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ERGODIC PROPERTIES OF VIANA-LIKE MAPS

WITH SINGULARITIES IN THE BASE DYNAMICS

JOSÉ F. ALVES AND DANIEL SCHNELLMANN

(Communicated by Bryna Kra)

Abstract. We consider two examples of Viana maps for which the base
dynamics has singularities (discontinuities or critical points) and show the
existence of a unique absolutely continuous invariant probability measure and
related ergodic properties such as stretched exponential decay of correlations
and stretched exponential large deviations.

1. Introduction

If μ is an invariant measure for a map F : M → M , its basin is the set of all
points x ∈ M such that

1

n

n−1∑
i=0

δF i(x)
weak*−→ μ, as n → ∞.

Assuming M is endowed with a Riemannian structure and a volume form extended
to the Borel sets in M (Lebesgue measure), we say that an invariant probability
measure μ is a Sinai-Ruelle-Bowen (SRB) measure if its basin has positive Lebesgue
measure. It follows from Birkhoff’s ergodic theorem that ergodic absolutely con-
tinuous invariant probability measures (acip) are necessarily SRB measures. Here,
absolute continuity is always considered with respect to Lebesgue measure. We are
interested in studying some statistical features of ergodic acip’s for certain classes
of dynamical systems.

Let B1 and B2 denote Banach spaces of real valued measurable functions defined
on M . We denote the correlation of functions ϕ ∈ B1 and ψ ∈ B2 with respect to
a measure μ as

Corμ(ϕ, ψ ◦ Fn) :=

∣∣∣∣
∫

ϕ (ψ ◦ Fn) dμ−
∫

ϕdμ

∫
ψ dμ

∣∣∣∣ .
We say that we have decay of correlations, with respect to the measure μ, for
observables in B1 against observables in B2 if, for every ϕ ∈ B1 and every ψ ∈ B2,
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we have

Corμ(ϕ, ψ ◦ Fn) → 0, as n → ∞.

Given ϕ ∈ B1 and ε > 0 we define the large deviation of ϕ at time n as

LDμ(ϕ, ε, n) := μ

(∣∣∣∣∣ 1n
n−1∑
i=0

ϕ ◦ F i −
∫

ϕdμ

∣∣∣∣∣ > ε

)
.

By Birkhoff’s ergodic theorem the quantity LDμ(ϕ, ε, n) → 0, as n → ∞, and a
relevant question also in this case is the rate of this decay. In our main results
we shall consider B1 = Hγ , the space of Hölder continuous functions with Hölder
constant γ > 0. The Hölder norm of an observable ϕ ∈ Hγ is given by

‖ϕ‖Hγ
= ‖ϕ‖∞ + sup

y1 �=y2

|ϕ(y1)− ϕ(y2)|
dist(y1, y2)γ

.

In such cases we shall take B2 = L∞(μ). In part of the proof of Theorem A we
shall also consider B1 as the space of bounded variation functions and B2 as L1(μ).

The purpose of this paper is to apply the theories developed in [ALP], [G2], and
[AFLV] to two examples of Viana maps studied in [S1] and [S2], and to deduce
the existence of a unique acip and estimates for the Decay of Correlations and
Large Deviations with respect to that measure. The Central Limit Theorem, the
Almost Sure Invariance Principle, the Local Limit Theorem and the Berry-Esseen
Theorem will also be deduced for our systems. Due to the technical nature of some
of these concepts we introduce them in Appendix A. For another recent proof of
the existence of an acip for the systems studied in the present paper, see [AS].

We shall consider skew-product maps similar to Viana maps: in one case with
β-transformations as the base dynamics in the circle S1, and in another case with a
quadratic map as the base dynamics in an interval I. In the following let Qa(x) =
a − x2, x ∈ R, be a Misiurewicz-Thurston quadratic map; i.e., the parameter
a ∈ (0, 2) is chosen such that the critical point of Qa is pre-periodic (but not
periodic). The full quadratic map Q2 is excluded since we look at perturbations of
the parameter a. Furthermore, we assume that Qa is non-renormalizable.

1.1. β-transformations in the base dynamics. In [S1], the map under consid-
eration is of the form F1 : S1 × R → S1 × R:

F1(θ, x) = (βθmod 1, Qa(x) + α sin(2πθ)),

where β is a real number greater than or equal to some lower bound βa < 2
(depending on the parameter a of the quadratic map Qa). This map is similar
to the maps studied in [V] and [BST] but allowing a discontinuity in the base
dynamics. If p < 0 denotes the negative fixed point of Qa, it is easy to check that
there is an open interval J ⊃ [p,−p] such that F1(S

1×J) ⊂ S1×J whenever α > 0
is sufficiently small.

For sufficiently small α > 0, it is shown in [S1] that the map F1 is non-uniformly
expanding, and furthermore that F1 admits a unique acip for almost all β ≥ βa.
In this paper we improve this result by showing that a unique acip exists, in fact,
for all β ≥ βa. In addition, we obtain several statistical properties for this acip,
such as stretched exponential decay of correlations and stretched exponential large
deviations.
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Theorem A. For all small enough α > 0 and all β ≥ βa, the map F1 : S1 × J →
S1 × J admits a unique acip μ whose basin has full Lebesgue measure in S1 × J .
Moreover,

(1) there exist C, τ > 0 such that Corμ(ϕ, ψ ◦ Fn
1 ) ≤ Ce−τn1/3

for all ϕ ∈ Hγ

and all ψ ∈ L∞(μ) with ‖ϕ‖Hγ
, ‖ψ‖L∞(μ) ≤ 1;

(2) for all ε > 0 and all ϕ ∈ Hγ there exist τ ′ = τ ′(τ, ϕ, ε) > 0 and C ′ =

C ′(ϕ, ε) > 0 such that LDμ(ϕ, ε, n) ≤ C ′e−τ ′n1/7

;
(3) the Central Limit Theorem, the vector-valued Almost Sure Invariance Prin-

ciple, the Local Limit Theorem and the Berry-Esseen Theorem hold for
certain Hölder observables.

1.2. Quadratic maps in the base dynamics. Let Qb(θ) = b − θ2, θ ∈ R and
b ∈ (0, 2], be another Misiurewicz-Thurston map and set I = [Q2

b(0), Qb(0)]. The
map studied in [S2] is of the form F2 : I × R → I × R:

F2(θ, x) = (Qk
b (θ), Qa(x) + αs(θ)),

where k ≥ 1 is an integer and s : I → [−1, 1] is a coupling function which is a priori
not fixed. Again, if p < 0 denotes the negative fixed point of Qa, it is easy to check
that there is an open interval J ⊃ [p,−p] such that F2(I × J) ⊂ I × J whenever
α > 0 is sufficiently small.

In [S2] it is shown that there is an integer k0 ≥ 1 and a family of (non-constant)
coupling functions s which are C2 outside a finite number of singularities such
that for each such coupling function s, all k ≥ k0, and all sufficiently small α
the map F2 is non-uniformly expanding. In fact, the only singularities for s are
square root singularities. Without loss of generality we assume that the map Qb

is non-renormalizable, from which it follows that Qk
b has a unique acip for all

k ≥ 1. (Otherwise we can restrict the map F2 to a smaller region Ĩ × R such that

Qk
b : Ĩ → Ĩ and Qk

b admits a unique acip.) In this paper we will show furthermore
that F2 admits a unique acip with the same statistical properties as for the map
F1.

Theorem B. For small enough α > 0, the map F2 : I×J → I×J admits a unique
acip μ whose basin has full Lebesgue measure in I×J . Moreover, there exists τ > 0
such that for all 0 < ζ < 1/9:

(1) there exists C > 0 such that Corμ(ϕ, ψ ◦Fn
2 ) ≤ Ce−τnζ

for all ϕ ∈ Hγ and
all ψ ∈ L∞(μ) with ‖ϕ‖Hγ

, ‖ψ‖L∞(μ) ≤ 1;
(2) for all ε > 0 and all ϕ ∈ Hγ there are τ ′ = τ ′(τ, ϕ, ε) > 0 and C ′ =

C ′(ϕ, ε) > 0 such that LDμ(ϕ, ε, n) ≤ C ′e−τ ′nζ′
, where ζ ′ = ζ/(ζ + 2);

(3) the Central Limit Theorem, the vector-valued Almost Sure Invariance Prin-
ciple, the Local Limit Theorem and the Berry-Esseen Theorem hold for
certain Hölder observables.

1.3. Strategy. To prove the first two items of Theorem A and Theorem B we
will apply the result in [G2] which shows the existence of a Young tower or Gibbs-
Markov structure for the maps F1 and F2, with stretched exponential tail estimates
for the expansion and slow recurrence tails. These objects will be defined precisely
in Section 2, and in Section 3 we obtain stretched exponential bounds on these
tails. From the existence of such a tower the decay of correlations conclusions as
stated in the two theorems then follows. The conclusions on the large deviations



3946 JOSÉ F. ALVES AND DANIEL SCHNELLMANN

are an immediate consequence of [AFLV, Theorem D(2)]. Finally, in Section 4 we
obtain the topological transitivity of the maps, which assures the uniqueness of the
acip in both cases.

The third items of Theorem A and Theorem B follow from the existence of a
Gibbs-Markov structure (where it is sufficient to have polynomial tail estimates;
see Appendix A).

2. Non-uniform expansion and slow recurrence

Let M be equal to M1 = S1 × J or M2 = I × J and F : M → M be equal
to F1 or F2, respectively. Let S be some closed set of zero Lebesgue measure of
singularities/criticalities such that F : M \ S → M is a C2 local diffeomorphism.
We say that F is non-degenerate close to S if there are constants B > 1 and ξ > 0
such that the following three conditions hold. For all y ∈ M \S and v ∈ TyM \{0},
we have

(S1)
1

B
dist(y,S)ξ ≤ ‖DF (y)v‖

‖v‖ ≤ B dist(y,S)−ξ;

and for every y1, y2 ∈ M \ S with dist(y1, y2) < dist(y1,S)/2, we have

(S2)
∣∣log ‖DF (y1)

−1‖ − log ‖DF (y2)
−1‖

∣∣ ≤ B
dist(y1, y2)

dist(y1,S)ξ
,

(S3)
∣∣log | detDF (y1)

−1| − log | detDF (y2)
−1|

∣∣ ≤ B
dist(y1, y2)

dist(y1,S)ξ
.

The critical or singular set S for the map F1 is the set{
{0} × J

}
∪
{
S1 × {0}

}
,

and the singular set S for the map F2 is the set{ ⋃
1≤i≤m

{bi} × J
}
∪
{
I × {0}

}
,

where the points {b1, ..., bm} consist of the critical points of Qk
b and the points

where the coupling function s is not C2. It is straightforward to check that the
map F1 : M1 → M1 satisfies the non-degeneracy conditions (S1)–(S3), where the
constant ξ can be chosen equal to 1. Regarding the map F2 : M2 → M2, since the
coupling function s has only square root singularities, one easily checks that the
non-degeneracy conditions (S1)–(S3) hold for F2 with ξ = 2.

The main result in [S1] and [S2], respectively, shows that the map F (F = F1

or F2) is non-uniformly expanding; i.e., there is some constant c > 0 such that for
Lebesgue almost every y ∈ M ,

(1) lim inf
n→+∞

1

n

n−1∑
j=0

log ‖DF (F j(y))−1‖−1 ≥ c > 0.

This implies that the expansion time function

E(y) = min

⎧⎨
⎩N ≥ 1 :

1

n

n−1∑
j=0

log ‖DF (F j(y))−1‖−1 ≥ c/2, for all n ≥ N

⎫⎬
⎭

is defined and finite for Lebesgue almost every y ∈ M . Given δ > 0 we define the
δ-truncated distance from y ∈ M to S as distδ(y,S) = dist(y,S) if dist(y,S) ≤ δ
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and distδ(y,S) = 1 otherwise. In the next section we will see that F has slow
recurrence to the critical set S; i.e., given any ε > 0 there is δ > 0 such that

(2) lim sup
n→+∞

1

n

n−1∑
j=0

− log distδ(F
j(y),S) ≤ ε

for Lebesgue almost every y ∈ M . It follows that the recurrence time function

(3) Rε,δ(y) = min

⎧⎨
⎩N ≥ 1 :

1

n

n−1∑
j=0

− log distδ(F
j(y),S) ≤ 2ε, for all n ≥ N

⎫⎬
⎭

is defined and finite for a.e. y ∈ M .
According to the results in [G2], in order to prove Theorem A and Theorem B,

it is left to show that all the iterates of the map F are topologically transitive on
the attractor Λ =

⋂
n≥0 F

n(M) and that there exist constants τ, ζ > 0 such that
for any ε > 0 there is δ > 0 such that

(4) |{y ∈ M : E(y) > n or Rε,δ(y) > n}| ≤ O(e−τnζ

),

where | . | stands for Lebesgue measure. By the technique in [G2], if (4) is satisfied
for some constants τ, ζ > 0, then the same constants also appear in the decay of
correlations.

3. Stretched exponential bounds

The main part of the proof of the theorems is to establish the stretched exponen-
tial bound in (4). We divide the singular sets of F1 and F2 into two parts. One part
will contain the singularities for which it is enough to study the base dynamics, and
the other part will contain the critical points due to the quadratic map Qa. More
precisely, when considering F1 let Sh = {0} × J and Sv = S1 × {0} (the indices
h and v stand for horizontal and vertical, respectively). When considering F2 let
Sh =

⋃
1≤i≤m{bi} × J and Sv = I × {0}.

Let Rε,δ,h and Rε,δ,v be defined in the same way as the set Rε,δ (see (3)), but
with S in its definition replaced by Sh and Sv, respectively. Obviously, we have

{y ∈ M : E(y) > n or Rε,δ(y) > n}
⊂ {y ∈ M : Rε,δ,h(y) > n} ∪ {y ∈ M : E(y) > n or Rε,δ,v(y) > n}.

Hence, in order to show (4) it is sufficient to show that there exist constants τ, ζ > 0
such that for any ε > 0 there is δ > 0 such that

(5) |{y ∈ M : Rε,δ,h(y) > n}| ≤ O(e−τnζ

)

and

(6) |{y ∈ M : E(y) > n or Rε,δ,v(y) > n}| ≤ O(e−τnζ

).

3.1. Bounds for the fiber maps. The main calculations here are done in [S1] and
[S2] where the positivity of the Lyapunov exponents is shown. We can essentially
follow Section 6.2.1 in [AA], which establishes tail estimates of the expansion and
recurrence time function for the maps studied in [V] (also in their case, the essential
part of the argument is done in the proof of positive Lyapunov exponents; see [V]).
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We will treat the maps F1 and F2 simultaneously. In order to apply the results
in [S2], we first have to conjugate the function F2 to a function denoted by F̃2. The
conjugation function Φ : I × J → [−1, 1] × J is of the form Φ(θ, x) = (ϕ(θ), x),
(θ, x) ∈ I × J , where ϕ : I → [−1, 1] is analytic outside a finite number of singu-
larities. ϕ is obtained by integrating the density of the acip for Qb, from which it
follows that the singularities of ϕ are of square root type. The conjugation function
Φ is explained in detail in [S2, p. 2684]. The conjugated map F̃2 = Φ ◦ F2 ◦ Φ−1

has the form F̃2 : [−1, 1]× J → [−1, 1]× J :

F̃2(θ, x) = (g(θ), Qa(x) + αh(θ)),

where g = ϕ ◦ Qk
b ◦ ϕ−1 : [−1, 1] → [−1, 1] is analytic and uniformly expanding

outside a finite set of singularities and h : [−1, 1] → [−1, 1] is C2 (extendable to a
neighborhood of [−1, 1]) with first derivative bounded away from 0. In the setting of
the map F1 let the base dynamics θ �→ dθmod 1 also be denoted by g. Depending on
the context, in the following let M denote either M1 or [−1, 1]×J , and let the map

F stand for either F1 or F̃2, respectively. We define inductively fn(θ, x), (θ, x) ∈ M .
f1(θ, x) is equal to Qa(x) + α sin(2πθ) for F = F1 and equal to Qa(x) + αh(θ) for

F = F̃2. For n ≥ 2, fn is defined by the equation Fn(θ, x) = (gn(θ), fn(θ, x)). In
order to get the bound (6) of the tail of the expansion and recurrence time function,
we have to study the returns of fn(θ, x) to 0.

Henceforth, we consider only points (θ, x) ∈ M whose orbits do not hit the
critical set Sv. This is no restriction since the set of those points has full Lebesgue
measure. For r ≥ 0, set

J(r) = {x ∈ I : |x| ≤
√
αe−r},

and for each integer j ≥ 0, define

rj(θ, x) = min {r ≥ 0 : fj(θ, x) �∈ J(r)} .

In [S1] and [S2], for some given constant 0 < κ < 1/4, one considers

G =

{
0 ≤ j < n : rj(θ, x) ≥

(
1

2
− 2κ

)
log

1

α

}
.

Fix some integer n ≥ 1 sufficiently large (only depending on α > 0). From the
estimates in [S1, equation (14)] and [S2, equation (23)], we deduce that if we take

B2(n) = {(θ, x) ∈ M : there is 1 ≤ j < n with fj(θ, x) ∈ J(
√
n) } ,

then there is a constant τ2 > 0 such that

|B2(n)| ≤ const e−τ2
√
n.

Furthermore, there exists a constant c > 0 (depending only on the quadratic map
Qa, and not on α) such that

(7) log |∂xfn(θ, x)| ≥ cn−
∑
j∈G

rj(θ, x), for (θ, x) /∈ B2(n);

see [S1, equation (15)], [S2, equation (24)], and [V, pp. 75–76]. Let

B1(n) =

⎧⎨
⎩(θ, x) ∈ M :

∑
j∈G

rj(θ, x) ≥
c

2
n

⎫⎬
⎭ .
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It is shown in [S1, equation (16)] and [S2, equation (25)] that there is τ1 > 0 such
that

|B1(n)| ≤ const e−τ1
√
n.

Since the base dynamics of F is uniformly expanding, we obtain immediately that

(8) |{y ∈ M : E(y) > n}| ≤ |B1(n) ∪B2(n)| ≤ O(e−τ
√
n),

where τ = min{τ1, τ2}. Note that while the base dynamics g of F̃2 is uniformly
expanding, the base dynamics Qk

b of F2 is not. However Qnk
b = ϕ−1 ◦ gn ◦ ϕ and,

by the properties of the density of the acip for Qb (see, e.g., [S2]), it follows that
the derivative of ϕ is uniformly bounded away from zero (on its support) and the
derivative of ϕ−1 is strictly positive outside a finite number of critical points of order
2. Hence, there exists λ > 1 such that, for each n ≥ 1, |DθQ

nk
b (θ)| ≥ λn for all θ

outside an exceptional set whose size is decreasing exponentially in n. Combined
with (9) below, it follows that the tail estimate (8) of the expansion time function

does not only hold for the maps F1 and F̃2 but also for the map F2.
From the arguments in [S1], [S2], and [V] it is obvious that the constant c in the

definition of B1(n) can be chosen arbitrarily small. Observe that in the set B1(n) we
are only concerned about the returns of fn(θ, x) to the set J((1/2− 2κ) log(1/α)).
Hence, setting

δ =
|J((1/2− 2κ) log(1/α))|

2
= α1−2κ

and writing ε instead of c/2, we obtain

n−1∑
j=0

− log distδ(F
j(θ, x),Sv) =

∑
j∈G

rj(θ, x) ≤ εn,

for all (θ, x) /∈ B1(n) ∪B2(n). Considering the map F2 this implies that

n−1∑
j=0

− log distδ(F
j
2 (θ, x),Sv) ≤ εn,

for all (θ, x) /∈ Φ−1(B1(n) ∪ B2(n)), where Φ = (ϕ, id) is the conjugating function
described above. Since the derivative of ϕ−1 is bounded from above (see, e.g., [S2]),
we obtain

(9) |Φ−1(B1(n) ∪B2(n))| ≤ ‖Dϕ−1‖∞|B1(n) ∪B2(n)| ≤ const e−τ
√
n.

We conclude that for the maps F1 and F2 we have

|{y ∈ M : Rε,δ,v(y) > n}| ≤ O(e−τ
√
n).

Altogether we have proved for F1 and F2 the stretched exponential bounds required
in (6) where the constant ζ can be taken equally to 1/2.

3.2. Bounds for the base dynamics. Note that to prove the decay on |{y ∈
M : Rε,δ,h(y) > n}| we only have to consider the base dynamics. For the sake
of notation we make this more precise. Consider the projection of Sh to the first
coordinate. We denote this projection again by Sh; i.e., for the base dynamics g1
of the map F1 the critical set Sh is equal to 0 ∈ S1, and for the base dynamics g2
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of the map F2 the critical set Sh is equal to {b1, ..., bm} ⊂ I. For y = (θ, x) ∈ Mi,
i = 1, 2, we have

Rε,δ,h(y) = Rε,δ,h(θ)

:= min

⎧⎨
⎩N ≥ 1 :

1

n

n−1∑
j=0

− log distδ(g
j
i (θ),Sh) ≤ 2ε, for all n ≥ N

⎫⎬
⎭ ,

where distδ is defined as above but restricted to S1 or I, respectively. It follows
that |{y ∈ M : Rε,δ,h(y) > n}| is equal to |{θ ∈ S1 : Rε,δ,h(θ) > n}||J | or
|{θ ∈ I : Rε,δ,h(θ) > n}||J |, respectively.

To establish the desired tail estimates of the recurrence time function for the base
dynamics, we follow the strategy of [AFLV, Theorem 4.2]. We begin by introducing
some auxiliary functions. For δ > 0 sufficiently small, let

φ(θ) =

⎧⎪⎨
⎪⎩
− log dist(θ,Sh) if dist(θ,Sh) < δ ,
log δ
δ (dist(θ,Sh)− 2δ) if δ ≤ dist(θ,Sh) < 2δ ,

0 if dist(θ,Sh) ≥ 2δ,

where θ is in S1 or I, respectively. Observe that φ has discontinuities at the
singular set Sh. Let ν1 and ν2 denote the unique acip for g1 and g2, respectively.
(The density of ν2 is in Lp(m), for all 1 ≤ p < 2; see, e.g., [S2].) We can choose
δ > 0 so small that, for i = 1, 2,

lim sup
n→+∞

1

n

n−1∑
j=0

− log distδ(g
j
i (θ),Sh) ≤ lim

n→+∞

1

n

n−1∑
j=0

φ(gji (θ)) =

∫
φdνi ≤ ε ,

for νi-a.e. θ. For all k > 0 we let

Ak := {θ : φ(θ) ≥ k}
and define

φk(θ) :=

{
k, if θ ∈ Ak,

φ(θ), otherwise.

The functions φk and the sets Ak correspond to the functions φ2,k and A2,k in
[AFLV, Section 5], respectively.

3.2.1. β-transformations. We consider first the setting in the case of the map F1.
Let B denote the space of functions ϕ on S1 with bounded variation and set

‖ϕ‖B := VS1ϕ+ ‖ϕ‖L1(m),

where m denotes the Lebesgue measure on S1. By [AFLV, Appendix C.1 and
Corollary H (2)] we get that for all ϕ ∈ B and for every ε > 0 there exist τ (ϕ, ε) > 0
and C(ϕ, ε) such that

(10) LDν1
(ϕ, ε, n) = ν1

(∣∣∣∣∣ 1n
n−1∑
i=0

ϕ ◦ gi1 −
∫

ϕdν1

∣∣∣∣∣ > ε

)
≤ C(ϕ, ε)e−τ(ϕ,ε)n.

Furthermore, by [AFLV, Proposition 2.5 and Lemma 2.6], we get

τ (ϕ, ε) ≥ ε2(8(‖ϕ‖∞ + C ′‖ϕ‖B)2)−1.
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The constant C ′ is equal to 2
∑

i≥0 ξ(i), where ξ(i) is an upper bound for the decay

of correlation for observables in B against L1(ν1) (whose corresponding norms are
≤ 1). By [AFLV, Appendix C.1 and Corollary H (1)], this decay is exponential
and, hence, C ′ is finite. Regarding the constant C(ϕ, ε), we derive from the proof

of [AFLV, Proposition 2.5] that C(ϕ, ε) ≤ 2eε(4‖ϕ‖∞)−1

. Since the function φ is not
of bounded variation we cannot apply (10) directly to φ. However, the functions
φk are of bounded variation and, according to [AFLV, equation (5.1)], we have

LDν1
(φ, 2ε, n) ≤ LDν1

(φk, ε, n) + nν1(Ak).

Since the density of ν1 is bounded from above, this immediately implies ν1(Ak) ≤
const |Ak| ≤ const e−k. Altogether we obtain

LDν1
(φ, 2ε, n) ≤ 2eε(4‖φk‖∞)−1

e−ε2(8(‖φk‖∞+C′‖φk‖B)2)−1n + constne−k.

Observe that ‖φk‖∞ = k, VS1φk = 2k and ‖φk‖L1(m) is bounded from above by a
constant independent on k. We derive that there is a constant C independent on k
and ε such that

LDν1
(φ, 2ε, n) ≤ C(e−ε2C−1k−2n + ne−k).

Choosing k = n1/3, we get LDν1
(φ, 2ε, n) ≤ O(e−τn1/3

) for some constant τ =
τ (ε) > 0. Since − log distδ ≤ φ, the density of ν1 is bounded away from zero (see,
e.g. [AFLV, Appendix C.1]), and

∫
φdν1 ≤ ε, we finally obtain

|{θ ∈ S1 : Rε,δ,h(θ) > n}| ≤ constLDν1
(φ, 2ε, n) ≤ O(e−τn1/3

),

which implies (5) where ζ = 1/3.

3.2.2. Quadratic maps. It is only left to consider the case of the map F2. By,
e.g., [KN], (g2, ν2) has exponential decay of correlations for functions of bounded
variation only against Lp(ν2), p > 2. Thus, we cannot apply the argument above for
the map g1 which gives a sharper result. However, by [G2], it follows that (g2, ν2)
has exponential decay of correlations for Hölder observables against L∞(ν2). In
order to apply [G2], we need the existence of a tower with exponentially small tails.
But this follows from [Y1]. Moreover, by [S2], it follows that the density of ν2 is
in Lp(m), for any 1 ≤ p < 2, and uniformly bounded away from 0 on its support.
Thus, [AFLV, Proposition 4.1 (2)] implies that there exists τ > 0 such that for any
0 < ζ < 1/9 and any ε > 0 sufficiently small one has

|{θ ∈ I : Rε,δ,h(θ) > n}| ≤ constLDν2
(φ, 2ε, n) ≤ O(e−τnζ

).

This concludes the proof of (5) in the case of the map F2.

Remark 1. For (g2, ν2), [KN] and [MN2] show exponentially large deviation esti-
mates for observables of bounded variation and for Hölder observables, respectively.
Thus, regarding the argument above for the map g1, one might expect to get in
(5) a constant ζ close to 1/3. However, the constants in [KN] and [MN2] for the
exponentially large deviation are not as explicit as in (10), which makes it difficult
to apply their results to our setting.
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4. Topological transitivity

Denote by Λ the attractor
⋂

n≥0 F
n(M). We say that F is topologically transitive

on the attractor Λ if, for every non-empty open subsets U and V of Λ, there exists n
such that F−n(U)∩V contains a non-empty open set. For the maps Fi, i = 1, 2, we
have, by the same argument as in [AV, Lemma 6.1], that its attractor Λi coincides
with F 2

i (Mi). In fact, for the latter use we note that the argument in [AV] shows
that even if D is an interval with its boundary points sufficiently close to Q2

a(0)
and Qa(0), respectively, then F 2

1 (S
1 ×D) = Λ1 and F 2

2 (I ×D) = Λ2.
The essential part for showing topological transitivity is done in [A]. By Sec-

tions 3.1 and 3.2 we know that Fi : Mi → Mi, i = 1, 2, is non-uniformly expanding
and slowly recurrent to the critical set. Hence, we can apply Lemma 4.3 in [A]
and get that there is a constant δ > 0 only dependent on the constant c from
the non-uniform expansion (see equation (7)) and on the constant β from the non-
degeneracy condition such that the following holds. For every ε > 0 there exists
n1 = n1(ε) > 0 such that for any ball B ⊂ Mi of radius ε there is an integer
n ≤ n1 such that Fn

i (B) contains a ball of radius δ (of course Fn
i : B → Mi might

not be injective). Recall that the constant c and, thus, also the constant δ do not
depend on α. The following argument is similar to that in [AV, p. 29]. Recall
that we defined I = [Q2

b(0), Qb(0)]. Since Qa and Qb are non-renormalizable, it
follows that the supports of the acip’s for Qa and Qb are equal to [Q2

a(0), Qa(0)]
and I, respectively. Since the critical points of Qa and Qb are eventually mapped
into repelling periodic points and since Qa and Qb are conjugated to uniformly
expanding maps (see, e.g., [S2, Proposition 2.2]), it follows that there is an integer
n2 = n2(δ) > 0 such that if V ⊂ [Q2

a(0), Qa(0)] and V ′ ⊂ I are intervals of length
δ, then Qn2

a (V ) = [Q2
a(0), Qa(0)] and Qn2

b (V ′) = I. Recall that if D is an interval
with its boundary points sufficiently close to Q2

a(0) and Qa(0), respectively, then
F 2
1 (S

1 ×D) = Λ1 and F 2
2 (I ×D) = Λ2. Since F1 and F2 depend continuously on

α, it follows that if θ ∈ S1, θ′ ∈ I, and V, V ′ are intervals of length δ satisfying
θ × V ⊂ Λ1 and θ′ × V ′ ⊂ Λ2, then for α sufficiently small we have

Fn1+2
1 (θ × V ) = {gn1+2(θ)} × R ∩ Λ1

and
Fn1+2
2 (θ′ × V ′) = {Q(n1+2)k

b (θ′)} × R ∩ Λ2.

Altogether, we derive that for each ε > 0 there is an integer n0 = n0(ε) such that
if B ⊂ Λi, i = 1, 2, is a ball of radius ε, then Fn0

i (B) = Λi. Thus, we conclude
that Fi is topologically transitive on Λi. Obviously, this argument also works for
arbitrary iterates of Fi.

Appendix A. Limit theorems

Here we define the statistical properties of dynamical systems; see properties A.1–
A.4 below, which are mentioned in the last items of Theorems A and B. A suf-
ficient condition on our maps F1 and F2 in order to obtain the following four
properties A.1–A.4 is the existence of a Gibbs-Markov structure with tail estimates
decaying at least as fast as n−α for some α > 2. (For F1 and F2 this condition
is obviously satisfied since we have stretched exponential tail estimates for their
towers.) More precisely, in order to deduce property A.1 we combine this existence
of a Gibbs-Markov structure with [Y2, Theorem 4]; in order to deduce property A.2
we combine this existence of a Gibbs-Markov structure with [G1, Theorem 1.2]; in
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order to deduce property A.3 we combine this existence of a Gibbs-Markov struc-
ture with [G1, Theorem 1.3]; and in order to deduce property A.4 we combine this
existence of a Gibbs-Markov structure with [MN1, Theorem 2.9]. (See also [AFLV,
Corollaries B1–B4]. Observe that the assumption therein that the acip for F1 and
F2, respectively, has a density in Lp, for some p > 1, and decay of correlation at
least as fast as n−α−1 for some α > 2 is only used to deduce, by [AFLV, Theo-
rem C], the existence of a Gibbs-Markov structure with tail estimates decaying at
least as fast as n−α+ε for any ε > 0.)

A.1. Central Limit Theorem. Let ϕ ∈ Hγ be such that
∫
ϕdμ = 0. Then

(11) σ2 = lim
n→∞

1

n

∫ (
n−1∑
i=0

ϕ ◦ F i

)2

dμ ≥ 0

is well defined. We say the Central Limit Theorem holds for ϕ if for all a ∈ R

μ

({
x :

1√
n

n−1∑
i=0

ϕ ◦ F i(x) ≤ a

})
→

∫ a

−∞

1

σ
√
2π

e−
x2

2σ2 dx, as n → ∞,

whenever σ2 > 0. Additionally, σ2 = 0 if and only if ϕ is a coboundary (ϕ �= ψ◦F−ψ
for any ψ ∈ L2).

A.2. Local Limit Theorem. A function ϕ : M → R is said to be periodic if there
exist ρ ∈ R, a measurable function ψ : M → R, λ > 0, and q : M → Z such that

ϕ = ρ+ ψ − ψ ◦ F + λq

almost everywhere. Otherwise, it is said to be aperiodic.
Let ϕ ∈ Hγ be such that

∫
ϕdμ = 0 and σ2 be as in (11). Assume that ϕ

is aperiodic (which implies that σ2 > 0). We say that the Local Limit Theorem
holds for ϕ if for any bounded interval J ⊂ R, for any real sequence {kn}n∈N with
kn/n → κ ∈ R, for any u ∈ Hγ , and for any measurable v : M → Rε,δ we have

√
nμ

({
x ∈ M :

n−1∑
i=0

ϕ ◦ F i(x) ∈ J + kn + u(x) + v(Fnx)

})
→ m(J)

e−
κ2

2σ2

σ
√
2π

.

A.3. Berry-Esseen Inequality. If F admits a Gibbs-Markov induced map of
base Δ0 and return time function R, then for any ϕ : M → R define ϕΔ0

: Δ0 → R

by

ϕΔ0
(x) =

R(x)−1∑
i=0

ϕ(F ix).

Let ϕ ∈ Hγ be such that
∫
ϕdμ = 0 and σ2 be as in (11). Assume that σ2 > 0

and that there exists 0 < δ ≤ 1 such that
∫
|ϕΔ0

|2χ|ϕΔ0
|>zdμ ≤ const z−δ, for large

z. If δ = 1, assume also that
∫
|ϕΔ0

|3χ|ϕΔ0
|≤zdμ is bounded. We say that the

Berry-Esseen Inequality holds for ϕ if there exists C > 0 such that for all n ∈ N

and a ∈ R we have∣∣∣∣∣μ
({

x :
1√
n

n−1∑
i=0

ϕ ◦ F i(x) ≤ a

})
−
∫ a

−∞

1

σ
√
2π

e−
x2

2σ2 dx

∣∣∣∣∣ ≤ C

nδ/2
.
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A.4. Almost Sure Invariance Principle. Given d ≥ 1 and a Hölder continuous
ϕ : M → R

d with mean zero, we denote

Sn =

n−1∑
i=0

ϕ ◦ F i, for each n ≥ 1.

We say that ϕ satisfies an Almost Sure Invariance Principle (ASIP) if there exists
λ > 0 and a probability space supporting a sequence of random variables {S∗

n}n
(which can be {Sn}n in the d = 1 case) and a d-dimensional Brownian motion W (t)
such that

(1) {Sn}n and {S∗
n}n are equally distributed;

(2) S∗
n = W (n) +O(n1/2−λ), as n → ∞, almost everywhere.

Satisfying an ASIP is a strong statistical property that implies other limiting
laws such as the Central Limit Theorem, the Functional Central Limit Theorem
and the Law of the Iterated Logarithm.
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[AS] V. Araújo and J. Solano, Absolutely continuous invariant measures for non-expanding
maps, arXiv:1111.4540v1

[BST] J. Buzzi, O. Sester, and M. Tsujii, Weakly expanding skew-products of quadratic maps,
Ergodic Theory Dynam. Systems 23 (2003), 1401–1414. MR2018605 (2004m:37034)
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Departamento de Matemática, Faculdade de Ciências, Universidade do Porto, Rua

do Campo Alegre 687, 4169-007 Porto, Portugal

E-mail address: jfalves@fc.up.pt
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