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ABSTRACT. We answer affirmatively a question of Goodearl on the existence
of simple archimedean dimension groups with arbitrary Choquet simplex as a
trace space—at least when the Choquet simplex is metrizable.

A partially ordered abelian group G is an abelian group together with a subset
denoted G (the positive cone of G) such that GT +GT C G, Gt N -Gt = {0},
and G generates G as an abelian group. If g and h are elements of G, we abbreviate
g—h € GT toh <g. An order unit of the partially ordered abelian group G is
an element, u, of the positive cone such that for all g in G, there exists a positive
integer N such that g < Nu.

Let (G, u) be an unperforated partially ordered abelian group with an order unit,
u. It is simple if every nonzero positive element is an order unit. It is archimedean
if for elements g and h of G, ng < h for all positive integers n implies —g > 0;
this is the classical definition of archimedean. By a trace (in older and original
terminology, as in [G], it is a state), we mean a nonzero positive additive function
7 : G — R. A trace, 7, on G is normalized with respect to an order unit u of G if
T(u) = 1.

In the point-open topology, the collection of normalized traces forms a compact
convex subset of a dual Banach space, denoted S(G,u). A (normalized) trace T
is extremal (or pure) if whenever o and ¢ are normalized traces and there exists
0 < A < 1such that 7 = A¢p + (1 — Ao, then 7 = 0 = ¢. The set of extreme traces
in S(G,u) is denoted by 9.S(G,u). The vector space consisting of the convex-
linear (affine) continuous functions f : S(G,u) — R is denoted by Aff S(G,u). We
use ~ to denote the natural map G — Aff S(G,u), given by §(7) = 7(g).

A dimension group is an unperforated partially ordered (abelian) group satisfy-
ing the Riesz interpolation property (given a,b < ¢,d in G, there exists e in G such
that a,b < e < ¢,d). For more details and results relating to dimension groups and
Choquet theory, see [G] (especially sections 3-7, 10, 11, 13, 14).

By [G] Theorem 4.14], in the presence of an order unit, the archimedeanness of G
is equivalent to the condition that for g in G, 7(g) > 0 for all pure traces 7 implies
g € GT. When G is archimedean, the natural map G — Aff S(G, ) is an embedding
(an order-embedding, in fact). A much weaker definition—irrelevant here—is used
by a large group of workers in real algebraic geometry, causing confusion.

Received by the editors March 28, 2011 and, in revised form, January 22, 2012.
2010 Mathematics Subject Classification. Primary 06F20, 46A55.
The author was supported in part by a Discovery Grant from NSERC.

©2013 American Mathematical Society
3787



3788 DAVID HANDELMAN

Among unperforated groups, archimedean and simple represent properties that
are maximal and minimal, respectively. Simple groups are those for which a suffi-
cient condition for an element to be positive, namely 7(g) > 0 for all traces 7, is
necessary as well (for nonzero g). Archimedean partially ordered abelian groups
(with order unit) are those for which the minimal necessary condition on an element
to be in the positive cone, 7(g) > 0 for all traces 7, is sufficient.

So, it is somewhat difficult to construct dimension groups that are both simple
and archimedean, aside from subgroups of the reals. Question 4 of [Gl p. 318] asks
whether every Choquet simplex can be the trace space of a simple archimedean
dimension group; we show this is the case for metrizable simplices (using countable
dimension groups), based on an interesting construction over the interval.

Simple dimension groups have been characterized [GHI, Corollary 4.10]; given
a countable torsion free abelian group and a group homomorphism ¢ : G — AffK
where K is a Choquet simplex and ¢ has dense image, define Gt \ {0} to be
{g € G| ¢(g) is strictly positive}. The result is a simple dimension group, and all
simple dimension groups other than Z are of this form. If there exists u in G such
that ¢(u) is the constant function with value one, then K may be identified with
S(G,u).

An alternative formulation of simple and archimedean groups (in the presence of
an order unit) is the following. Suppose G admits an unperforated partial ordering
such that the map G — Aff S(G,u) is an embedding; then the ordering is unique
(the smallest ordering is strict, the largest ordering is pointwise, as functions on
S(G,u)) with respect to the property that the group be a dimension group with
S(G,u) as a trace space.

The following is practically tautological.

Lemma 1. Let (G,u) be an unperforated partially ordered abelian group with or-
der unit. Then G is simple and archimedean if and only if for all g € G\ {0},

inf co, s(au) 7(9) #0.

Proof. As a consequence of [G, Corollary 6.4], inf cp g(cu) 7(9) > 0 implies
inf cg(@u) 7(g9) > 0 (and thus the infima are equal).

Assume G is archimedean and simple; the former says that inf cs, g(G,0) 7(9) = 0
entails ¢ € GT; simplicity implies g would be an order unit, hence the infimum
would be strictly greater than zero.

Conversely, suppose nonzero g satisfies 7(g) > 0 for all pure 7. By hypothesis
(the infimum is not zero, hence must be strictly positive), 7(g) > 0 for all pure 7.
Hence (by the first paragraph), 7(g) > 0 for all traces, whence g is an order unit
and thus in the positive cone, so G is simple and archimedean (simultaneously). O

Note that the criterion refers to all nonzero g, not just those in G (which would
characterize simplicity). In particular, a simple archimedean group which is also an
ordered real vector space must be the reals with the usual ordering: pick nonzero g
in GT, and let a = inf 7(g); then § — a@i vanishes at an extreme point (the zero set
of § — o is a closed face, therefore contains an extreme point) and is nonnegative
everywhere; archimedeanness entails g > au, and simplicity then forces g = au
(since g — aw is killed by a trace, it cannot be an order unit, so it must be zero).

An extreme version is the following. An unperforated partially ordered abelian
group with order unit, (G, w), is extremely simple if for all g € G\ {0} and all pure
traces 7, 7(g) # 0.
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To see that this implies the criterion of Lemma 1, we use the first remark in the
first paragraph of the argument—if G is extremely simple and 7(g) > 0 for all pure
7, the hypothesis ensures that 7(g) > 0 for all pure 7, and by [Gl, Corollary 6.4]
again, g is an order unit, so the infimum is strictly positive.

Obvious examples are subgroups of the reals with the relative ordering. There
are others.

EXAMPLES OF EXTREMELY SIMPLE DIMENSION GROUPS
WITH MODESTLY INTERESTING TRACE SPACES

1. [EHS], [H2]. Let f be a monic integer irreducible polynomial whose roots are
all real, {r1,7r2,...,7r,}. Form the ring R = Z[r1], and denote by 7; : R — R the
unique multiplicative map obtained by sending ry — r;. Taking only the first n — 1
of them, we obtain a map (71,...,7,_1) : R — R" ™!, yielding an embedding of
R in R"™'. Equip R with the strict ordering, that is, r € R* \ {0} if and only if
7i(r)>0foralli=1,2,...,n—1.

This makes R into a simple partially ordered group, and also a partially ordered
ring (since the 7; are ring homomorphisms). The image is dense (as has been
computed in [EHS]) so that G is a simple dimension group, free of rank n, with
1 as an order unit, and its pure traces are exactly {Ti}?:_ll. Since each 7; is one
to one, R is extremely simple. In this case, the pure trace space consists of n — 1
points.

2. Suppose that K is an algebraic extension field of Q, and in addition K is
formally real; i.e., if not all k; are zero, then Y. k? # 0 (or what amounts to the
same thing, K admits a real embedding). Impose on K the sums of squares ordering
(that is, K+ consists of the set of sums of squares). As K is formally real, this is a
proper cone, and from algebraicity, it follows and is easy to check that 1 is an order
unit for K'; moreover, inverses of positive elements are positive, and multiplication
preserves the positive cone. It is known that K is a dimension group; i.e., it satisfies
interpolation (this is true for any formally real field, not just algebraic extensions
of the rationals, [HIl 2.11]). For a partially ordered ring with 1 as the order unit,
the pure traces are multiplicative; in particular, they are ring homomorphisms [H3|
Lemma I.1]. Since K is a field, none of these has a nontrivial kernel, verifying
extreme simplicity. In particular, K is a simple archimedean dimension group,
which is also an ordered ring.

The pure trace space can be interesting. Let K be QR, the subfield of the reals
consisting of all elements algebraic over Q (QR is of index two in the algebraic clo-
sure of Q). Then the pure traces can be identified with the Galois automorphisms of
QR and, in particular, the pure trace space is the nonatomic, totally disconnected,
separable compact set (sometimes called a Cantor set). O

Extreme simplicity is drastic, as evidenced by the trivial Lemma 2.
Lemma 2. Suppose that (G,u) is a dimension group with order unit and there

exists a connnected subset U of 0.5(G,u). Then there exist g in G and s in U such
that § is not constant on U and s(g) = 0.

Proof. Given distinct v and w in U, there exists h in G such that h(v) # h(w).
Since h|U is continuous and U is connected, the range of h|U is a nontrivial interval.
Let ¢ = a/b be a rational number (with a an integer and b a positive integer) in
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the interval. There exists s in U such that fAL(s) = q. Set g = bh — au; since h is
nonconstant on U and @ is the constant function 1, § is not constant on U. (Il

In particular, if (R,1) is an unperforated partially ordered ring with 1 as an
order unit, and R is extremely simple, then the pure trace space (known to be
compact, since the pure traces are exactly the multiplicative ones) must be totally
disconnected, as in example 2 above. In fact, we require only that the ordered ring
R be simple and archimedean.

Corollary 3. Suppose (R,1) is a partially ordered ring with 1 as an order unit,
and R is a simple and archimedean dimension group. Then the pure trace space
0.S(R, 1) is a compact totally disconnected space.

Proof. Compactness follows from [H3| 1.1]. If 9.S(R,1) contained a connected
subset, then by Lemma 2, there would be an element r together with a pure trace x
such that z(r) = 0, and moreover archimedeanness entails 7 # 0, so 72 is not zero.
Then 72 is nonnegative at every pure trace (since all such are multiplicative); hence
by archimedeanness, 72 would belong to R*, and of course, z(r?) = 0, contradicting
Lemma 1. (]

This seems about the end of the road for extremely simple (dimension) groups.

Example 4. Simple archimedean dimension groups with the unit interval as pure
trace space.

Proof. Recall from example 2 above the maximal algebraic (over the rationals)
subfield of the reals, Qg. Let {a;}; .y be a countably infinite set of real numbers
such that the enlarged set {1} U {a;}, 1y is linearly independent over Qg; e.g., if ¢
is a transcendental number, we could take a; = t?, or we could simply insist that
{«a;} be algebraically independent over Q.

Inside the real polynomial algebra R[z], define the elements, ey = 1, e; = 2° — «;
(1=1,2,3,...), and define G C R[z] to be the rational span of {e;},-.

Equip R[z] with the strict ordering as a subgroup of C([0,1],R) so that R[z] is
a simple dimension group (since the image is dense), and put the relative ordering
on (G. Automatically, G is simple. Next, GG is a rational vector space, so its closure
with respect to the supremum norm—equivalently the norm on R[x] with the strict
ordering—is a real vector space, and thus each x’ is contained in the closure of G.
Hence G is dense in C([0,1],R) (since R[z] is), and in particular, its pure trace
space is the same as that of R[z], namely [0,1], and moreover, G is a dimension
group.

We show that G is archimedean by verifying the condition of Lemma 1. The
pure traces of G are evaluations at points of [0, 1]; that is, f — f(a) for 0 < a < 1.

Pick (to begin with) an arbitrary nonzero element of G, g = qo + >, (' — ;) i,
where ¢; are rationals; since g is not zero, not all the rational coefficients are zero.
If o is a real number that is algebraic over the rationals, then g(«) = 0 entails
qo + Y1 qi(a® — o) = 0, yielding the equation go + >,_, gia® = Y g;;; the left
side is algebraic (over the rationals), hence belongs to Qg , while the right side is a
rational- (hence a Qg-) linear combination of {;}. By our assumption, both sides
must be zero, which forces g1 = g2 = --- = 0, and this in turn forces ¢p = 0, a
contradiction. The conclusion is that if ¢ is an element of G and not a constant,
then it cannot have any zeros at algebraic points.
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Now suppose that nonzero g in G has minimum 0 as a function on the unit
interval. Then g(«) = 0 for some « in the unit interval. By the preceding paragraph,
« is not algebraic, so in particular, cannot be zero or one; thus it must be an
interior point, and since g is nonnegative, « is the location of a minimum of g (as
a continuous function on [0, 1]). Since g is a polynomial and « is an interior point
of the interval, we must have ¢’(a) = 0. But this entails " ¢;ia’~! = 0, which in
turn entails either that « is algebraic or that ¢ = g2 = --- = ¢, = 0, hence ¢y = 0;
either way, we reach a contradiction. Thus g in G \ {0} with ¢|[0, 1] > 0 forces g to
have no zeros in [0, 1]. This verifies the criterion of Lemma 1.

Thus G is a simple archimedean dimension group whose pure trace space is the
unit interval.

A sensitivity phenomenon occurs if we change the endpoints of the interval from
[0,1] to [a,b]. If both a and b are algebraic, then the same argument applies (since
the putative functions cannot vanish at either endpoint; hence any zeros must be in
the interior, whence the derivative argument works). On the other hand, if either a
or b is of the form oz,lf/k (where this makes sense, e.g., if k is even, then «j must be
positive) for some k, then one of +e;, = £(x¥ —ay) (an element of ) will vanish at
one point of the interval while being strictly positive on the rest of it. In particular,
the so-constructed simple dimension group G will not be archimedean. (Il

The idea underlying Example 4 yields a complete answer (at least in the metriz-
able case) to Goodearl’s question.

Example oco. For every metrizable Choquet simplex K there exists a countable
simple archimedean dimension group whose trace space is (affinely homeomorphic
to) K. If the continuum hypothesis is negated, there exist some nonmetrizable
Choquet simplices together with simple archimedean dimension groups whose trace
space is K.

Proof. Let K be an infinite-dimensional Choquet simplex with extremal bound-
ary 0.K, and suppose there is a dense real subspace L of A := Aff K of infinite
dimension (as a real vector space) N strictly less than 2%. (This will occur if K
is metrizable and not finite-dimensional, so we can take X = Xg. If the negation
of the continuum hypothesis holds, there will exist nonmetrizable such K as well,
obviously with X > Ny.) Without loss of generality, we may assume the constant
function 1 belongs to L. There exists a basis {uy},q (over the reals) for L, with
0 € Q, where uy is the constant function 1. Obviously |Q| = .

For g in A, define s_(g) = inf,cs x g(7). We note that for any real number
A, s—(g — 1)) = s_(g) — A. For a subgroup J of A, denote by s(J) the subgroup
of R generated by the set of values of s_(g) as g varies over J. Obviously s(J)
is a subgroup of the reals. If J is a rational vector space, so is s(J), and equally
obviously [s(J)| < Ro - |J|. (It is not clear that the set of values {s_(g)} ¢ ; is itself
a group; fortunately, this does not matter, since only the cardinality of the group
it generates is relevant.)

Let H be the rational span of {u,} .o (that is, H is the rational vector space
with basis {u},cq). In particular, since |H| = [Q| = R, it follows that [s(H)| < .
By hypothesis, this is strictly less than 2% = |R|. Hence the dimension (over Q) of
the quotient vector space R/s(H) is 2%0. It follows that we may find a collection
{Ao}uea joy of real numbers indexed by €\ {0} whose image in the quotient is
linearly independent (over the rationals, of course).
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Set vy = ug, and for all other w in €, set v, := u, —1\,. Let G be the rational
span of {v,},cq. Since G is a rational vector space, its closure in A is a real vector
space, and therefore contains each u,, (as 1 = vy belongs to (), hence contains the
dense subspace L, so GG is dense in A. Impose the strict ordering on G; as K is
a Choquet simplex, G is a simple dimension group whose trace space (normalized
with respect to the order unit 1) is K.

Now we verify the criterion of Lemma 1 for G. Pick nonzero g in Gj if g is a
multiple of the constant function, obviously the criterion is satisfied. Otherwise,
we may write g = 1go + Dy Ywqw, Where W is a finite subset of Q\ {0}, ¢o is a
rational number, and for all w in W, ¢q,, is a nonzero rational number. Expanding
Uy = Uy — 1A, for all win W, we obtain g = Yy uwqw+1 (g0 — Dy GuAw). Setting
h =" tuqe + 1qo, it follows that h belongs to H and g = h -1}, q,A,. Thus
5-(g) = s—(h) = > quAw- If this were zero, it would mean that 3, ¢, Ao belongs
to s(H), forcing all the g, to be zero, a contradiction.

This verifies the criterion of Lemma 1, so G is a simple archimedean dimension
group, a dense subgroup of Aff K, and with trace space K.

We have excluded finite-dimensional simplices from this construction (simply be-
cause the Ns and their arithmetic become finite, necessitating prolix explanations),
but of course the same method will work, this time with finite and countable sets.
Alternatively, we already have examples, even of extremely simple dimension groups
(examples 1 and 2) for all finite-dimensional simplices. ]
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