embeddings after Fh ↪→ PMn−θ are

known, we record them here for completeness and to emphasize how the dichotomy
between cases θ < 1 and θ = 1 aligns with the dichotomy between local and global
solutions in the endpoint spaces. Finally, we note that there are majorization spaces
Fh 	⊂ PMn−θ that embed further along these chains. Proposition 17 illustrates how
this can occur. Since the class of majorizing kernels has itself not been completely
characterized, we are not able to locate all majorization spaces on scales of classical
or better known Banach spaces.

4.1. The endpoint spaces. Recall that Koch and Tataru [13] consider the iter-
ation scheme for solving the mild formulation of the Navier-Stokes equations with
initial data in the function space BMO−1 = BMO−1(Rn), which admits a Carle-
son measure characterization through the norm

‖f‖BMO−1 = sup
x,R>0

(
1

|B(x,R)|

∫ R2

0

∫
B(x,R)

|etΔf |2dydt
)1/2

.

Here B(x,R) denotes the ball of radius R centered at x ∈ Rn, and |B(x,R)| is its
Lebesgue measure. Equivalently, BMO−1 consists of functions that can be written
as the divergence of vector fields whose components belong to BMO, the space of
functions of bounded mean oscillation.

In [13] it is shown that given sufficiently small initial datum u0 ∈ BMO−1,
there exists a mild solution of the Navier-Stokes equations issued from u0 in the
path space X of functions defined on Rn ×R+ with norm

‖u‖X = sup
t

t1/2‖u(t)‖L∞(Rn) + sup
x,R>0

(
1

|B(x,R)|

∫ R2

0

∫
B(x,R)

|u|2dydt
)1/2

.

It is also shown that there exists a constant ε0 such that for all ‖u0‖BMO−1
T

< ε0
there exists a mild solution in the local path space XT , defined by the norm

‖u‖XT
= sup

0<t<T
t1/2‖u(t)‖L∞(Rn) + sup

x, 0<R2<T

(
1

|B(x,R)|

∫ R2

0

∫
B(x,R)

|u|2dydt
) 1

2
.

Here BMO−1
T is defined as BMO−1 except that we only consider balls of size

√
T

and smaller:

‖f‖BMO−1
T

= sup
x, 0<R2<T

(
1

|B(x,R)|

∫ R2

0

∫
B(x,R)

|etΔf |2dydt
)1/2

.

Finally, VMO−1 :=
{
f ∈ BMO−1

1 : ‖f‖BMO−1
T

→ 0 as T → 0
}
, following the

notation of [13]. In [17] and elsewhere, this space is denoted by vmo−1.

4.2. Continuous embeddings of majorization spaces. We first define a class
of majorizing kernels having certain algebraic growth and decay properties, and
then consider continuous embeddings of the associated majorization spaces.

Definition 7. A majorizing kernel h ∈ Hθ(Rn) behaves (algebraically) at the origin
as |ξ|−α or blows up (algebraically) at the origin as |ξ|−α if there exists an α ≥ 0
such that h(ξ) = O(|ξ|−α) as ξ → 0 and |ξ|−α = O(h(ξ)) as ξ → 0.
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Definition 8. A majorizing kernel h ∈ Hθ(Rn) behaves (algebraically) at infinity
as |ξ|−ω or decays (algebraically) at infinity as |ξ|−ω if there exists an ω > 0 such
that h(ξ) = O(|ξ|−ω) as ξ → ∞ and |ξ|−ω = O(h(ξ)) as ξ → ∞.

Definition 9. A majorizing kernel has radial algebraic growth and decay if

(1) it behaves algebraically at the origin as |ξ|−α for some α ≥ 0;
(2) it decays algebraically at infinity as |ξ|−ω for some ω > 0;
(3) it is bounded on the complement of any neighborhood of the origin.

The subclass of Hθ(Rn) consisting of those majorizing kernels with radial algebraic
growth and decay is denoted Hθ

α,ω(R
n).

Note that if h ∈ Hθ
α,ω(R

n), then for any λ > 0 the elements f ∈ Fh satisfy the
scaling relation

(16) Cλ‖f‖Fh
≤ ‖λθfλ‖Fh

≤ C ′
λ‖f‖Fh

,

where fλ(x) = f(λx) and constants Cλ and C ′
λ may depend on λ. On the other

hand, this property does not characterize Hθ
α,ω(R

n). The majorizing kernels dis-
cussed in Proposition 16, for example, satisfy (16) with Cλ ≡ C ′

λ ≡ 1 yet do not be-
long toHθ

α,ω(R
n). Majorization spaces also exist that satisfy (16) only for certain λ.

Taking h(ξ) = (2π)−1|ξ|−1e−|ξ| ∈ H1(R3), for example, yields a majorization space
Fh that satisfies (16) only for λ ≤ 1. In this case, λ‖f‖Fh

≤ ‖λfλ‖Fh
≤ λ−1‖f‖Fh

.

Theorem 10. Suppose h ∈ Hθ(Rn) blows up at the origin as |ξ|−α. If 0 < θ < n/2,
then α ≤ n− θ, and if θ = 0, then α < n.

Proof. Assume h ∈ Hθ(Rn) behaves as |ξ|−α at the origin and is standardized.
Then α < n, lest h ∗ h(ξ) ≡ ∞. Suppose for contradiction that α > n − θ. Then
2α > n by Theorem 1. Since |ξ|−α = O(h(ξ)) and h(ξ) = O(|ξ|−α) as ξ → 0, there
exist constants R > 0 and C,C1 > 0 such that

√
C1|ξ|−α ≤ h(ξ) ≤ C|ξ|−α for all

|ξ| < R. Then for all |ξ| < R/3 we have

C ≥ |ξ|α−θh ∗ h(ξ) ≥ C1|ξ|α−θ

∫
|η|<2R/3

dη

|ξ − η|α|η|α

≥ C1|ξ|α−θ

{∫
Rn

dη

|ξ − η|α|η|α −
∫
|η|>2R/3

dη

|ξ − η|α|η|α

}
(17)

≥ C1

{
C2

|ξ|α−(n−θ)
− C3|ξ|α−θ

}
,

using the convolution equality |ξ|−α ∗ |ξ|−α = C2|ξ|−(2α−n) and the estimate∫
|η|>2R/3

dη

|ξ − η|α|η|α ≤ C3 < ∞,

both of which hold if n/2 < α < n. Then the right-hand side of (17) tends to
+∞ as ξ → 0, which contradicts the finiteness of the left-hand side. Hence if h(ξ)
behaves as |ξ|−α at the origin, then α ≤ n− θ. �

Theorem 11. If h(ξ) ∈ Hθ(Rn) decays at infinity as |ξ|−ω, then ω ≥ n− θ.

Proof. Assume h behaves as |ξ|−ω at infinity and is standardized. There exist an
R > 0 and constants C1, C2 such that C1|ξ|−ω ≤ h(ξ) ≤ C2|ξ|−ω whenever |ξ| > R.
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Using the fact that 2|ξ − η| ≥ |η| whenever |η| ≥ 2|ξ|, we have for all ξ such that
|ξ| > R,

C2|ξ|θ−ω ≥ |ξ|θh(ξ) ≥ h ∗ h(ξ) ≥
∫
|η|≥2|ξ|

h(ξ − η)h(η)dη

≥ 2−ωC2
1

∫
|η|≥2|ξ|

|η|−2ωdη = C|ξ|n−2ω.

This implies 2ω > n and |ξ|n−2ω = O(|ξ|θ−ω) as ξ → ∞; hence ω ≥ max{n/2, n−θ}.
The maximum here is superfluous by Theorem 1, and we have ω ≥ n−θ > n/2. �

Given Banach spaces X and Y we write X ↪→ Y to denote the continuous
embedding of X into Y .

Theorem 12. Suppose h ∈ Hθ
α,ω(R

n), θ < n/2 and n ≥ 2. If θ = 1, then

Fh ↪→ PMn−1 ↪→ BMO−1. If 0 < θ < 1, then Fh ↪→ PMn−θ ↪→ BMO−1
T for all

T > 0.

Remark 13. The following intermediate embeddings are also known: for p ∈ (n,∞),
n ≥ 2,

PMn−1 ↪→ Ḃ
−1+n

p ,∞
p ↪→ BMO−1.

See e.g. [8, p. 267], [1, p. 228], respectively. For p ∈ (n/θ,∞), n ≥ 2, 0 < θ < 1 and
0 < T ≤ 1, we also have

PMn−θ ↪→ Ḃ
−θ+n

p ,∞
p ↪→ B

−θ+n
p ,∞

p ↪→ BMO−1
T

through a suitable modification of [8, Lemma 7.1] and [13, Remark 4.2f.]. In addi-
tion, PMn−θ ⊂ VMO−1, since the constant of the final embedding is proportional
to T (1−θ)/2. �

Recall that for the pair {Lq = Lq(Rn), Lr = Lr(Rn)}, 1 ≤ q, r ≤ ∞, the set
Lq + Lr = {fq + fr : fq ∈ Lq, fr ∈ Lr} becomes a Banach space when equipped
with the norm

‖f‖Lq+Lr = inf{‖fq‖Lq + ‖fr‖Lr : f = fq + fr}.

Proof of Theorem 12. We first consider simultaneously PMn−1 ↪→ BMO−1 (n ≥
2) and PMn−θ ↪→ BMO−1

T (n ≥ 2, 0 < θ < 1). Recall that fλ(x) = f(λx). By
scaling we have
(18)

1

|B(x0, λ)|

∫ λ2

0

∫
B(x0,λ)

|etΔf |2dydt = λn+2−2θ

|B(x0, λ)|

∫ 1

0

∫
B(λ−1x0,1)

|etΔλθfλ|2dydt.

The following estimate holds for all f ∈ PMn−θ (n ≥ 2, 0 < θ ≤ 1):(∫
B(x0,1)

|etΔf |2dy
) 1

2 ≤ ‖f (2)‖L2+|B(x0, 1)|
1
2 ‖f (∞)‖L∞ ≤ C‖f‖PMn−θ‖h�‖L1+L2 .

Here h� = |ξ|−(n−θ) ∈ L1 + L2 and f = f (2) + f (∞) ∈ L2 + L∞. Apply-
ing this estimate to the right-hand side of (18) along with the scaling relation
‖λθfλ‖PMn−θ = ‖f‖PMn−θ gives

‖f‖BMO−1
T

≤ CθT
(1−θ)/2‖f‖PMn−θ (0 < θ < 1),

‖f‖BMO−1 ≤ Cθ‖f‖PMn−1 (θ = 1),
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where Cθ = C‖h�‖L1+L2 depends on θ. Now suppose h ∈ Hθ
α,ω(R

n), θ < n/2,

n ≥ 2 and 0 < θ ≤ 1. Theorems 10 and 11 imply supξ∈Rn |ξ|n−θh(ξ) < ∞, and

then Fh ↪→ PMn−θ follows. �

Remark 14. Theorems 10 and 11 also imply that if h ∈ H0
α,ω(R

n), then there exists

a constant σ (depending on h) with 0 < σ < 1 such that Fh ↪→ PMn−σ. �

The next theorem deals with inclusions Fh ⊂ VMO−1, where the latter space
plays a role in the local solutions analyzed in [13]. We write 1[·] for the indicator
function and F−1 for the inverse Fourier transform.

Theorem 15. Suppose h ∈ Hθ
α,ω(R

n), n ≥ 2. If 0 < θ < 1, then there exists a
constant Cθ (which may depend on θ) such that for all f ∈ Fh, T > 0,

(19) ‖f‖BMO−1
T

≤ CθT
(1−θ)/2‖f‖Fh

;

hence Fh ⊂ VMO−1. If θ = 0, then there exist constants C, k1, and k2 such that

(20) ‖f‖BMO−1
T

≤
{
CT 1/2‖f‖Fh

if ω > n,

(k1T
1/2 + k2T

1/2 log T−1/2)‖f‖Fh
if ω = n

for all f ∈ Fh, 0 < T ≤ 1/e2; hence Fh ⊂ VMO−1.

Proof. The proof of Theorem 12 implies (19) for 0 < θ < 1. If θ = 0 and ω > n,
then h ∈ L1. Then for all f ∈ Fh, λ > 0, we have( ∫

B(λ−1x0,1)

|etΔfλ|2dy
) 1

2 ≤ |B(λ−1x0, 1)|
1
2 ‖fλ‖L∞ ≤ C‖f‖L∞ ≤ C‖f‖Fh

‖h‖L1 .

Applying this to (18) gives the first part of (20). If θ = 0 and ω = n we let

fλ = f
(2)
λ + f

(∞)
λ ∈ L2 + L∞ where

f
(2)
λ = f

(2,R)
λ = F−1( f̂λ 1[ |ξ| ≥ R ] ), f

(∞)
λ = f

(∞,R)
λ = F−1( f̂λ 1[ |ξ| < R ] ),

and R is chosen so that C1|ξ|−n1[ |ξ|≥R ] ≤ h(ξ)1[ |ξ|≥R ] ≤ C2|ξ|−n1[ |ξ|≥R ]. Then if
λ < 1 we have( ∫

B(λ−1x0,1)

|etΔf (2)
λ |2dy

) 1
2 ≤ C sup

|ξ|>R

λ−nf̂(λ−1ξ)

λ−nh(λ−1ξ)
sup
|ξ|>R

λ−nh(λ−1ξ)

h(ξ)
‖h1[ |ξ|≥R ]‖L2

≤ C
C2

C1
‖f‖Fh

‖h1[ |ξ|>R ]‖L2 (λ < 1).

In addition, there exist constants c1 and c2 such that if λ < 1, we have( ∫
B(λ−1x0,1)

|etΔf (∞)
λ |2dy

) 1
2 ≤ |B(λ−1x0, 1)|

1
2 ‖f (∞)

λ ‖L∞

≤ C‖f‖Fh

∫
Rn

h(ξ)1[λ|ξ| < R ]dξ

≤ C(c1 + c2 log λ
−1)‖f‖Fh

(λ < 1).
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Applying these estimates to (18) gives the second part of (20) provided T ≤ e−2,
which insures that λ log λ−1 is increasing on (0, T 1/2]. Finally, (20) is sufficient to
conclude that Fh ⊂ VMO−1, since similar considerations imply Fh ⊂ BMO−1

1 . �

4.3. Further properties. Theorems 12 and 15 use the fact that if h ∈ Hθ
α,ω(R

n),

then h ∈ L1 + L2. Not all majorizing kernels share this property. Proposition 16
provides a class of counterexamples, making use of the following criterion for Lq+Lr:
a measurable function f defined on Rn belongs to Lq + Lr, 1 ≤ q < r ≤ ∞, if and
only if for all M > 0, f1[|f |≥M ] ∈ Lq and f1[|f |≤M ] ∈ Lr.

Proposition 16. Let n ≥ 2, k ≥ 2 and ϑ < n/2 and partition the coordinate index
set of Rn into k blocks: {1, . . . , n} = I1 ∪ · · · ∪ Ik, |Ii| = di,

∑
di = n. Define h(ξ)

on Rn by

h(ξ) =

k∏
i=1

r
−(di−θi)
i , r2i =

∑
j∈Ii

ξ2j , ξ = (ξ1, . . . , ξn),

where
∑k

i=1 θi = ϑ, 0 < θi < di/2. Then h ∈ Hϑ(Rn) and h /∈ L1 + L2.

Proof. For h as defined above and any set A ⊂ R+, we have

∫
Rn

h(ξ)1[h ∈ A]dξ = C

∞∫
0

· · ·
∞∫
0

( k∏
i=1

rθi−1
i

)
1
[ ∏k

i=1 r
−(di−θi)
i ∈ A

]
dr1 · · · drk,

where C is a constant depending only on (d1, . . . , dk). In particular,
(21)∫

Rn

h(ξ)1[h ≥ 1]dξ = C

∞∫
0

· · ·
∞∫
0

( k∏
i=1

rθi−1
i

)
1
[ ∏k

i=1 r
di−θi
i ≤ 1

]
dr1 · · · drk = ∞,

so h /∈ L1 + L2. On the other hand, h, defined on Rn � Rd1 × · · · ×Rdk , has the

form h =
∏k

i hi with each hi ∈ Hθi(Rdi), so

h ∗ h(ξ) ≤ B1 · · ·Bk|r1|θ1 · · · |rk|θkh(ξ) ≤ B1 · · ·Bk|ξ|ϑh(ξ)

and h ∈ Hϑ(Rn). �

The next proposition shows how Fh ↪→ B
−θ+n

p ,∞
p , Fh 	⊂ PMn−θ can occur.

Following [8, Lemma 7.1], we use the heat semigroup characterization of the spaces

Ḃ−α,∞
p , α > 0, via the norm ‖f‖Ḃ−α,∞

p
= supt≥0 t

α/2‖etΔf‖Lp (see [1, p. 72]).

Proposition 17. Let n ≥ 2, ϑ < n/2, and suppose h ∈ Hϑ(Rn) is defined as in

Proposition 16. Then for all p > n/ϑ, we have Fh ↪→ Ḃ
−ϑ+(n/p),∞
p , but for a ≥ 0,

Fh 	⊂ PMa.



3896 C. ORUM AND M. OSSIANDER

Proof. First Fh 	⊂ PMa, a ≥ 0, since Ωh 	= Rn\{0}. Let n/ϑ < p < ∞ and set
q−1 + p−1 = 1 so that 1 < q < n/(n− ϑ). By the Hausdorff-Young inequality, for
all f ∈ Fh, t > 0, we have

‖etΔf‖qLp ≤ C

∫
Rn

|e−t|ξ|2 f̂(ξ)|qdξ

≤ C
(

sup
ξ∈Rn

|f̂(ξ)|
h(ξ)

)q k∏
i=1

( ∫ ∞

0

rdi−(di−θi)qe−qr2t dr

r

)
(22)

≤ C‖f‖qFh

k∏
i=1

t−(di−(di−θi)q)/2 = C‖f‖qFh
t(−n+(n−ϑ)q)/2.

Then supt>0 t
(ϑ−n/p)/2‖etΔf‖Lp ≤ C‖f‖Fh

. �
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