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HOLOMORPHIC MOTIONS AND QUASICIRCLES

GAVEN J. MARTIN

(Communicated by Mario Bonk)

Abstract. We give a new application of the theory of holomorphic motions to

the study of the distortion of holomorphic maps of disks and annuli establishing
sharp distortion theorems.

The theory of holomorphic motions, introduced by Mané-Sad-Sullivan [8], has
had a significant impact on the theory of quasiconformal mappings. A reason-
ably thorough account of this is given in our book [1]. In [9] we established some
classical distortion theorems for quasiconformal mappings and used the theory to
develop connections between Schottky’s theorem and Teichmüller’s theorem. Here
we further explore these ideas to give new distortion theorems. A sequel discusses
further interesting applications to the theory of mappings of finite distortion and
their boundary values. The results here also give new estimates for the distortion
of extensions of analytic germs as studied in [5].

1. Definitions

We first recall the two basic notions we will need for this paper.

1.1. Quasiconformal mappings. A homeomorphism f : Ω → C defined on a
domain Ω ⊂ C and in the Sobolev class f ∈ W 1,2

loc (Ω,C) of functions with locally
square integrable first derivatives is said to be quasiconformal if there is a 1 ≤ K <
∞ so that f satisfies the distortion inequality

(1) |Df(z)|2 ≤ K J(z, f), almost everywhere in Ω.

Here Df(z) is the Jacobian matrix and J(z, f) its determinant. The basic theory
of quasiconformal mappings is described in [1].

1.2. Holomorphic motions. The theorem quoted below, known as the extended
λ-lemma and first proved by Slodkowski [13], is key. The dilatation estimate was
observed by Bers and Royden earlier. See [4] for a discussion. A complete and
accessible proof can be found in [1, Chapter 12]. First we give the definition of a
holomorphic motion.

Let X ⊂ Ĉ = C ∪ {∞} be a set. A holomorphic motion of X is a map Φ :

D×X → Ĉ such that:

• For any fixed a ∈ X, the map λ �→ Φ(λ, a) is holomorphic.
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• For any fixed λ ∈ D, the map a �→ Φ(λ, a) is an injection.
• Φ(0, a) = a for all a ∈ X.

Note especially that there is no assumption regarding the measurability of X or
the continuity of Φ as a function of a ∈ X or the two variables (λ, a) ∈ D×X.

Theorem 1. Let Φ : D ×X → Ĉ be a holomorphic motion of X. Then Φ has an
extension to Φ̂ : D× Ĉ which is a holomorphic motion of Ĉ, and for each λ ∈ D

Φ̂λ = Φ̂(λ, ·) : Ĉ → Ĉ is 1+|λ|
1−|λ|–quasiconformal.

Moreover, if ρD denotes the hyperbolic metric (curvature = −1) of the unit disk, then

for λ1, λ2 ∈ D the map Φ̂−1
λ1

◦ Φ̂λ2
is K–quasiconformal, with logK = ρD(λ1, λ2).

2. Holomorphic motions of circles

A K–quasicircle Γ is a Jordan curve in the plane which is the image of the unit
circle under a quasiconformal map of Ĉ. If a Jordan curve is a quasicircle, then it is
often possible to get an upper and lower bound on the number K; however, getting
sharp estimates is extremely rare. The place to start is to consider ellipses. We give
the following lemma, which must be well known but which we could not explicitly
find in the literature. Our proof follows from interesting work of S. Krushkal [6]
and R. Kühnau [7] on extremal quasiconformal reflections.

Lemma 1. For 0 < r ≤ 1 the ellipse Er = {eiθ + r2e−iθ : θ ∈ [0, 2π]} is a K

quasicircle, where K =
√

1+r2

1−r2 . This estimate is best possible.

Proof. Er is the image of the unit circle under the map Jr(z) = z + r2/z, |z| > 1,

with affine extension J̃r(z) = z + r2z̄, |z| ≤ 1. The extremal dilatation among
all quasiconformal reflections across the ellipse Er is known to be Qr = (1 + r2)/
(1 − r2), and the map Jr has Grunsky norm κ(Jr) = k(Jr) = r2, where k(Jr)
is the Teichmüller norm of Jr, defined to be the minimum of dilatations k(w) =
‖∂̄w/∂w‖∞ < 1 of all quasiconformal extensions of Jr across S1 (preserving orien-
tation). These facts can be found in the survey [6].

On the other hand, due to Ahlfors-Kuhnau, for any quasicircle C its reflection
dilatation QC is related to its extremal dilatation KC of quasiconformal maps f :
Ĉ → Ĉ of the extended complex plane with f(S) = C by Qv = K2

C . So KEr
=

√
Qr.

This can be found in the survey [7]. The result follows. �

Note that the extremal mapping constructed above is not linear (unless it is the
identity). However, the Beltrami coefficient of this extremal mapping (we have not
proved uniqueness) has constant modulus, |μ| = r2.

Let Φ : D × D be a holomorphic motion of the disk and let Φ̂ : D × Ĉ be the
extension given by Theorem 1. According to Theorem 1 the set Φλ(S) = Φ̂λ(S) is

a 1+|λ|
1−|λ|–quasicircle. However, this estimate ([1, Theorem 12.5.1]) can be improved

by symmetrisation of the Beltrami coefficient as in [1, §13.3.1 and Theorem 13.3.5].
This leads directly to the following theorem.

Theorem 2. Let ϕ : D → C be a conformal mapping. Then for all 0 < r < 1,

ϕ(S(r)) is a
√

1+r
1−r -quasicircle.
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The first part of the proof is to consider the motion defined by (λ, z) �→ 1
λϕ(λz)

once ϕ is normalised so that ϕ(0) = 0 and ϕ′(0) = 1. The extended λ-lemma ex-
tends ϕ|D(0, r) to a 1+r

1−r -quasiconformal map of C which the symmetrisation across

S(r) reduces to a
√

(1 + r)/(1− r)-quasiconformal map f of C with f(S(r)) =
ϕ(S(r)). Using the Möbius group of the disk we obtain the following corollary
which we will use later.

Corollary 1. Let ϕ : D → C be a conformal mapping and D = D(a, r) ⊂ D. Then
ϕ(D) is a Ka,r-quasidisk, where

(2) Ka,r ≤
(
(1 + r)2 − |a|2
(1− r)2 − |a|2

)1/4

.

Moreover, ϕ|D(a, r) has a K2
a,r–quasiconformal extension to C.

2.1. Sharpness and examples. The nice thing about Theorem 2 is that it pro-
vides explicit distortion bounds on the constants associated with a quasidisk. Fol-
lowing from these are a vast number of consequences for the function theory of the
domain. For instance, quasidisks are uniform domains and the distortion estimates
bound the constants of uniformity. However, it is reasonable to ask about sharp-
ness. The obvious candidate to consider here is the Koebe function z �→ z

1+z2 .

After inversion, application of Corollary 1 implies that if |a|+ r < 1, then

Ca,r =

{
a+ reiθ +

1

a+ reiθ
: 0 ≤ θ ≤ 2π

}

is a Ka,r–quasicircle. With the choice a = 0 ∈ D, Corollary 1 implies that the

ellipse Er = {eiθ + r2e−iθ : 0 ≤ θ ≤ 2π} is a
√
(1 + r)/(1− r)–quasicircle. We

already know the best possible estimate here is
√
(1 + r2)(1− r2).

1+r
1−r

1+r2

1−r2

This graph shows that the estimates of Corollary 1 are not too bad. They are
off by at most a factor of

√
2. Below we illustrate two families of

√
2-quasicircles

obtained from Corollary 1 and the map z �→ z +1/z on various disks of hyperbolic
radius 2.
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3. Annuli

Next we want to consider the case of conformal mappings of annuli. There
are two natural questions. We could consider a conformal map ϕ defined on the
annulus A(r, 1/r) = {z : r < |z| < 1/r} and ask for bounds on the distortion of
the quasicircle ϕ(S) in terms of r. Here we first study the distortion of the circles
ϕ(S(r)) when ϕ is a conformal map of A(r0, 1) with ϕ(S) = S. This is because of
an interesting application in obtaining distortion bounds for the boundary values
of mappings of finite distortion; see [10]. These maps arise when one “integrates”
a compactly supported Beltrami coefficient to a self-mapping of finite distortion of
the disk.

Suppose that ϕ : A(r0, 1) → D is a conformal mapping such that lim|z|→1 |ϕ(z)| =
1. The Carathéodory theorem and the Schwarz reflection principle imply that ϕ
extends by reflection to a conformal mapping ϕ̂ : A(r0, 1/r0) → C, ϕ̂|A(r0, 1) = ϕ.
Next, the smooth Jordan curves Cr = ϕ(S(r)) are quasicircles. We seek optimal
bounds on the distortion of these quasicircles.

3.1. Quasicircles and conformal maps of annuli. Here is the main result of
this section.

Theorem 3. Let ϕ : A(r0, 1) → D with ϕ(S) = S be a conformal mapping. Then
for r0 < r ≤ 1, the smooth Jordan curve Cr = ϕ(S(r)) is a K-quasicircle with

(3) K ≤ K0 =
1 + tan

(
π
4

log(r)
log(r0)

)
1− tan

(
π
4

log(r)
log(r0)

) .

In fact the map ϕ ◦ r ◦ϕ−1 : S → ϕ(S(r)) has a K0-quasiconformal extension to Ĉ.

Proof. We assume ϕ has been extended by reflection. For

r0
r

< |η| < 1

r r0

and ζ ∈ X = ϕ(S(r)) we define

(4) Φη(ζ) = ϕ(η ϕ−1(ζ)).

Certainly Φ1(ζ) = ζ, Φη : X → C is an injection and Φ1/r(X) = S. Next, for each
ζ ∈ X the map η �→ Φη(ζ) is holomorphic. Thus, we have a motion of X which
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moves it to a round circle when η = 1/r and is holomorphic but not parameterised
by the unit disk. We fix that by considering the universal cover. Let h : D →
A(r0/r, 1/(rr0)) be the holomorphic universal covering map with h(0) = 1 and
h′(0) > 0. Set Ψ(λ, ζ) = Φh(λ)(ζ). Then Ψ is a holomorphic motion of X and

extends to a motion of Ĉ which at time λ is 1+|λ|
1−|λ| -quasiconformal.

We now have to relate |λ| and the number 1/r via h. We note that log 1+|λ|
1−|λ| =

ρD(0, λ). The covering map h is a local isometry of the hyperbolic metrics, but as
we have set things up it is an isometry on the interval [0, 1]. Hence

log
1 + |λ|
1− |λ| = ρA(r0/r,1/r r0)(h(0), |h(λ)|) = ρA(r0/r,1/r r0)(1, 1/r) = ρA(r0,1/r0)(r, 1),

and so Cr is a K–quasicircle, where logK = ρA(r0,1/r0)(1, r). We need the value
ρA(r0,1/r0)(1, r). The hyperbolic metric density (curvature equal to −1) of this
annulus can be found in [3, §12.2] as

(5) d(z) =
π

2 log(1/r0)

1

|z| cos
(

π log |z|
2 log(1/r0)

) .

Then

ρA(r0,1/r0)(1, r) =
π

2 log(1/r0)

∫ 1

r

dt

t cos
(

π log t
2 log(1/r0)

) = log
1 + tan

(
π
4

log(r)
log(r0)

)
1− tan

(
π
4

log(r)
log(r0)

) .

We now recognise that K = exp(ρA(r0,1/r0)(1, r)), and this completes the proof. �
Corollary 2. Let ϕ : A(1, r0) → D, ϕ(S) = S, be conformal and 0 ≤ α < 1. Then
ϕ(S(0, rα0 )) is a K-quasicircle with

(6) Kα =
1 + tan(π4 α)

1− tan(π4 α)
.

In fact the map ϕ ◦ r ◦ ϕ−1 : S → ϕ(S(rα0 )) has a Kα-quasiconformal extension to

Ĉ, and this estimate is essentially best possible.

What we mean by “essentially best possible” is explained in the next section.
However, for fixed α we expect that a sharp bound will have Kα → 1 as r0 → 0.

3.2. Lower bounds and sharpness. The problem in finding examples is in get-
ting anything other than coarse estimates on the distortion of general quasicircles,
so we turn to ellipses again. Let r < 1 and E be the region bounded by the ellipse
{(r + 1/r) cos(θ) + i(r − 1/r) sin(θ) : 0 ≤ θ ≤ 2π}. Define the conformal map
ϕr : D \ D(0, r) → E \ [−(r + 1/r), (r + 1/r)] by

(7) ϕr(z) =
z

r
+

r

z
.

For r < s < 1, the Jordan curve ϕr(S(s)) is an ellipse which is a K–quasicircle

(8) K =

√
s2 + r2

s2 − r2
,

and no better by Lemma 1. We want to note here that the boundary values do
not have such a good extension. This surely follows from work on extremal quasi-
conformal mappings of Reich-Strebel et al., but we give a new proof based on our
work with L1-minimisers, [2].



3916 GAVEN J. MARTIN

Lemma 2. Let L(z) = az + bz, |a| > |b|. Then

inf
{
K : there is a K-quasiconformal F : D → C with F |S = L|S

}
=

|a|+ |b|
|a| − |b| .

The unique extremal mapping here is L.

Proof. The inverse of the harmonic extension of the boundary values of L−1 (that
is, L) is the unique minimiser of

∫∫
D
K dz, K = 1

2 (K + 1/K), over maps with the
same boundary values as L; see [2]. Therefore for any such F ,

‖K(z, F )‖∞ ≥ 1

π

∫∫
K(z, F ) dz ≥ 1

π

∫∫
K(z, L) dz = ‖K(z, L)‖∞,

and the middle inequality is strict unless F = L. The result follows as K �→
1
2 (K + 1/K) is convex increasing for K ≥ 1. �

Returning to our example, certainly ϕ(D) = E 
= D, but as r → 0 the Riemann
map ψ : E → D converges with all derivatives to the identity. So for small r we
expect (8) to be close to a lower bound. We can get explicit estimates for all r
by observing that the linear map g(z) = (r + 1/r)z + (r − 1/r)z can be used to

define a K ′ = 1+r2

1−r2 -quasiconformal reflection Φ : E = g(D) → Ĉ \ E = g(Ĉ \ D̄),

Φ|∂E = identity, by

Φ(z) = g
( g−1(z)

|g−1(z)|2
)
.

Then, again using the reflection in the circle,

F (z) =

{
ψ(z), z ∈ E ,
ψ ◦ Φ(z) |ψ ◦ Φ(z)|−2, z ∈ C \ E

defines a K ′–quasiconformal homeomorphism of C. It follows that the conformal
map ψ ◦ φ : D \ D(0, r) → D has (ψ ◦ φ)(S) = S and (ψ ◦ φ)(S(s)) is at least a

K̃ = K/K ′–quasicircle, so

K̃ ≥ 1− r2

1 + r2

√
s2 + r2

s2 − r2
.

We put s = rα, 0 < α < 1, and, with Corollary 2,

(9)
1− r2

1 + r2

√
1 + r2−2α

1− r2−2α
≤ K ≤

1 + tan(π4 α)

1− tan(π4 α)
.
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On the left is a graph of the left-hand side of (9) divided by the right-hand side

of (9) for r = 0.01, 0.2, 0.4, 0.6, 0.8 and α ∈ [0, 1]. In some sense the factor 1−r2

1+r2 is
artificial, but our result appears sub-optimal when α is close to 1. However, as the
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linear boundary values do not admit such a good extension, the dilatation of the
extension of the map ϕ ◦ r ◦ ϕ−1 : S → ϕ(S(rα0 )) of Corollary 2 is of the order of
1−r2

1+r2
1+r2−2α

1−r2−2α ; there is no square-root. This is the graph on the right, showing that
the distortion bounds on the extension are off by at most a constant factor and are
“essentially sharp”.

4. Another application

Here we address the first question we raised concerning conformal maps of annuli.
Unfortunately the result, though explicit, is not clean and is probably far from
sharp.

Theorem 4. Let ϕ : A = A(r, 1/r) → C be conformal. Then ϕ(S) is a K–
quasicircle, and

K ≤ (1 +
√
2)

1 +
√
1− (μ−1(log(1/r)))2

μ−1(log(1/r))
,

where μ(s) is the modulus of the Grötzsch ring D \ [0, s].

Proof. We can assume by an elementary limiting argument that ϕ(S(1/r)) is a
Jordan curve bounding a domain Ω ⊂ C. Let ψ : Ω → D be the Riemann mapping.
Accordingly, (ψ ◦ ϕ)(z/r) from A(r2, 1) → D satisfies the hypotheses of Theorem 3

and (ψ ◦ ϕ)|S(r) has a
1+tan(π

8 )

1−tan(π
8 )

= (1 +
√
2)-quasiconformal extension. Let D =

D(a, ρ) be the smallest hyperbolic disk in D containing (ψ◦ϕ)(S). Then ψ−1|D → C

has a eρ+1
eρ−1 -quasiconformal extension; see Corollary 2. Hence ϕ(S) is aK–quasicircle

for some K ≤ (1+
√
2) e

ρ+1
eρ−1 . We estimate ρ. The modulus of the annulus A(r, 1) is

log(1/r), which must be the modulus of the ring with boundary components S and
(ψ ◦ϕ)(S). Move D via a Möbius transformation so the origin lies on its boundary.
The extremal property of the Grötzsch ring implies log(1/r) ≤ μ((e2ρ−1)/(e2ρ+1)).
As μ is increasing,

log

√
1 + μ−1(log(1/r))

1− μ−1(log(1/r))
≤ ρ,

and the result follows. �

As μ(s) = π
2

K(
√
1−s2)

K(s) , K being the elliptic integral of the first kind, we can

explore this bound computationally. However the results do not seem particularly
compelling.
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Sup., 16 (1983), 193–217. MR732343 (85j:58089)

[9] G. J. Martin, The distortion theorem for quasiconformal mappings, Schottky’s theorem
and holomorphic motions, Proc. Amer. Math. Soc., 125 (1997), 1095–1103. MR1363178
(97g:30017)

[10] G. J. Martin, Topology and distortion, preprint.
[11] D. Partyka, The maximal dilatation of Douady and Earle extension of a quasisymmetric

automorphism of the unit circle, Ann. Univ. Mariae Curie-Sklodowska Sect. A, 44 (1990),

45–57 (1991). MR1157878 (93h:30035)
[12] E. Reich and K. Strebel, Extremal plane quasiconformal mappings with given boundary val-

ues, Bull. Amer. Math. Soc., 79 (1973), 488–490. MR0338362 (49:3127)
[13] Z. Slodkowski, Holomorphic motions and polynomial hulls, Proc. Amer. Math. Soc., 111

(1991), 347–355. MR1037218 (91f:58078)
[14] Strebel, K., Extremal Quasiconformal Mappings, Results Math., 10 (1986), 168–210.

MR869809 (88a:30048)

Institute for Advanced Study, Massey University, Auckland, New Zealand

E-mail address: g.j.martin@massey.ac.nz

http://www.ams.org/mathscinet-getitem?mr=2595552
http://www.ams.org/mathscinet-getitem?mr=2595552
http://www.ams.org/mathscinet-getitem?mr=2121866
http://www.ams.org/mathscinet-getitem?mr=2121866
http://www.ams.org/mathscinet-getitem?mr=939755
http://www.ams.org/mathscinet-getitem?mr=939755
http://www.ams.org/mathscinet-getitem?mr=732343
http://www.ams.org/mathscinet-getitem?mr=732343
http://www.ams.org/mathscinet-getitem?mr=1363178
http://www.ams.org/mathscinet-getitem?mr=1363178
http://www.ams.org/mathscinet-getitem?mr=1157878
http://www.ams.org/mathscinet-getitem?mr=1157878
http://www.ams.org/mathscinet-getitem?mr=0338362
http://www.ams.org/mathscinet-getitem?mr=0338362
http://www.ams.org/mathscinet-getitem?mr=1037218
http://www.ams.org/mathscinet-getitem?mr=1037218
http://www.ams.org/mathscinet-getitem?mr=869809
http://www.ams.org/mathscinet-getitem?mr=869809

	1. Definitions
	1.1. Quasiconformal mappings
	1.2. Holomorphic motions

	2. Holomorphic motions of circles
	2.1. Sharpness and examples

	3. Annuli
	3.1. Quasicircles and conformal maps of annuli
	3.2. Lower bounds and sharpness

	4. Another application
	References

