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ABSTRACT. We discuss the possibilities of strengthening the classical Kleiman-
Chevalley projectivity criterion by exploring the properties of the Picard num-
ber and the maximal quasiprojective open subsets of a variety. We also prove
two theorems which give a bound on how much the criterion can be strength-
ened.

1. INTRODUCTION

The motivation for this paper comes from studying criteria for projectiveness of
complete algebraic varieties. Of special interest here is the following:

Conjecture 1.1 (Chevalley). If X is a normal complete algebraic variety such that
for every finite set S C X there is an affine open subset U C X such that S C U,
then X is projective.

This conjecture has been proven for Q-factorial varieties by Kleiman in [7] and
by Wiodarczyk in [12]. However it fails to be true if we omit the assumption of X
being normal, as shown in [2]. Our goal is to set exact boundaries of how much one
can weaken or must strengthen the assumptions of Chevalley conjecture in order
for it to be true. The following three values will be crucial in our considerations:

p(X) — the Picard number of X, i.e. the rank of Pic(X) or the Néron-Severi
group.

mqos(X) — the cardinality of MQOS(X), the set of maximal quasiprojective
open subsets of X.

a(X) := sup{n : every set of n points in X is contained in some open affine
subset of X }.

Obviously for projective varieties we have p(X) > 1, mgos(X) = 1, a(z) = oo;
thus the truly interesting thing is what combinations of these three values are
(im)possible for nonprojective varieties.

Kleiman’s result can in fact be stated as follows:

Theorem 1.2 (Kleiman, [7, Chapter IV, §2, Corollary 2]). If X is a Q-factorial
complete algebraic variety and a(X) > 2p(X), then X is projective.
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In [8] VI.2.20] Kollar introduced a simple modification in Kleiman’s proof to
obtain that it is enough to assume a(X) > p(X) + 1. Theorem [Z2] yields that the
weakest assumption with which Theorem may be true is a(X) > p(X) — 1.

Wiodarczyk uses the simple fact that a(X) > mqos(X) implies projectivity. His
main result is that a large class of varieties (including Q-factorial ones) always
has finite mgos(X). There is a natural question of how p(X) and mqos(X) are
related, especially whether mgqos(X) can be bounded by some multiple of p(X).
Theorem 2.7] says that there exist smooth varieties with mqos(X) = (p(X) — 1)1,
and Theorem Bl gives the existence of normal varieties with p(X) = 0 and arbitrary
large a(X), and thus also arbitrary large mqos(X).

The existence of varieties with p(X) = 0 is a major obstacle while trying to
adapt various arguments from the Q-factorial case to normal varieties. In section
4 we comment on why a theorem crucial in [7] fails to be true for normal varieties.

2. THE SMOOTH EXAMPLES
In this section we prove the following:

Theorem 2.1. For every integer n > 2 there exists a smooth complete variety X
with p(X) =n+1 and mgos(X) = nl.

Theorem 2.2. For every integer n > 2 there exists a smooth complete variety X'
with p(X')=n+1 and a(X') =n — 1.

First we construct a variety X satisfying the conditions of Theorem [Z.Il Then we
show how to modify the construction to obtain a variety X’ satisfying the conditions
of Theorem Finally we comment on what other kinds of results can be obtained
using the presented method.

The construction is over an algebraically closed field. It is a generalization of
the well known construction of a nonprojective threefold due to Hironaka (see [4]
or [I0, Chapter VI, 2.3]). We obtain Hironaka’s example by taking n = 2.

Proof of Theorem 21l Let C4,...,C, be smooth curves in P? such that each one
intersects every other transversally and at least in two points, and the intersec-
tion of any three is empty. For simplicity we can take cubics on a plane. Let
S = {P1,...,P;} be the set of all intersection points of the curves C;. Let
s : Xg — P3\ S be the blowup along JC; \ S.

For every point P, being the intersection of C; with Cj, let m; ; : th‘ J o p3 \
(S'\ P;) be the blowup first along C; \ (S \ P;), then along the proper transform
of Cj\ (S\ P), and finally along |J;4; ; Cr \ S on which the previous blowups are
isomorphisms.

Note that 77&1 (P3\S) = Xg and 7ri_’]»1(Pt) are two copies of P! meeting in a point.
Indeed, if 7r; is the blowup along C; \ (S\ P;), then E' = 77 *(P,) is a line meeting
C’, the proper transform of C; \ (S\ P,), transversally in a point A. Further, if
7o is the blowup along C’, then F = 75 1(A) is also a line. Obviously it meets E,
the proper transform of E’. The final blowup of other curves is an isomorphism
on EUF. The two lines being 7, jl (P;) and originating from the first and second
blowup will be denoted respectively Et” and Fti’j .

Elementary calculus shows that the natural isomorphism X7 \ (E/7 U F/7) —
Xg — X'\ (B} U F)'") extends to an isomorphism X;7 \ EjY — X7*\ E)'
however it does not extend to Xti’j — th’i.
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For every t we choose one of the two varieties Xti’j and thZ and call it X;.

We make the choice in such a way that for every C; and C; there is at least one

X, = Xti;j and at least one X, = Xg;i. We construct the variety X by glueing all
the X; along their common open subset Xg.

Obviously p(X) = n+1, the other desired properties of X, follow from Lemma [2:3]

and Theorem |

Lemma 2.3. The variety X constructed in Theorem 211 is nonsingular and com-
plete.

Proof. The variety X is nonsingular because it is covered by open subsets X; which
are blowups of nonsingular varieties along nonsingular subsets, thus nonsingular.
Obviously P? is complete; hence to prove that X is complete it suffices to show
that the projection m : X — P3 is closed. Note that 7 : X; — P3\ (S\ P,) is a
composition of blowups which are closed. The sets P3 \ (S '\ P;) are open subsets
covering P? and being closed is a local property; thus X is complete. (Il

Lemma 2.4. Let X be a complete nonsingular variety and let Cq,...,C, be effec-
tive curves in X whose sum is numerically equivalent to 0. Then any open subset
U C X such that UNC; # O for every i cannot be quasiprojective.

Proof. Suppose such U is quasiprojective. Then we have U C P* for some k. Take
a hyperplane section H such that H N U N C; is nonempty and finite for all i. Let
D = H NU; then the closure of D in X is a divisor with positive intersection with
every C;, a contradiction with Y C; = 0. O

Lemma 2.5. For every cycle ig,i1,...,ix = ig of indices and lg,l1,...,tx = {o
such that P, € C;. N Cy. and X, = X7~ Y, the sum S°F_ E"="Y s linearl

i =1 i i t; ’ j=1"t; Y
equivalent to 0 in X.

Proof. Let E;, be the fibre of g at some point of Cj, \ S. Then E;; is linearly
equivalent to both Eijf“ —l—Fijflj“ and Ftijj’l’ij. Adding up, we see that Z§:1 E;,
is equivalent to 25:1 Etij_l’ij + Z?Zl Ftij_l’ij when going to where a curve was the
first to be blown up and equivalent to Z?:l th ! ~1% \when going the other way. The
assertion follows from those two equivalences. O

Let o € Sy, be a permutation. Let X, be the variety obtained from X by cutting
out all the lines E} @) for all 4 < j and relevant t. Then we have the following:

Theorem 2.6. The variety X from Theorem Bl has exactly n! mazimal open
quasiprojective subsets, namely the varieties X, for all o € S,,.

Proof. First we will show that every X, is quasiprojective. Indeed, it is obtained
by glueing together some of the varieties X7 V) and some of X707\ gol@)e(
for all i < j. The latter varieties are isomorphic to X779\ EZ@-70) " This shows
that X, is an open subset of the variety obtained from P? by consecutive blowing
up of the proper transforms of the curves C, (1), ..., Cy(n), thus quasiprojective.
To show that X, are the only maximal open quasiprojective subsets of X, take
an open quasiprojective subset U C X. From Lemmas 2.4 and we know that
U has to be cycle free. Thus there exists an index i; such that all the curves E"
for j # 47 have been cut out; otherwise we would be able to construct a cycle. We
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set i; to be an index such that all the curves EZ™* for j & {i1,...,ix_1} have been
cut out. We obtain a permutation o(k) = i) such that U is a subset of X,. (]

We proceed with construction of X’. It is very similar to the construction of X;
thus we only highlight the differences.

Proof of Theorem B2l Let C,...,C! = C} be smooth curves in P such that each
C; intersects C_, and Cj_; transversally in different points and does not intersect
the other curves. For simplicity we can take suitable lines. Let P; be the intersection
point of C/ and C/_;. The variety X' is obtained by blowing up P3 along C1,...,C},
in such way that in a neighbourhood of P; the curve C/ is blown up after C}_,. Note
that in X’ there is exactly one cycle as described in Lemma[2.5] namely 1,2, ...,n, 1.
Analogously as with X, we obtain that the maximal open quasiprojective subsets
of X’ are of the form X'\ E;, where F; is the exceptional divisor of the first blowup
in P;. Thus every set not contained in an affine subset of X’ contains a point from
each E;. This gives that a(X’') =n — 1. O

One can obtain various other results using this method. It is easy to describe the
possible constructions in terms of graph theory. We assign a directed multigraph
G = (V, E) to a variety X as follows: the vertices v; correspond to the curves
C; blown up, and the edges v;v; correspond to points of X where C; was blown
up before C;. In the constructions above the assigned graphs where respectively a
complete graph and a cycle. The acyclic subgraphs of G correspond to some of the
quasiprojective open subsets of X; the maximal, with respect to inclusion, acyclic
subgraphs correspond to elements of MQOS(X). The value a(X) is equal to the
length of the shortest cycle minus one. N

It is worth mentioning that a variety X7 can be obtained from X;’ by flopping
the line E}” (see [5] for details). This flop is an isomorphism outside line £ and
may be carried out on any variety containing Xf’j as an open subset. In terms
of the corresponding graphs such a flop would mean reversing the direction of the
corresponding edge. This leads to an alternative construction of the varieties X
and X’. One can blow up along the curves in any order and then flop appropriate
lines to obtain the desired result.

3. THE TORIC EXAMPLES

In this section we prove the following theorem:

Theorem 3.1. For everyt > 5 there exists a complete normal toric variety X with
a(X) =t and p(X) = 0.

We use a characterization of the conditions a(X) = n and p(X) = 0 in terms of
continuous piecewise linear functions on |A|, the support of the fan associated with
the toric variety X.

We assume the reader has some background knowledge on toric varieties. For
more details see e.g. [3], sections 3.3, 3.4].

In this section a divisor means a Cartier divisor equivariant under the torus
action. We can restrict ourselves to such divisors when studying a(X) and p(X).
There is a one-to-one correspondence between the divisors D on X and continuous
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functions ¥p on |A| given on each cone by an element of the dual lattice (thus
integral and linear on each cone). Integral linear functions are defined by the same
element of the dual lattice (for cones of maximal dimension) and thus correspond
to principal divisors. This yields the following:

Remark 3.2. For a toric variety X given by a fan A, we have: Pic(X) = 0 iff every
continuous integral piecewise linear function on the support |A] is linear.

Let 9 be a piecewise linear function on the support of a fan A. We call ¥ strictly
convex if for every o € A there exists a linear function L such that ¢y = L on o
and ¢ > L elsewhere. We denote such a linear function by v,. If the cone o is of
maximal dimension, then the linear function is uniquely determined. Otherwise we
use the notation 1, only after specifying which of the candidates we choose. Note
also that while examining convexity, we may restrict ourselves to the maximal cones.

To characterize the condition a(X) = n we use the following theorem:

Theorem 3.3. A divisor D on a toric variety is ample iff the corresponding func-
tion W is strictly convex.

Proof. See [9l page 48] or [, section 4] for complete varieties. O

Now we can state the following:

Theorem 3.4. For a toric variety X given by a fan A we have: a(X) > n iff for
any o1,...,0, in A there exists a continuous piecewise linear function on U?:l o
which is strictly convex. Furthermore a(X) < n iff there are of,... 0,0, in

A such that there is no strictly convexr continuous piecewise linear function on
Un+1 0_/
i=1 %5

Proof. The proof will be similar to the one of Proposition 5.1 in [I2]. We will prove
the first statement; the second follows by contraposition.

Assume a(X) > n and fix 01,...,0, in A. Let Py,..., P, be points in orbits
corresponding to o1, ...,0,. Let X’ be the image under the torus action of an open
affine subset U of X containing Py,..., P,. By [9, Chapter I, §2] the image of an
open quasiprojective subset under the torus action is again open and quasiprojec-
tive. Thus X’ is an open quasiprojective toric subvariety of X. The fan A’ of X'
consists of those cones in A whose corresponding orbits intersect U, in particular,
01,...,0,. Any of the ample divisors on X’ will yield the required function.

Now let Py,..., P, be points in X. Let 01,...,0, be cones corresponding to
orbits containing Py, ..., P,. Let A’ be the fan consisting of o1, ..., 0, and their
faces, and let X’ be the corresponding toric open subvariety of X. The strictly
convex continuous piecewise linear function on |A’| gives an ample divisor on X'.
Since X’ contains Pi,..., P, and is quasiprojective, we can easily find an open
affine subset containing P, ..., P,. O

Proof of Theorem Bl We start by constructing a fan A’ of a projective toric va-
riety X’ with p(X’) = 1. Afterwards we show how to modify A’ to obtain a fan
A of a toric variety with p(X) = 0. For simplicity we do not distinguish between
cones in R? and Z3; we construct cones in R? and assume an intersection with Z>
is taken when required. We also assume that ¢ = 2n + 2, where n is even; however
in Remark we comment on how to drop this assumption.
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Let T be the convex polytope whose vertices are the points Pi,..., Py,

Q1.+, Qan, Qo, where for k =1,..., 5 we take:

Py = (nk + k?,n? — k2, —n?),

Py = (% — (2 = k),n(% — k) + (% — k)2, —n2),
Pn+k = (n2 - kza —nk — k2a _n2)7

Py s = (n(% = k) + (3 — k)2, —n® + (3 — £)%, —n2),
Popir = (—nk — k%, —n? + k%, —n?),

Pig = (0 (5 = W% ~n(3 — ) = (3 K%, —n?),
Pk = (—n? + k% nk + k2, —n?),

Prgy = (—n(2 = k) = (2 — k)%, n? — (% — k)2, —n?).

Thus the points Py, ..., P, span a 4n-gon in the z = —n? plane and are indexed
clockwise.

Further:

Qk:Pk—l—(0,0,an)fork_l ,2n —1 2n+1,...,4n—1,
Q2n = (Oa _n2an2 L2 1) Qun = (O n? n ngi1)a
Qo = (0, 0, 2n2).

Now let A’ be the set of cones spanned over R, by the faces, edges and vertices
of T and (0,0,0). Let o(P;,, ..., P;, ) denote the cone spanned over R} by the set
of points {P;,,..., P;,}. The fan A’ has the following 8n — 1 maximal cones:

oo =0(Py,..., Pi,), 01 = 0(Pin, P1, Qun, Q1),

O = U(Pkflapkakflan) for k = 2; s a4na

Oant1 = 0(Qo, Qan—1,Qun, Q1), 06nt1 = 0(Qo, Q2n—1, Q2n, Q2nt1),
Odn+k :U(Qo,Qkfl,Qk) fork=2,....2n—1,2n+2,...,2n — 1.

To show that X’ is projective (and thus a(X’) = 00), let ¢ be the unique piece-
wise linear function on A’ whose value is 1 on every vertex of T. It is strictly
convex because T is convex and does not have two coplanar faces. It is not in-
tegral; however some multiple of it is integral and thus corresponds to an ample
divisor.

To see that p(X') =1 it is enough to observe that any piecewise linear function
¢’ on A’ is a combination of the function ¢ and a linear function. Indeed fix a
function ¢’; by adding a suitable linear function, we may assume that it has value 0
on one of the cones. Let ¢’ have value 0 on oy and ¢'(Q1) = a. Let ¢’ be obtained
by subtracting from ¢’ the function §¢ and the linear function (z,y,z) — %5.
Obviously ¢” has value 0 on 0y and on Q. Any three rays of a cone span R3 over
R; thus if a piecewise linear function has value 0 along three rays of a cone, then
it has value 0 on the whole cone. Since ¢"(Py) = ¢ (P2) = ¢”'(Q1) = 0, we have
that ¢”|,, = 0 and ¢”(Q2) = 0. Using this argument on o3, ..., 04, and 04,11, we
obtain that ¢” = 0 and thus ¢’ is a combination of ¢ and a linear function.

We proceed with the construction of X. Let A be the fan obtained from A’
by modifying all cones containing the ray through P, to contain the ray through
Py = (0,n%, —n? — ¢) instead, where ¢ is small, positive and rational. The affected
maximal cones will be op, o1 and 04,. The fan A can no longer be obtained
from a polytope. Let X be the toric variety associated with A. The condition
a(X) = 2n + 2 is satisfied for ¢ < # when n > 4 and for € < % when n = 2.

To prove that p(X) = 0 we show that every piecewise linear function ¢ on A
is linear. Again we may assume that ¢|,, = 0. Let ¢(Q1) = a. From linearity of

¢ on o1 we obtain that (¢(Q1) — ¢(P1))(2n? — n22 7 +¢) = (¢(Qun) — B(Pyn))2n?
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and thus ¢(Qun) = a(l — 54— + 35). From linearity of ¢ on o4, we obtain
?(Qan—1) = a, and from linearity on o9, ...,09,-1 and o4y,—1, ..., 02,42 We obtain

d(Q2) = ... = d(Qan—1) = a and ¢(Qan—2) = ... = ¢(Q2n+1) = a. From linearity
on o3, we obtain ¢(Q2,) = a(l — 53—). Finally, calculating ¢(Qo) using the

linearity on c4,4+1 and og,+1, we obtain ¢(Qg) = 37‘1 + as";n_zl = 37“ Since € # 0
this equality can hold only if @ = 0 and thus ¢ = 0.

Note that in fact we have shown that any piecewise linear function defined on
00, Odn+1, O¢n+1 and o1,...,09, has to be linear on the sum of those cones and
thus cannot give rise to an ample divisor. This yields that a(X) < 2n + 2.

Now we show that a(X) > 2n + 2. To do so, we show that it is enough to
exclude either 04,11 or gg,+1 from A to make the associated variety quasipro-
jective. Then we show that excluding from A cones o; € {o2,...,09,-1} and
0j € {oan+2,--.,04n—1} enables us to “combine” the strictly convex piecewise lin-
ear functions on [A\ {o4n+1}| and |A\ {o6n+1}] into a strictly convex piecewise
linear function on |A \ {0;,0;}|. Finally, we show that excluding oy or both o4y,
and o; or both o9, and 02,1 also gives rise to a quasiprojective variety. This leads
to the conclusion that a subfan of A defines a variety that is quasiprojective unless
it contains g, 04n+1, O6n+1, Oan OT 01, T2y O Oa,41 and either og,..., 09,1 O
O2n+42, -+ ,04n—1. S0 a finite subset of X is contained in some quasiprojective open
subset of X unless it contains an appropriate choice of points corresponding to the
cones stated above. Thus every set of at most 2n + 2 points from X is contained
in some quasiprojective open subset of X and thus a(X) > 2n + 2.

We proceed with defining convex piecewise linear functions on the required
subfans of A. In every case it is enough to define the function on Pi,..., Py,,
Qo - - -, Qan as it uniquely determines a piecewise linear function.

For [A\ {04041} we take 6(P) = ... = &(Pin_1) = 6(Q0) = .. = $(Qun_1) = 1
and ¢(Pun) = ¢(Qun) = 1 + 5. The convexity is obvious.

For [A\ {0611} we take ¢(P1) = ... = ¢(Pan—1) = ¢(Qo) = 1, ¢(Pan) = 143,
d(Q1) = ... = ¢(Qun-1) = a and ¢(Qu4,) = b. The values a and b are already
fixed by the condition of piecewise linearity on o1, 04, and o4,4+1. Elementary

2(’~1) _ and b= 1 +

3n2—e(n2-1)

calculations reveal a = 1 + Again, the

convexity is quite obvious.

For |A\ {o;,0;}|, where i € {2,....2n — 1} and j € {2n + 2,...,4n — 1},
we take ¢(P1) = e = ¢(P4n—1) = ¢(QO) =1, ¢(P4n) =1+ n%’ ¢(Q4n) =0
p(Q1) = ... = 9(Qi—1) = ¢(Q)) = ... = ¢(Qan-1) = a and ¢(Q;) = ... =
#(Q;—1) =1, where a and b are as above. Note that on every cone except for o4p4;
and 04,4 ; this function is equal to one of the functions defined for |A\ {0441} and
|A\ {o6n+1}]- Obviously the function is convex separately on each of those parts,
and we only need to verify inequalities involving both parts. In fact what we need
to Verify is that ¢0”i—1(Q’L‘) < ¢(Q’L)a (rbalurl (Qi—l) < ¢(Qi—1)7 ¢04n+@'71 (Qz) < ¢(Qz)7
Dosnii(Qim2) < 9(Qi-2), Posnyi (Qit1) < A(Qiv1)s Pospyirs (Qim1) < ¢(Qi—1) and
the same inequalities with j instead of i. If these inequalities hold, then so will
the required inequalities for other cones and points P and @, and from inequalities
on points P and @ follow the inequalities on whole cones. The calculations are
elementary yet tiresome, and we will omit them. The important fact is that they
hold if € < # forn > 4 and ¢ < % for n = 2. Note that the £ chosen must be
rational in order for ¢ to have an integral multiple.
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For |A\ {oo}| we take ¢(Py) = ... = ¢(Pan) = ¢(Qo) = ... = #(Qun) = 1. The
convexity is obvious.
For |A\ {04n,01}| we take ¢(P1) = ... = ¢(Pin_1) = $(Qo) = ... = ¢(Qun) = 1

and ¢(Py,) = 1+ . The convexity is obvious except for the cone 0 (Pan, Qan),
which is now maximal but not of maximal dimension. The values on Py, and Q4,
and linearity require the linear function defining ¢ on o(Py,, Q4 ) to be of the form

(z,y,2) »ax+ (1 +¢€)(2— ﬁ)% — 725, where a € R and § = m2 4 ¢ — n;il.
For the most intuitive choice a = 0 it is easy to verify the convexity.

Finally, for |A\ {02, 02n41}| We take ¢(P1) = ... = ¢(Pin—1) = ¢(Qo) = 1,
H(Pin) =14 5, #(Q1) = ... = ¢(Q2n-1) = (Q2n11) = ... = ¢(Qun—1) = a and

#(Q2n) = &(Qan) = b with a and b as above. The cone o(Pyy, Qan) is maximal
but not of maximal dimension and again there is a family of linear functions that
coincide with ¢ on o(Pyy,, Q4,). These functions are (z,y, z) — ax — (# +B)y+ Pz,

nzf
where a« € R and 8 = n2(2n2—23()(3n213-55(n2—1))'

verify. |

For a = 0 the convexity is easy to

Remark 3.5. The assumption t = 2n + 2 where n is even is not essential.

Proof. Notice that if we define T to be the convex polytope on vertices Py, ..., P,_1,
Poi1yeo oy Pany, Q1yo ooy Qn—1, Qni1, - - - s Qan, Qo, then the construction used in the
proof of Theorem Bl gives a variety X with a(X) = 2n + 1. This is because now
we have a cone o], = 0(Pp—1,Pnt1,Qr—1,Q@n+1) instead of cones o, and oy,41
and there is no nonzero piecewise linear function on the cones og, 04,11,06n+1
and 01,...,0p-1,00,0n42,...,02,. Furthermore, if n > 4 we can remove cones
0pn—1 and 0,42 by removing them from the list of points defining T, respectively
P,_1,Qn—1 and P41, Qpn41. This way we further decrease the value a(X) by one
or two. Thus we may obtain a(X) = ¢ for any ¢ > 5. O

4. FURTHER REMARKS

It may be worth highlighting that the variety X constructed in the proof of The-
orem [3.1] shows that some of the intuitive, useful or classic theorems for smooth or
Q-factorial varieties fail to be true for normal varieties. We will give two examples:

Proposition 4.1 (Jelonek, [6, Proposition 2.2]). Let X be a smooth complete non-
projective threefold and let U C X be a maximal quasiprojective subset of X. Then
the set G := X \ U has a pure dimension 1.

For X from Theorem [B.1] the complements of maximal quasiprojective open
subsets consist of one or two points corresponding to the maximal cones removed
from the fan.

Proposition 4.2 (Kleiman, [7, Chapter IV, §2, Theorem 2|). Assume V is quasi-
divisorial. Then the ample cone P(V') is the interior of the pseudoample cone P(V).

For the variety from Theorem [B.Ilthe Néron-Severi space is O-dimensional, so one
might discard it as a special case. However if we take the product with a projective
variety, then the pseudoample cone will have maximal (positive) dimension and the
ample cone will remain empty.
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We still do not know whether the Chevalley conjecture as stated in Conjecture[L1]
is true. The variety from Theorem B.1] shows that the classic Kleiman approach, or
any other based on the value p(X), must fail. However there are two conjectures
which would imply Conjecture [T}

Conjecture 4.3 (Wlodarczyk, [I1, Conjecture 5.3]). Every normal variety X sat-
isfying a(X) = oo can be embedded in a normal toric variety satisfying a(X) = oo.

The implication follows from the fact that every toric variety satisfying
a(X) = oo is projective; projectivity follows from Theorems B3] and B4 and the
fact that every toric variety is associated to a fan with finitely many maximal cones.
Notice that Conjectures[[.Iland [£.3 are in fact equivalent, since the projective space
is a toric variety and a(P") = co.

Conjecture 4.4 (Bialynicki-Birula, [1]). Any normal algebraic variety X contains

only finitely many subsets maximal in the family of all quasiprojective open subsets
of X.

The implication is obvious since a(X) > mqos(X) implies projectivity.
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