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LIMIT FUNCTIONS OF ITERATES OF ENTIRE FUNCTIONS
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(Communicated by Nimish Shah)

ABSTRACT. We show that the iterates of entire functions have maximal sets
of limit functions on many small subsets of the corresponding Julia set.

1. INTRODUCTION AND RESULTS

Let f be an entire function. We always assume that f is not a polynomial of
degree 0 or 1. The Julia set J = J(f) of f is defined as the set of all z € C so
that the iterates f°™ do not form a normal family in any neighborhood of z. For
properties of the Julia set we refer to the expository articles [2] and [10].

For z € J, let w(z) C J denote the set of limit points of (f°™). Then w(z) is
nonempty if and only if z belongs to J \ I, where I = I(f) is the escaping set of
f (that is, the set of all z € C such that f°"(z) tends to co). In particular, for
polynomials we have w(z) # () for all z € J. Using the terminology that a property
is said to be satisfied by quasi all elements in a Baire space if it is satisfied on a
residual set in this space, it is known that w(z) = J for quasi all z € J. A proof is
found e.g. in [I].

Our aim is to replace limit points by limit functions on subsets of J. For an
arbitrary set L C J let w(L) = w(L, f) be the set of all functions g : L — J so
that f°" — g pointwise on L for some subsequence (f°") of (f°™). We first note
some obvious facts. Firstly, only functions that are pointwise limits of continuous
functions on L with values in J can belong to w(L). By B(L,J) we denote the
set of those functions. In particular, B(L) := B(L,C) is the Baire class 1 (see
[5) Theorem (24.10) and Exercise (24.13)]). Secondly, if g € w(L), then we have
f°™og € w(L) for all nonnegative integers m.

The first result shows that limit functions can only exist on sets which are topo-
logically small:

Proposition 1. If L is of second category in J, then w(L) = 0.

The proof of the proposition will show also that ¢ = oo cannot appear as a
limit function on a set of second category. On the other hand, ¢ = co may be
a limit function on sets of full planar Lebesgue measure, as for instance in the
case of postcritically finite maps in the cosine family, where actually the escaping
set has full measure in the sense that the complement has measure zero (see, e.g.,
[10, p. 324]).
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For a compact set E and a closed set M in C the set of continuous functions from
E to M is denoted by C(E, M). We put ||f||g := sup,cg | f(2)| and endow C(E, M)
with the complete metric d(f,g) = ||f — g||g- Moreover, we define w,(F) :=
wy(F, f) to be the limit set of f°"|g in C(E,.J). Then, obviously, w,(F) C w(FE)
and w, (F) C C(E,J). Our main result will show that for ‘many’ compact sets E
the limit set w,, (E) equals C(E, J).

In order to give the precise formulation, we recall the following. Given some
metric space (X, d) and compact, nonempty E, F C X, the Hausdorff distance of
FE and F is defined as

dy(E,F):=max{0(E, F),0(F,E)},

where

0(E,F):= I;leaécdlst(x, F).
Let K(X) :={F C X : E nonempty and compact}. If d is a complete metric, then
(K(X),dg) is known to be a complete metric space. Morover, if (X, d) is separable,
so is (K(X),dn).

A closed subset F of the unit circle T is called a Kronecker set if the set {z —
2™ :m € N} is dense in C'(E, T). In [6], Kérner shows that quasi all sets in K(T)
are Kronecker sets. It is easily seen that for every integer d > 2 the reasoning in [0]
also yields that w,(E,z — 2¢) = C(E,T) for quasi all E € K(T). Inspired by this
observation, we show that this property extends to arbitrary entire functions (not
being a polynomial of degree 0 or 1):

Theorem 1. For quasi all sets E € K(J) we have w,(E) = C(E, J).

Remark 1. For an arbitrary entire function f the Julia set J = J(f) is known
to be perfect. It can be shown that for a complete metric space (X,d) which is
separable and perfect, quasi all E € K(X) are perfect (cf. [5, p. 42]). Since finite
(and even countable) intersections of dense Gs-sets are dense Gy, quasi all sets as
in Theorem [ are perfect and thus in particular uncountable.

Remark 2. If L is the union of an increasing sequence of compact sets Ej with
wy(Fy) = C(Ek, J), then w(L) = B(L, J).

(Indeed: Let g € B(L,J). Then there is a sequence of continuous functions
gr : L — J with g — ¢ pointwise on L. Moreover, to each k there exists some ny
with

llgr — " ||B, < 1/k.

Then f°™* — g pointwise on L.)

In particular, from Theorem [ it follows that w(E) = B(E,J) for quasi all
E e K(J).

If L is a set with w(L) = B(L, J), then in particular w(z) = J for all z € L.
Thus, such sets L cannot contain periodic points of f. It is well-known that the set
of repelling periodic points is dense in J.

Remark 3. If f is an entire function with J(f) = C, then w, (F) = C(FE) := C(E,C)
and w(F) = B(F) for quasi all E € K(C). Each entire function such that the
singular values are contained in a bounded set in C and are strictly preperiodic or
escape to oo have maximal Julia set J(f) = C (see e.g. [10, Corollary 3.14]).
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In particular, this holds for the exponential function exp. Thus, we have
wy(F,exp) = C(E) and w(E,exp) = B(F) for quasi all compact sets F in C.

On the other hand, the union of all sets L with w(L,exp) = B(L) lies in a set of
vanishing (planar Lebesgue) measure, which follows from the fact that the pointwise
limit set w(z, exp) equals the orbit {exp°™(0) : m € Ny} of the asymptotic value
0 for almost all z € C (see [7]; cf. also [9]). It would be interesting to know if
w(L,exp) # O for some set of positive measure.

In the case of postcritically finite cosine maps f (where also J(f) = C), the
sets L with w(L, f) = B(L) consist of landing points of dynamic rays (see [10,
Theorem 5.4]).

2. PROOFS

Proof of Proposition Il As remarked above, w(z) = J for quasi all z € J. It turns
out that virtually the same proof shows that, for each infinite subset A of the
nonnegative integers N, the set w(z,A) = w(z, f,A) of limit points of (f°™)nea
equals J for quasi all z € J. For sake of completeness we sketch the proof:

According to the Universality Criterion (see, e.g., [4]) it suffices to show that for
each pair of nonempty open sets U, V in J there is some n € A so that fo"(U)NV # 0
(note that, since J does not contain isolated points, w(z,A) = Cif {f*" :n € A} is
dense in C).

Suppose that f°*(U)NV = ( for all n € A. Since U is relatively open in J,
there exists an open set Uy in C with Uy NJ = U. From the invariance of J
under f we obtain f°"(Uy) NV = 0 for all n € A. Since J has no isolated points,
Montel’s Theorem (see, e.g., [3, Theorem 3.2]) implies that (f°"|y, )nea is a normal
family. This contradicts the fact that no subsequence of (f°")nen, is normal on
any open set intersecting J (cf. [IIl p. 38] for the case of polynomials; the proof
for transcendental entire functions runs along the same lines).

Now, suppose that ¢ € w(L). Then f°% — g pointwise on L for some se-
quence (n;) in Ng. Then w(z,{n; : j € N}) = {g(2)} for all z € L. The above
considerations show that L has to be of first category. ]

Proof of Theorem [0l It suffices to prove that the set of iterates f°" is dense in
C(E,J).

We consider the space C(C) of all (complex-valued) continuous functions on C
with the topology of uniform convergence on compact subsets of C. Then C(C) is a
Fréchet space and, according to the (Stone-)Weierstrass theorem, the polynomials
in two real variables with coefficients having rational real and imaginary parts form
a dense set in C'(C). Let (pj);jen be an enumeration of these polynomials.

For j € N we define

B :={Fek(J):|lp; — fN||r < 5(p;(F),J) +2/j for some N € N} .

The continuity of f and p; implies that B; is open in K(J). We show that B; is
also dense in KC(J).

For that purpose, let j be fixed and let E € K(J) and e > 0. We choose 0 < § < ¢
so that

(1) |pj(z) —pj(w)| < 1/j whenever |z| < max{|(|: ¢ € E} and |z — w| < 26.
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Moreover, we choose z1, ..., z, € E so that for
Up:={z:]z—z| <é}nJ (k=1,...,m)
we have

m
EC U Uy .

k=1
If f is a polynomial, J is compact in C. If f is transcendental, J is closed and
unbounded in C. Moreover, from Picard’s theorem it follows that f has at most
one exceptional point in C, that is, a point with finite backward orbit. Since the
sets pj(U1),...,p;(Un) are compact, we can choose a compact subset Jy of J which
does not contain the exceptional point (if it exists) and so that

dist(Jo, p; (Uy)) < dist(J,p;(Ux)) + 1/

fork=1,...,m.
From the fact that the repelling periodic points of f are dense in the Julia set
J, it follows that there is an N € N with

N (Uk) D o

for k = 1,...,m. This is well-known for the case of polynomials f (see, e.g.,
[8, Theorem IIT 3.2], [8, Corollary 14.2]) and can be proved in a similar way for
transcendental entire functions; cf. [2] p. 156].

Hence, for every k =1,...,m we can find a point wy € Uy so that

dist(fN (wy), p; (Uy)) = dist(Jo, p; (Uy)) < dist(J, p;(Ug)) + 1/3.

According to (Il) we obtain

[foN (wi) — pj(wi)| < dist(f°N (wk), p; (Uk)) + 1/j
< dist(J,p;(Ug)) +2/j < dist(J, pj(wg)) +2/j

for k =1,...,m. Putting F := {wy,...,wy,}, this shows that F' € B;. Moreover,
from the definiton of Uy we obtain

dg(F,E) <6 <e,

and thus B; is dense in C(J).

According to Baire’s theorem, the set ();.yB; is a dense Gs-subset of K(J).
Therefore, it suffices to show that every set E € (.. B; has the property that
{f™E :n €N} is dense in C(E,J).

To this end, let g € C(E, J) and € > 0. By Tietze’s extension theorem, g can be
extended to a function in C(C), also denoted by g. We choose j so that 1/j < /4
and |lg — pjl|lg < /4. Since g(E) C J we have 6(p;(E),J) < /4, and since E
belongs to B; we obtain

jEN

lg = Nl < llg = pille +llps — £V E < e/d+8(p;(E), J) +2/j <e

for some N € N. O
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