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HEISENBERG UNIQUENESS PAIRS IN THE PLANE.
THREE PARALLEL LINES

DANIEL BLASI BABOT

(Communicated by Michael T. Lacey)

ABSTRACT. A Heisenberg uniqueness pair is a pair (I, A), where I is a curve in
the plane and A is a set in the plane, with the following property: any bounded
Borel measure p in the plane supported on I'; which is absolutely continuous
with respect to arc length and whose Fourier transform g vanishes on A, must
automatically be the zero measure. We characterize the Heisenberg uniqueness
pairs for I' as being three parallel lines I' = R x {a, 8,7} with a < 8 < 7,

(v—a)/(B—a) N,

1. INTRODUCTION

The Heisenberg uncertainty principle states that both a function and its Fourier
transform cannot be too localized at the same time (see [2] and [3]). M. Benedicks
in [1] proved that given a nontrivial function f € L!(R"), the Lebesgue measure
of the set of points where f # 0 and the set of points where the Fourier transform
f;é 0 cannot be simultaneously finite. In this paper we consider a similar problem
for measures supported on a subset of R2.

Let I' be a smooth curve in the plane R? and A a subset in R2. In [4], Hedenmalm
and Montes-Rodriguez posed the problem of deciding when it is true that

fja = 0 implies p1 =0

for any Borel measure p supported on I' and absolutely continuous with respect to
the arc length measure on I', where

R R TE)

If this is the case, then (T, A) is called a Heisenberg Uniqueness Pair (HUP).
When T is the circle, Lev [7] and Sjolin [8] independently characterized the HUP
for some “small” sets A.
In [4] Hedenmalm and Montes-Rodriguez characterized the HUP in the cases:

e T is the hyperbola zy = 1 and A = (aZ x {0}) U ({0} x BZ), for o, 8 > 0.
e T two parallel lines in R2.
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In this note we present a result generalizing this last case. We characterize the
HUP for I' as being three parallel lines:

P:RX{OZ,B,’Y}Witha<B<’y, (Py_a)/(ﬂ_a)eN

2. THREE PARALLEL LINES

Given a set £ C R and a point £ € E, let us define:

. Ai’f = {functions v defined on E such that there exist a small interval I,
around ¢ and a function ¢ € L*(R) such that ¢(¢) = $(¢), for ¢ € [ NE}.

o PLP [Af)’f] = {functions 9 defined on E such that there exist an interval I
around € and functions o, @1 € L1(R) with $7(C)+ 51(C)1:(C) +Fo(¢) = 0,
for ( € Ie N E}.

Wiener’s lemma [5], p. 57| states that if ¢ € .Alb;’f and ¢¥(§) # 0, then 1/¢ €
Alb;f. Observe also that if ¢ € Alb;’f, then ¢ € PYP [.Alb;’cf]. This is easy to see only
if p is natural.

Due to invariance under translation and rescaling (see [4]) it will be sufficient to
study the case when I' =R x {0,1,p} forp e N, p > 1.

Given aset A C R?, we say that p is an admissible measure if p1 is a Borel measure
in the plane absolutely continuous with respect to arc length with supp u C T and
fija = 0.

| If 1 is a measure absolutely continuous with respect to arc length on I', then
there exist functions f, g, h € L'(R) such that

fi(g,m) = f(&) +e™g(€) + e’™Mh(g), forany (&,7) € R?.
In particular an admissible measure can be written in this form. Observe also
that 71 is 2-periodic with respect to the second variable. So, for any set A C R?, we
may consider the periodized set

P(A) = {(&,n) such that (&, + 2k) € A for some k € Z},

and it follows that (I', A) is a HUP if and only if (', P(A)) is a HUP, where P(A)
stands for the closure of P(A) in R2.

We may think without loss of generality that A is a closed set in R?, 2-periodic
with respect to the second coordinate.

We then have the following result.

Theorem 1. Let I' = R x {0,1,p}, for somep € N, p > 1 and A C R?, closed
and 2-periodic with respect to the second wvariable. Then (I',A) is a Heisenberg
uniqueness pair if and only if

(2.1) § = TI(A) U (TI(A) \ T (A)) U (IT (A) \ TT' (A))
is dense in R.

IT(A) means the projection of A on the axis R x {0} and given a point £ € II(A),
and I'mg(§) corresponds to the set of points n € [0,2) with (£,7) € A. The sets in
§ are defined as follows:

e II'(A) = { £ € TI(A) such that there is a unique 19 € Img(€)}.
e I12(A) = {& € II(A) such that there are two different points 7y, €

. . . PTiN] _ oPTiNQ
Img(§), and if there is another point 1y € Img(§), then =57 =
8p7ri77278p7ri770

eTin2 —e™ing }



HEISENBERG UNIQUENESS PAIRS IN THE PLANE 3901

e II3(A) = {¢& € TI(A) such that there are at least three different points
PTiNY _ oPTinNg # ePTiN2 _ oPming }

Mo, M1, 72 € Img(f) with eem’nl —eming eTing _eming
The following technical lemma is easy to prove and shows that the functions 7
and ® are well defined for £ € TI?(A).

Lemma 2. Let z,y,z € C be different with

yP —aP P — P
T = = ;
Yy—x z—x

then
2P — P
=7 and P=ax7—2P=yr—yP =21 — 2P
Z=Yy

Let x be a function defined on IT'(A) as x(¢) = €™, where n € Img(¢). We
define the set IT'" (A) as
o IT'"(A) = {£ € II*(A) such that x € le[AglC(A)vﬁ} 1.
Let 7, ® be functions defined on IT?(A) as

ePTIm _ ppmino

PTiN1L _ oPTiNo )
€ € — ePmino
)

— __ mim
€)= and (g =

where 19, n1 € I'mg(€). We define the set I12" (A) as
o IZ'(A) = {£ € II(A) such that 7,® € AL M€},

The next lemma will be needed for the proof of the necessity of condition (21
in Theorem [

eTinNL _ e™ino

Lemma 3. Let I be an interval in R with TI?" (A) dense in I. Then there exists a
subinterval I' C T with I' C TI?" (A) UTI3(A).

Proof. Pick an arbitrary point £ € I NII2"(A). Since 7, € ATME apg 1127 (A)

loc
is dense in I, we can extend the functions 7, ® continuously on a neighborhood of

€. Let 7 # 9 € Img(€). Then

ePTi _ opTid

7Ol = | —miz | <P

and since 7 is continuous around E, there exists a small interval I’ around §~ with
IT(€)| < p for € € I'. We will see that I’ C TI?" (A) UTI3(A).

Given ¢ € I, consider a sequence {¢;} C T2 (A) NI’ with & — &, and for
each & let n, # o € Img(&x). There exist subsequences {n;} and {o}} such that
Ny — n* and g} — o* for some n*, o* € [0, 2]. Since the set A is closed and 2-periodic
with respect to the second coordinate, we may assume WLOG that £ € TI(A) with
n* #£ 0" € Img(§). Otherwise,

17(&)] — |7(¢0)]| = ’e(p—l)m‘m’; + elP=2miniemich 4 ... 4 e(P=micy|
— ’e(p—l)m'n* 4 ep=Dmin™ L .4 e(p—l)ﬂin*‘ =p,

which is a contradiction with the fact that £ € I'.

So I’ C II?(A) UTI3(A), and since the extended functions 7, ® are continuous on
I’, we also have that ¢ € TI?" (A) for any & € TI?(A)NI’. Also, we can conclude that
I' CTI? (A) UTI3(A). O
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3. PROOF OF THE MAIN RESULT

This section is devoted to the proof of Theorem [[I The proof of the sufficiency
of condition (2.1)) is rather easy. Let y be an admissible measure. Then there exist
functions f, g, h € L*(R) such that

fi(€,n) = F(€) + e™G(€) + e’™N(€), for any (€,7) € R?

Since § is dense in R we will be done if we show that f(f) =g(&) = h(§) =0 for

any € € § =II°(A) U (II(A) \ IT* (A)) U (IT'(A) \ I (A)). o
If € € II*(A), let 1o, m1,m2 € Img(€) be different. Since fijy = 0 and %

4 LT it follows that f(£) = G(€) = h(€) = 0.

eTin2 —em™ing

If & € IT?(A), let mg # m € Img(€). Since fja = 0, then g(§) = —7()A(E)
and f(&) = ®(§)h (5) Suppose h(§) # 0. Then by Wiener’s lemma and Fubini’s
theorem, 7, ® € AloC (). , which implies that ¢ € II1?" (A). So if £ € II2(A) \ TI?" (A),
then F(€) = 9(€) = h(€) =0, .

Finally, if £ € II*(A) and 19 € Img(€), since fia = 0, then f(&) 4+ x(£)g(§) +
X”({)ﬁ(f) = 0, where x(£) = ™. Suppose ﬁ({) # 0; then x € Pl’p[A?OIC(A)’g} and
¢ € I (A). Otherwise, if h(f) = 0 and g(¢§) # 0 then by Wiener’s lemma and
Fubini’s theorem, x € Alrf)c(A and also x? € Aloc A¢ ,s0 x € PlP [AH (A)€ ] and
¢ € IV (A). This means that if £ € TT*(A) \ TI* (A), then f(ﬁ) 96 = h(f)

For the proof of the necessity of condition (2), suppose that the set § is not
dense in R and let us pick an open interval I that has empty intersection with §,
i.e.,

I(A)N T = (I (A)UTI> (A)) N T
We consider three cases:
e There exists a small interval I C I around & € TI'" (A) such that all the
* 1
points in Iz NII(A) belong to II'" (A). Since y € PP [AEC(A)’g], there exist
an interval I’ C I¢ around ¢ and functions ¢, 1 € L' (R) such that

X"(€7) + P1(€)x(€7) + Po(€7) =0

for any &* € I' NTI(A). Let h € LY(R) with h(¢) # 0 and supp h € I, and
define f,g € L'(R) via f = hipg, and § = hip;. Now,

w(E ") = f(€) +9(E)x(E) + hE")xP(€7) =0
for &* € I' NIV (A), n* € Img(¢*). Finally, since supp h €I and I' N
II(A) = I'NII' (A), we can conclude that 7ij, = 0, and we have that y is
a nontrivial admissible measure. So (I, A) is not a Heisenberg uniqueness
pair.

e There exists a small interval I C I around & € II?" (A) such that all the
points in Iz N TI(A) belong to TI?" (A). Now there exists a small interval
I' C I around ¢ and functions ®;,7; € L'(R) such that 7; = 7 and
®; = ® on I’ NTI(A). Consider a function h € L!(R) with supp h C I’ and
h(€) # 0, and define f,g € L'(R) as

g=—hxm and f=hx*x®;.
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Now, given a point £* € I' NII% (M), let n* # o* € Img(&*). Since 7(£*) =

prin® _ _pmio* .« _pmin® -
£ £ and ®(§) =™ ¢ — eP™ we have that

A7) = () +g(E)e™™ + h(g")er™n” =0
and also that fi(£*, 0*) = 0. So, the corresponding measure y is a nontrivial
admissible measure and (I', A) is not a Heisenberg uniqueness pair.
e All the intervals I C I contain points in II'" (A) and points in 112" (A). That
is, the sets IT' " (A) and IT2" (A) are dense in TN(ITY (A)UIT? (A)) = INII(A).
But this is not possible. In fact, if II*" (A) is dense in I, by Lemma 3] there
exists a subinterval I’ C I such that I’ C TI?" (A) UTI3(A).
This finishes the proof of the theorem.

_epmie”
emin® _emio®

4. EXAMPLES AND FURTHER RESULTS

Given a point € € II(A) such that §{n € Img(£)} > 3, we will state a criteria to
decide whether the point ¢ belongs to I13(A) or to II?(A). But before this we prove
the following lemma.

Lemma 4. Given C € C, there exist at most p different points p*) € [0,2) such
that for any j # k,

P _ 4P 4 G

(4.1) xx — z =C, where z=c"" y=cmr?

Proof. Observe that for fixed C, there exists a constant C* € C such that
(4.2) 2C —af =C*

for any =z = emir™ solution of (@I). Now it is obvious that there are at most p
different solutions p(¥) € [0,2) of the equation (@2]). O

Corollary 5. Given a point & € II(A), if #{n € Img(£)} > p, then £ € II3(A).

In particular, if I" consists of three parallel equidistant lines in the plane (p = 2),
we have

I3(A) = { € € A such that #{n € Img(¢)} > 3},
II2(A) = {€ € A such that §{n € Img(£)} =2}.
Example 6. The following example shows that Corollary Blis sharp:
o Let A=R x {2k/p}r=0,... p—1. Then for any £ € R,

t{n € Img(§)} =p
and ¢ € TI?" (A). Observe that in this case, (I, A) is not an HUP.

This lemma will be useful for another example.

Lemma 7. For any z € C with |z| < 1, there exist w1, ws € C unimodular with
Z = wi + ws.

Proof. Let z = e’ and let v € [0, /2] with cosv = r/2. Let’s take

i(era), i(vara)'

wp =€ w9 = €

Then,
wy + wy = ez(v-i—a) + ez(—v+a) _ 6102008(1)) — el = 2,
and this finishes the proof. O
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Example 8. Let p = 2. Let g be a bounded, continuous function with |g| < 1
that is nowhere locally the Fourier transform of an L' function. There exists a set
A C R x [0,2) such that TI(A) = TI*" (A) is dense in R and the function ® = g on
12" (A). So, (T', A) is not an HUP.

Let’s first prove the existence of the function g. Let E be a dense set of measure
zero on the circle T. By [6] there exists a continuous function f such that the
Fourier series of f fails to converge on any point of E. Now let g : R — C be the
2-periodic function defined as g(t) = f(e™). It is easy to see that this function g is
continuous but it is not a Fourier transform of an L' function locally at any point.
By a standard argument we can think that g is bounded with |g| < 1.

Now we will define the set A. By Lemma [7 for any £ € R there exist wq(§) =
e™Mo g (€) = €™M with wy(€) + wa(€) = g(£). Observe also that there is a dense
set W of R such that ng # n; for any € € ¥. Otherwise the function ¢ is constant
on an interval, and we get a contradiction with the fact that g is not locally the
Fourier transform of an L' function.

We define A = {(&,m0) U (§,m) }eew. Now II(A) = II1*(A) and

(&) = €™M 4 ™M = g(¢), for any & € .
Since ¢ ¢ A€ g any £ € IT2(A), we have that ITI(A) = II?" (A), and so (T, A)

loc

is not an HUP.
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