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NON-EXISTENCE OF PRESCRIBABLE CONFORMALLY

EQUIVARIANT DILATATION IN SPACE

MALINEE CHAIYA AND AIMO HINKKANEN

(Communicated by Mario Bonk)

Abstract. In this paper, we study the prescribable conformally equivariant
dilatations for orientation preserving quasiconformal homeomorphisms. The
complex dilatation is a prescribable conformally equivariant dilatation in R2. A
Schottky set is a subset of the unit sphere Sn whose complement is the union
of at least three disjoint open balls. By using the result of Bonk, Kleiner,
and Merenkov that there are rigid Schottky sets of positive measure in each
dimension at least 3, we prove that it is not possible to have a prescribable
conformally equivariant dilatation in Rn, where n ≥ 3.

1. Introduction

Let G be a domain in Rn, where n ≥ 2. A homeomorphism f of G onto a domain
in Rn is called quasiconformal if its circular dilatation

H(x, f) = lim sup
r→0

max{|f(x)− f(y)| : |y − x| = r}
min{|f(x)− f(y)| : |y − x| = r} ≥ 1

satisfies sup{H(x, f) : x ∈ G} < +∞, and K−quasiconformal, where K ≥ 1, if
H(x, f) ≤ K for almost every x ∈ G with respect to the Lebesgue measure of Rn.
For the basic properties of quasiconformal mappings we refer to [3], [1], [5].

The measurable Riemann mapping theorem states that in dimension 2, one can
prescribe for quasiconformal mappings a quantity, the complex dilatation, with
certain equivariance properties with respect to conformal mappings. Let f be an
orientation preserving homeomorphism between two plane domains. The complex
dilatation of f at a point z where f is differentiable with fz(z) �= 0 is defined as

μf (z) =
fz(z)

fz(z)
.

By the measurable Riemann mapping theorem, for any given complex-valued func-
tion μ defined on G with ‖μ‖∞ = ess supz∈G |μ(z)| < 1, there exists an orientation
preserving quasiconformal mapping f on G with the complex dilatation μf = μ
almost everywhere. It is still an open problem whether there exists a similar quan-
tity, which we also call a dilatation, that can be prescribed for a quasiconformal
mapping in Rn, where n ≥ 3. In this paper we show that no such dilatation can
be prescribed if the dilatation is to have sufficiently many equivariance properties,
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with respect to conformal mappings that mimic those of the complex dilatation in
the plane, by using the rigidity of certain Schottky sets.

We denote the transpose of a matrix A by AT and the Jacobian determinant
of f at z by J(z, f). If x ∈ Rn, we denote the Euclidean norm of x by |x|. We
recall some properties of the complex dilatation μf of an orientation preserving
quasiconformal homeomorphism f :

(i) if also μf1 = μ = μf almost everywhere in the domain G ⊂ R
2, then f1 = g◦f ,

where g is a conformal mapping;
(ii) if g is a conformal mapping, then μf◦g(z) = μf (g(z))g′(z)/g

′(z) and hence
|μf◦g(z)| = |μf (g(z))| for a.e. z;

(iii) μf (z) = 0 for a.e. z if, and only if, f is a conformal mapping;
(iv) if ||μf ||∞ = k < 1, then f is K−quasiconformal, where K = (1+k)/(1−k);
(v) if f ′(z) is the derivative matrix of f at a point z where f is differentiable

and fz(z) �= 0, then μf (z) depends only on the positive definite matrix B(z) =
f ′(z)T f ′(z).

If f is an orientation reversing homeomorphism of a plane domain, then its
complex conjugate f is orientation preserving and μf has the above properties.

In higher dimensions, we now define a conformally equivariant dilatation to be
any reasonable quantity, in a sense that we make precise below, that depends only
on the matrix f ′(z)T f ′(z) and has properties comparable to those listed above with
respect to conformal mappings. There are many quantities that would qualify as
conformally equivariant dilatations in this sense. We say that such a dilatation
is prescribable if it can be prescribed in the same way as the complex dilatation
can be prescribed in dimension two by the measurable Riemann mapping theorem.
Thus we formulate the following definitions.

Fix an integer n ≥ 2. Let us denote the set of all positive definite n×n−matrices
B with real entries by Pn. Note that if A is a non-singular n× n−matrix with real
entries, then B = ATA ∈ Pn. Using the matrix elements of B ∈ Pn, we may

consider Pn to be a subset of Rn2

.

Definition 1.1. Let m be a positive integer and let ν : Pn → Rm be a function.
We say that ν is a prescribable conformally equivariant dilatation if the
following conditions are satisfied:

(1) The function ν is measurable and its values form a measurable subset E of
the unit ball of Rm.

(2) ν(B) = 0 if, and only if, B is of the form B = rIn, where r > 0 and In is the
identity matrix.

(3) ν(rB) = ν(B) whenever B ∈ Pn and r > 0.
(4) |ν(PTBP )| = |ν(B)| whenever B ∈ Pn and P is an n×n orthogonal matrix.
(5) If P is an n×n orthogonal matrix (not necessarily with positive determinant)

and B1, B2 ∈ Pn with ν(B1) = ν(B2), then ν(PTB1P ) = ν(PTB2P ).
(6) If f is a K−quasiconformal mapping in R

n, then for a number k ∈ [0, 1) de-
pending only onK and the function ν, but not on f or x, we have |ν(f ′(x)T f ′(x))| ≤
k for almost every x ∈ Rn.

(7) Suppose that κ : Rn → E is a measurable function with ‖κ‖∞ < 1.
Then there is a quasiconformal (orientation preserving, homeomorphic) mapping
f : Rn → Rn such that ν(f ′(x)T f ′(x)) = κ(x) for almost every x ∈ Rn, and if
g : Rn → Rn is a quasiconformal mapping such that ν(g′(x)T g′(x)) = κ(x) for
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almost every x ∈ Rn, then g is of the form g = M ◦ f , where M is a Möbius
transformation.

Remarks. 1. We have not specified m. The number m can be anything as long as
all the conditions above are satisfied. Presumably it is not possible to satisfy the
second condition, that is, the uniqueness condition of property (7) if m < n since
then too little is being prescribed. However, the point is that we do not need to
know this in order to discuss the above definition and its properties.

2. We could conceivably have m > n. This does not necessarily mean that too
much is being prescribed since the set E might be small enough (for example, the
intersection of an n−dimensional manifold with the unit ball of Rm) to effectively
limit the number of quantities to be prescribed. By not specifying E, we are allowing
for more possibilities.

3. If y ∈ E and z ∈ Rm with |z| = |y|, we need not have z ∈ E as far as the above
assumptions are concerned. Condition (4) could at least theoretically be satisfied
without E being so large as to contain the whole unit ball.

4. In Definition 1.1, property (7) corresponds to the measurable Riemann map-
ping theorem, and the uniqueness part of property (7) corresponds to property (i)
of the complex dilatation. At the same time, property (7) indicates an invariance
property of the dilatation with respect to the composition of mappings when the
outer function is a conformal mapping. Such a property, when the inner function is
a conformal mapping, is given by (4), which corresponds to the second part of prop-
erty (ii) for the complex dilatation. Properties (2), (5), and (6) in Definition 1.1
correspond to properties (iii), the first half of (ii), and (iv), respectively, for the
complex dilatation. Property (3) in Definition 1.1 corresponds to the special case
of property (i) for the complex dilatation where the conformal mapping g is given
by g(z) = rz. The very fact that ν is to depend only on f ′(x)T f ′(x) (which is
property (v) for the complex dilatation) and not on properties of f ′(x) that are lost
when passing to f ′(x)T f ′(x), together with property (3), corresponds to property
(i) of the complex dilatation.

Example. In dimension 2, identifying R
2 with the complex plane C, write f =

u+ iv, z = x+ iy, and

f ′(z)T f ′(z) = B(z) = B =

(
b11 b12
b12 b22

)
,

using the fact that B(z) is symmetric. For any B ∈ P2, write

(1.1) α = b11 − b22 + 2ib12, β = b11 + b22 + 2
√
detB.

Define μ(B) = α/β ∈ C when B ∈ P2. Consider a homeomorphism f of a plane
domain at a point z where f is differentiable with a non-zero Jacobian determinant.
If f is orientation preserving, then μ(B(z)) = μf (z). If f is orientation reversing,
then μ(B(z)) = μf (z). One can now verify that μ is a prescribable conformally

equivariant dilatation in R
2. Property (7) follows from the measurable Riemann

mapping theorem. The other properties follow from some calculations, with all but
properties (4) and (5) being rather obvious. The calculation for (5), even though
routine, is lengthy.

We shall prove the following result.
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Theorem 1.2. If n ≥ 3, then there is no prescribable conformally equivariant
dilatation in Rn.

This means that if a dilatation quantity is found that can be prescribed for
quasiconformal mappings in Rn, where n ≥ 3, then at least one of the conditions
in Definition 1.1 must fail.

It turns out that for all practical purposes, in dimension two, the usual complex
dilatation is the only prescribable conformally equivariant dilatation with values
in R2, in the sense that any other is a re-parametrization of the usual complex
dilatation. We write D = {z ∈ C : |z| < 1} for the unit disk in the complex plane.

Theorem 1.3. Suppose that n = 2. If ν is a prescribable conformally equivariant
dilatation with values in R2, then there is a measurable one-to-one function ϕ of D
onto a measurable subset E = ϕ(D) of D such that for all B ∈ P2, we have

(1.2) ν(B) = ϕ(μ(B)),

where μ(B) = α/β, given by (1.1), is the usual complex dilatation, and where ϕ
further satisfies the following conditions:

(A) |ϕ(z)| = h(|z|) for some function h : [0, 1) → [0, 1) (that is, |ϕ(z)| depends
only on |z|);

(B) we have h(k) = 0 if, and only if, k = 0;
(C) for each k ∈ (0, 1), we have sup{h(r) : 0 ≤ r ≤ k} < 1;
(D) for each k ∈ (0, 1), we have sup{r ∈ [0, 1) : 0 ≤ h(r) ≤ k} < 1;
(E) the function ϕ has the property that whenever κ : R

2 → E = ϕ(D) is
measurable with ||κ||∞ < 1, the function ϕ−1 ◦ κ is also measurable.

Furthermore, if ϕ has the above properties, then ν given by (1.2) is a prescribable
conformally equivariant dilatation on P2 with values in R2.

Since ϕ is one-to-one, we could consider the function ϕ(μ(B)) to be a re-para-
metrization of the usual complex dilatation μ(B). We note that ϕ(D) need not be
all of D. The function h must be measurable, taking values arbitrarily close to 1,
but we need not have h([0, 1)) = [0, 1).

If ϕ−1 is Borel measurable, then condition (E) is certainly satisfied.
When prescribing a function only almost everywhere, it would amount to no

loss of generality to assume that the function is Borel measurable rather than
measurable, since every measurable function agrees almost everywhere with some
Borel measurable function. However, instead of assuming that all functions involved
are Borel measurable, we prefer to use the naturally arising condition (E).

Example. The function μ �→ 2μ/(1 + |μ|2) is a homeomorphism of D onto itself.
If μ(B) = α/β is as above, we have

(1.3)
2μ(B)

1 + |μ(B)|2 =
b11 − b22 + 2ib12

b11 + b22
,

which gives a re-parametrization of the complex dilatation by means of a formula
that depends on the matrix elements of B in a simpler manner than μ(B).
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2. Preliminary results

We recall some definitions and results from the paper [2] by Bonk, Kleiner, and
Merenkov.

Definition 2.1. A Schottky set is a subset of Sn whose complement is the union
of at least three disjoint open balls.

We can write a Schottky set in the form

(2.1) S = S
n \

⋃
i∈I

Bi,

where the sets Bi, i ∈ I, are pairwise disjoint open balls in Sn. Here I is an index
set, obviously countable. For each i ∈ I, let Ri : S

n → Sn be the reflection in the
peripheral sphere ∂Bi.

Definition 2.2. The subgroup of the group of all Möbius transformations on Sn

generated by the reflections Ri, i ∈ I, is called the Schottky group associated with
S and is denoted by ΓS .

The Schottky group consists of all Möbius transformations U of the form

U = Ri1 ◦Ri2 ◦ · · · ◦Rik ,

where k ∈ N and i1, · · · , ik ∈ I.

Definition 2.3. Let f : X → Y be a homeomorphism between two metric spaces
(X, dX) and (Y, dY ). The map f is called η-quasisymmetric, where η : [0,∞) →
[0,∞) is a homeomorphism, if for all distinct x, y, z ∈ X, we have

(2.2)
dY (f(x), f(y))

dY (f(x), f(z))
≤ η

(
dX(x, y)

dX(x, z)

)
.

Every Möbius transformation on Sn is a quasisymmetric map and sends Schottky
sets to Schottky sets.

Definition 2.4. A Schottky set S ⊂ Sn is rigid if every quasisymmetric map of S
onto any other Schottky set S′ ⊂ S

n is the restriction of a Möbius transformation.

Lemma 2.5. Suppose that U is an open subset in Rn with 0 ∈ U , and f : U → Rn

is a mapping that is differentiable at 0. If there exists a set S ⊂ U that has a
Lebesgue density point at 0 such that f |S = idS , then Df(0) = idRn .

Lemma 2.5 above is Lemma 7.3 in [2]. We will make essential use of the following
result of Bonk, Kleiner, and Merenkov ([2], Theorem 1.3).

Theorem 2.6. For each n ≥ 3 there exists a Schottky set in Sn that has positive
measure and is rigid.

3. Proof of Theorem 1.2

Proof. To get a contradiction, suppose that there exists a prescribable conformally
equivariant dilatation ν in Rn, for some n ≥ 3. We will be referring to the properties
given in Definition 1.1. By Theorem 2.6, there is a rigid Schottky set S = S

n \⋃
i∈I Bi in Rn that has positive measure. Let G = ΓS be the Schottky group

associated to S.
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We write H =
⋃

g∈G g
(⋃

i∈I ∂Bi

)
for the G−invariant set of zero Lebesgue

measure that consists of all images under elements of G of the peripheral spheres
of S.

Choose a non-singular n × n–matrix A0 with positive determinant such that
A0 cannot be written as rP , where r > 0 and P is an orthogonal matrix. Set
B0 = AT

0 A0. Write ν0 = ν(B0). Since A0 �= rP , where r > 0 and P is an orthogonal
matrix, we cannot write B0 in the form kIn for some k > 0. Thus ν0 = ν(B0) �= 0 by
property (2). Since x �→ A0x is an orientation preserving quasiconformal mapping
of Rn, it follows from property (6) that |ν0| < 1 and ν0 ∈ E, where E is a certain
measurable subset of the unit ball of Rm.

We define a function κ : Rn → Rm as follows, using the set S. If x ∈ S \ H,
we set κ(x) = ν0. Suppose that x ∈ Rn \ S is such that for all g ∈ G, we have
g(x) /∈ S. Then we set κ(x) = 0. If x ∈ H, we set κ(x) = 0. Otherwise, x ∈ Rn \ S
and there is g ∈ G \ {id} such that g(x) ∈ S \ H. Here id denotes the identity
mapping. Then the element g ∈ G and the point y = g(x) ∈ S \H are unique by
[2, comment after Lemma 5.1, p. 421]. We set κ(x) = ν(g′(x)TB0g

′(x)). We may
write g′(x) = rP , where r > 0 and P is an orthogonal matrix, both depending on
g and x. By properties (3) and (4), we have |κ(x)| = |ν(B0)| = |ν0|.

Now we have defined κ in Rn: it is a measurable function with ‖κ‖∞ < 1, and
the values of κ lie in E. In fact, 0 < ‖κ‖∞ = |ν(B0)| < 1. By property (7), there is
an orientation preserving quasiconformal homeomorphism f : Rn → Rn such that
ν(f ′(x)T f ′(x)) = κ(x) for almost every x ∈ R

n, and if F is another such mapping,
then F is of the form F = M ◦ f , where M is a Möbius transformation. Let C be
a set of measure zero such that ν(f ′(x)T f ′(x)) = κ(x) for all x ∈ Rn \ C. Making
C larger, if necessary, while retaining the property that C is of zero measure, we
may replace C by

⋃
g∈G g(C) without changing notation and assume that if x ∈ C

and g ∈ G, then g(x) ∈ C.
Pick g ∈ G \ {id} and set h = f ◦ g. Write k(x) = h′(x)Th′(x). We wish to

determine the function ν(k(x)), but we only need to do so for almost every x. Hence
we may assume that x /∈ C. Furthermore, we may assume that x /∈ H.

Suppose first that there is γ1 ∈ G such that y = γ1(x) ∈ S \ H. Since x /∈ H,
the element γ1 of G is unique. Then γ2 = γ1 ◦ g−1 ∈ G. For z = g(x), we have
γ2(z) = (γ1 ◦ g−1)(z) = γ1(g

−1(z)) = γ1(x) = y ∈ S. Let Q1 = g′(x), Q2 = γ′
1(x),

and Q3 = γ′
2(z). Since γ1 = γ2 ◦ g, we obtain γ′

1(x) = γ′
2(g(x))g

′(x) = γ′
2(z)g

′(x).
Therefore, we have Q2 = Q3Q1, which implies that Q3 = Q2Q

−1
1 . Note that since

g, γ1, γ2 ∈ G, there are rj > 0 and orthogonal matrices Sj such that Qj = rjSj for

j = 1, 2, 3. Thus we have S3 = S2S
−1
1 and S2 = S3S1.

By the definition of κ, we have

κ(x) = ν(γ′
1(x)

TB0γ
′
1(x)) = ν(QT

2 B0Q2).

Since γ2 = γ1 ◦ g−1 and γ2(z) = y ∈ S \H, we have

κ(z) = ν(γ′
2(z)

TB0γ
′
2(z)) = ν(QT

3 B0Q3).

By property (3), we obtain ν(QT
3 B0Q3) = ν(ST

3 B0S3).
On the other hand, since x /∈ C, we obtain z = g(x) /∈ C. Thus ν(f ′(z)T f ′(z)) =

κ(z) = ν(ST
3 B0S3). From h′(x) = f ′(g(x))g′(x) = f ′(z)g′(x), we have

(3.1) k(x) = g′(x)T f ′(z)T f ′(z)g′(x).
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By properties (3) and (5) and the fact that ν(f ′(z)T f ′(z)) = ν(ST
3 B0S3), we obtain

ν(k(x)) = ν(ST
1 f

′(z)T f ′(z)S1) = ν(ST
1 S

T
3 B0S3S1) = ν(ST

2 B0S2).

Since κ(x) = ν(QT
2 B0Q2) = ν(ST

2 B0S2), we find that ν(k(x)) = κ(x).
If there is no γ ∈ G such that γ(x) ∈ S, then by the definition of κ, we have

κ(x) = 0. By properties (3) and (4) and the fact that g(x) /∈ C, we get

|ν(k(x))| = |ν(g′(x)T f ′(g(x))T f ′(g(x))g′(x))|
= |ν(QT

1 f
′(g(x))T f ′(g(x))Q1)|

= |ν(ST
1 f

′(g(x))T f ′(g(x))S1)|
= |ν(f ′(g(x))T f ′(g(x)))|
= |κ(g(x))|.

Since g(x) is not in S, by the definition of κ, we have κ(g(x)) = 0. Thus we obtain
ν(k(x)) = 0 = κ(x).

We have proved that ν(k(x)) = ν(h′(x)Th′(x)) = κ(x) for almost every x ∈ Rn.
Suppose first that g, and hence f ◦g, is orientation preserving. Then the function

F = h = f ◦ g is also a solution to the problem ν(F ′(x)TF ′(x)) = κ(x) almost
everywhere, so that by property (7), there is a Möbius transformation M such that
f ◦ g = M ◦ f .

Suppose then that g is orientation reversing. For x = (x1, x2, . . . , xn) ∈ Rn,
define H(x) = (x1, x2, . . . , xn−1,−xn). Thus H is an orientation reversing Möbius
transformation. Define ϕ = H ◦ f ◦ g so that ϕ is an orientation preserving quasi-
conformal homeomorphism. Now H ′(x) is a symmetric (diagonal) constant matrix
with H ′(x)TH ′(x) = In, the identity matrix. Hence ϕ′ = H ′f ′g′, where the deriv-
ative matrices are evaluated at the appropriate points, so that ϕ′Tϕ′ = h′Th′. It
follows that ϕ also satisfies ν(ϕ′(x)Tϕ′(x)) = κ(x) almost everywhere, so that by
property (7) there is a Möbius transformation M1 such that H ◦f ◦g = ϕ = M1 ◦f .
Now M = H−1 ◦M1(= H ◦M1) is a Möbius transformation such that f ◦g = M ◦f .

This associates to each g ∈ G a Möbius transformationM such that f◦g = M ◦f ,
and it is clear that the functions M form a group and that the map g �→ M is a
group isomorphism. The Möbius group G′ formed by the maps M is seen to be a
Schottky group as follows, using the ideas of [2], Section 7.

It suffices to consider the reflections that generate G. Suppose that g ∈ G is a
reflection in a sphere T , so g(x) = x for all x ∈ T and not for any other x. Then
f(x) = f(g(x)) = M(f(x)) for all x ∈ T . Therefore f(x) is a fixed point of M .
Similarly, it is seen that if y is a fixed point of M and if we write y = f(x), as
we may since f is a homeomorphism, then x = g(x) so that x ∈ T . The Möbius
transformation M must be orientation reversing so that its fixed point set is a
sphere T ′ in Sn. Hence f maps T onto T ′. Thus S′ = f(S) is a Schottky set. The
group G′ is now clearly the Schottky group associated with S′.

Since f is a quasiconformal mapping on R
n, the mapping f is a quasisymmetric

mapping on S. Since, by assumption, S is a rigid Schottky set and f(S) is also a
Schottky set, it follows that f |S is equal to the restriction of a Möbius transfor-
mation to S. Since we may replace f by M ◦ f , where M is a fixed Möbius trans-
formation, we may assume that f |S is the identity mapping of S. By Lemma 2.5,
it follows that at each Lebesgue density point of S where f is differentiable and
has a positive Jacobian determinant, and hence at almost every point x of S, we
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have f ′(x) = In and therefore ν(f ′(x)T f ′(x)) = ν(In) = 0. But at almost every x,
we have ν(f ′(x)T f ′(x)) = κ(x), so that κ(x) = 0 almost everywhere on S. But by
construction, at all x ∈ S \H, we have κ(x) = ν(B0) �= 0, which is a contradiction
since H has measure zero. This contradiction proves Theorem 1.2. �

4. Proof of Theorem 1.3

Proof. Suppose that n = 2. Let ν : P2 → R2 be a prescribable conformally equi-
variant dilatation. We refer to the properties in Definition 1.1. The set E = ν(P2)
is measurable by assumption.

We identify the set P2 of positive definite 2 × 2–matrices A =

(
a b
b c

)
with

the subset A = {(a, b, c) ∈ R3 : a > 0, c > 0, ac > b2} of R3 and equip P2 with
the topological and measure space structure that A inherits as a subset of R3.
The function (a, b, c) �→ F(a, b, c) = (a/c, b/c, c) is a homeomorphism of A onto
B = {(a, b, c) ∈ R3 : c > 0, a > b2}. The subset C of A is measurable if, and only
if, the subset F(C) of B is measurable.

Let A1 and A2 be 2 × 2–matrices with a positive determinant so that fj(z) =

Ajz (where the complex number z =

[
x
y

]
is viewed as a column vector) is an

affine mapping, for j = 1, 2. Write Bj = AT
j Aj and let μj = μ(Bj) be the usual

complex dilatation of the mapping fj as given by (1.1). Suppose that μ1 �= μ2.
If ν(B1) = ν(B2), then let κ : R2 → R2 defined by κ(z) ≡ ν(B1) be a constant
function in R

2. Now each of f = f1 and f = f2 is a solution to the equation
ν(f ′(z)T f ′(z)) = κ(z) in R2. By property (7), it must be the case that f2 = g ◦ f1
for some Möbius transformation g, but this cannot be the case since μ1 �= μ2. It
follows that if μ1 �= μ2, then ν(B1) �= ν(B2).

Suppose next that μ1 = μ2. Then, by property (i) of the complex dilatation, we
have f2 = g◦f1 for some Möbius transformation g, and since f1 and f2 fix the point
at infinity, it follows that g is of the form g(z) = αz + β for some α, β ∈ C with
α �= 0. Hence A2 = rPA1, where P is an orthogonal matrix with detP = 1 and
r > 0. It follows that B1 = r2B2, so that by property (3), we have ν(B1) = ν(B2).

This implies that we can represent ν as a function of the complex dilatation:
ν(B) = ϕ(μ(B)), where ϕ is a one-to-one function of D into (but not necessarily
onto) D. We have ϕ(D) = ν(P2) = E.

We next show that the function ϕ is measurable. If (a, b, c), (a′, b′, c′) ∈ A, then
by (1.3), the matrices corresponding to (a, b, c) and (a′, b′, c′) have the same complex
dilatation if, and only if, (a−c)/(a+c) = (a′−c′)/(a′+c′) and b/(a+c) = b′/(a′+c′).
Thus the complex dilatation is constant exactly on each curve of the form

{(a, b, c) ∈ A : (a− c)/(a+ c) = α1, b/(a+ c) = α2}
for real constants α1 and α2, or equivalently on straight half-lines of the form

L(α1, α2) = {(a, b, c) ∈ A : a/c = α1, b/c = α2} = {(α1c, α2c, c) : c > 0},
where now α1 > 0 and α2 ∈ R with α2

2 < α1 since b2/c2 < (ac)/c2 = a/c. These
half-lines are disjoint for distinct pairs (α1, α2), and A is the disjoint union of such
half-lines. Thus F(L(α1, α2)) = {(α1, α2, c) : c > 0} ⊂ B.

Let U be an open subset of D. By assumption, the set ν−1(U) is a measurable
subset of A and hence a measurable subset of R3. Also, ν−1(U) is the union of sets
of the form L(α1, α2).
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The homeomorphisms z �→ F1(z) = (2z)/(1 + |z|2) as in (1.3) of D onto itself
and z = x+ iy �→ F2(z) = (x+1+ iy)/(1−x) of D onto D = {(α1, α2) ∈ R2 : α2

2 <
α1} ⊂ R

2 preserve measurable sets. We write F3 = F2 ◦ F1. With a/c = α1 and
b/c = α2, where α

2
2 < α1, we can write F2((a−c+2ib)/(a+c)) = (α1, α2). To prove

that ϕ−1(U) is measurable, it suffices to show that F3(ϕ
−1(U)) is measurable.

Now F3(ϕ
−1(U)) is the set of those pairs (α1, α2) such that L(α1, α2) ⊂ ν−1(U),

that is,

F3(ϕ
−1(U)) =

{
(a/c, b/c) : (a, b, c) ∈ ν−1(U)

}
= {(a′, b′) : (a′, b′, c) ∈ F(ν−1(U))}.

The set F(ν−1(U)) is a measurable subset of B. By Tonelli’s theorem ([4], p. 309)
applied to the characteristic function of F(ν−1(U)) on D × R+, for almost every
fixed c > 0, the subset {(a′, b′) : (a′, b′, c) ∈ F(ν−1(U))} of R2 is measurable, and
since this subset is equal to F3(ϕ

−1(U)) for every c > 0, we see that F3(ϕ
−1(U)),

and hence ϕ−1(U), is measurable. This proves that ϕ is a measurable function.
Suppose that B has eigenvalues λ1 and λ2, where 0 < λ2 ≤ λ1, and write

λ = λ1/λ2 ≥ 1 and k = (
√
λ − 1)/(

√
λ + 1) ∈ [0, 1). Then k = |μ(B)|. By

properties (3) and (4), we have |ν(B)| = |ν(D)|, where D =

(
λ 0
0 1

)
, so we may

write |ν(B)| = h(k) ≥ 0 for 0 ≤ k < 1. By property (2), we have h(k) = 0 if, and
only if, k = 0, and we have h(k) < 1 for all k < 1 since the values of ν lie in D by
assumption. This proves (A) and (B).

Fix k ∈ [0, 1). Suppose that 0 ≤ r ≤ k. Let A be a 2 × 2 − −matrix
with real entries and a positive determinant. Let the affine self-map f of R2 be
given by f(x) = Ax, set B = ATA, and suppose that |μ(B)| = r. Then f is a
K−quasiconformal self-homeomorphism of R2, where (regardless of r) we may take
K = (1 + k)/(1− k). By property (6) (where we denote by c what is denoted by k
in property (6)), it follows that there is a number c ∈ [0, 1) depending only on K
(and the function ν as a whole) such that |ν(B)| ≤ c. Now |ν(B)| = h(r). Thus
sup{h(r) : 0 ≤ r ≤ k} ≤ c < 1. This proves (C).

Consider property (D). Again fix k ∈ [0, 1). To get a contradiction, suppose
that sup{r ∈ [0, 1) : 0 ≤ h(r) ≤ k} = 1. Then there is a sequence zj ∈ D such
that |zj | → 1 as j → ∞, while |ϕ(zj)| = h(|zj |) ≤ k for all j. Define the function
κ : R2 → D by κ(z) = ϕ(zj) whenever j ≥ 1 and j < |z| ≤ j + 1, and κ(z) = 0
when |z| ≤ 1. Then κ is measurable and ||κ||∞ ≤ k. By property (7), there is
a quasiconformal self-homeomorphism f of R2 such that for almost every x ∈ R

2

with |x| > 1, we have

ϕ(μ(f ′(x)T f ′(x))) = ν(f ′(x)T f ′(x)) = κ(x) = ϕ(zj),

where j is obtained from the condition j < |x| ≤ j + 1. Since ϕ is one-to-one,
this means that μ(f ′(x)T f ′(x)) = zj . But since |zj | → 1, it follows that f is not
quasiconformal in the entire plane, which is a contradiction. This proves (D).

To prove (E), suppose that κ : R2 → E is measurable with ||κ||∞ < 1. By
assumption, there is a quasiconformal mapping f of the plane such that νf (x) =
κ(x) for a.e. x, where νf (x) denotes ν(f ′T (x)f ′(x)). Since ν(B) = ϕ(μ(B)), and
since μ(f ′T (x)f ′(x)) is the usual complex dilatation μf (x) of f at x, it follows that
μf (x) = (ϕ−1◦νf )(x) = (ϕ−1◦κ)(x) for a.e. x. Since the function μf is measurable,
it follows that ϕ−1 ◦ κ is measurable. This proves (E).
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We have now shown that if ν is a prescribable conformally equivariant dilatation,
then ν is of the form claimed in Theorem 1.3.

Conversely, suppose that ν is of the form stated in Theorem 1.3 and let E =
ν(P2) = ϕ(D) ⊂ D be measurable. In particular, we are assuming that both ν
and ϕ are measurable and that ϕ is a bijection. We need to prove that ν has the
properties of a prescribable conformally equivariant dilatation.

It is immediate that properties (1), (2), and (3) hold.
If P is an orthogonal matrix, then the complex dilatations of B and PTBP have

equal modulus, so that (A) implies that property (4) holds.
Suppose that ν(B1) = ν(B2), where B1, B2 ∈ P2. Since ϕ is one-to-one, it

follows that μ(B1) = μ(B2). Let P be an orthogonal 2×2–matrix. If detP = 1, we

may write P in the form P =

(
cos θ sin θ
− sin θ cos θ

)
for some real θ, and a calculation

shows that μ(PTBP ) = e2iθμ(B). If detP = −1, we may write P in the form P =(
cos θ − sin θ
− sin θ − cos θ

)
, and then μ(PTBP ) = e2iθμ(B). In both cases, it follows from

μ(B1) = μ(B2) that μ(P
TB1P ) = μ(PTB2P ), and hence ν(PTB1P ) = ν(PTB2P ).

So property (5) holds.
Let f be a K−quasiconformal mapping in R2. Set k = sup{h(r) : 0 ≤ r ≤

(K − 1)/(K + 1)} < 1. Then k depends only on K and on the function h (hence
on the function ν). Further we then have |ν(f ′(z)T f ′(z))| ≤ k for almost every
z ∈ R2. Thus property (6) holds.

Finally, consider property (7). Let κ : R2 → E = ϕ(D) be a measurable function
with |κ(x)| ≤ k1 < 1 for almost every x. By assumption (D), there is a number
k2 ∈ [0, 1) such that sup{|μ(B)| : |ν(B)| = |ϕ(μ(B))| ≤ k1} ≤ k2 < 1.

We define μ̃ = ϕ−1 ◦ κ so that μ̃ is measurable by assumption (E). By the
above, ||μ̃||∞ ≤ k2 < 1. By the measurable Riemann mapping theorem, there is
a quasiconformal homeomorphism f of R2 onto itself whose complex dilatation μf

satisfies μf (x) = μ̃(x) for a.e. x. But μf (x) = μ(f ′T (x)f ′(x)) so that

ν(f ′T (x)f ′(x)) = ϕ(μ(f ′T (x)f ′(x))) = ϕ(μ̃(x)) = κ(x)

for a.e. x. Furthermore, if g also is a quasiconformal (orientation preserving, home-
omorphic) self-mapping of R2 such that ν(g′(x)T g′(x)) = κ(x) for almost every x ∈
R

2, it follows from this and from the facts that ν(g′(x)T g′(x)) = ϕ(μ(g′(x)T g′(x)))
and

ϕ(μ(g′(x)T g′(x))) = κ(x) = ϕ(μ(f ′(x)T f ′(x))),

while ϕ is one-to-one, that μ(f ′(x)T f ′(x)) = μ(g′(x)T g′(x)) for almost every x ∈
R2. By the uniqueness part of the measurable Riemann mapping theorem, we see
that g = M ◦ f for some Möbius transformation M . This then proves property (7).

This completes the proof of Theorem 1.3. �
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