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A NON-UNITAL ∗-ALGEBRA HAS UC∗NP

IF AND ONLY IF ITS UNITIZATION HAS UC∗NP

H. V. DEDANIA AND H. J. KANANI

(Communicated by Marius Junge)

Abstract. The result stated in the title is proved, thereby disproving the
result shown in a 1983 paper by B. A. Barnes (Theorem 4.1).

1. Introduction

Let A be a non-unital algebra such that a ∈ A and aA = {0} or Aa = {0}
implies a = 0. Let Ae = {a + λe : a ∈ A, λ ∈ C} be the unitization of A with the
unit element denoted by e. For an (algebra) norm ‖ · ‖ on A, define the algebra
norms on Ae as

‖ a+ λe ‖op:= sup{‖ ab+ λb ‖: b ∈ A, ‖ b ‖≤ 1} and ‖ a+ λe ‖1:=‖ a ‖ +|λ|
for all a + λe ∈ Ae. We must note that throughout this paper, no norm on A is
assumed to be complete.

A C∗-norm is a norm ‖ · ‖ on a ∗-algebra A such that ‖ a∗a ‖=‖ a ‖2 (a ∈ A).
The ∗-algebra A has unique C∗-norm property (UC∗NP) if A admits exactly one
C∗-norm. The UC∗NP and the twin property of ∗-regularity were discovered by
Barnes [2]. They are of significance in harmonic analysis [6, Section 10.5] and have
inspired the study of unique uniform norm property (UUNP) in Banach algebras [5,
Section 4.6]. For a non-unital, commutative Banach ∗-algebra A, Dabhi and Deda-
nia have proved [4, Corollary 2.3(ii)] that A has UC∗NP iff Ae has UC∗NP. Here
we prove the same for any non-unital ∗-algebra, not necessarily commutative. As
a result, Theorem 4.1 in [2] is false.

2. Results

Suppose that ‖ · ‖ is a unital norm on the algebra Ae (i.e., ‖ e ‖= 1). Then
‖ a+ λe ‖op ≤ ‖ a+ λe ‖ ≤ ‖ a+ λe ‖1 (a+ λe ∈ Ae). Theorem 2.1 below implies
that the norm ‖ · ‖ is equivalent to either ‖ · ‖op or ‖ · ‖1. This theorem is inspired
by [1].

Theorem 2.1. Let ‖ · ‖ be a unital norm on Ae.

(1) If A is closed in (Ae, ‖ · ‖), then ‖ a+ λe ‖1≤ 3 ‖ a+ λe ‖ (a+ λe ∈ Ae).
(2) If A is dense in (Ae, ‖ · ‖), then ‖ a+ λe ‖op=‖ a+ λe ‖ (a+ λe ∈ Ae).
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Proof. (1) Let a+λe ∈ Ae. We may assume that ‖ a+λe ‖1= 1. First suppose that
|λ| ≤ 1/3. Then ‖ a ‖= 1− |λ| ≥ 2/3. So ‖ a+λe ‖≥‖ a ‖ −|λ| ≥ 2/3− 1/3 = 1/3.
Hence ‖ a+λe ‖1≤ 3 ‖ a+λe ‖. Secondly, suppose that |λ| > 1/3. Since A is closed
in (Ae, ‖ · ‖), the multiplicative linear functional ϕ∞(a + λe) := λ (a + λe ∈ Ae)
is ‖ · ‖-continuous. Therefore 1 = |ϕ∞(e)| = |ϕ∞(b − e)| ≤‖ b − e ‖ (b ∈ A). In
particular, 1/3 ≤ |λ| ≤ |λ| ‖ − a

λ − e ‖=‖ a+ λe ‖. Thus ‖ a+ λe ‖1≤ 3 ‖ a+ λe ‖.
(2) Let a+ λe ∈ Ae. Since A is dense in (Ae, ‖ · ‖), there exists a sequence {cn}

in A such that ‖ cn ‖= 1 (n ∈ N) and cn −→ e in ‖ · ‖ as n −→ ∞. Then

‖ a+ λe ‖op ≤ ‖ a+ λe ‖ = ‖ (a+ λe)e ‖ = lim
n→∞

‖ (a+ λe)cn ‖

≤ sup{‖ (a+ λe)b ‖: b ∈ A; ‖ b ‖≤ 1} = ‖ a+ λe ‖op .

Thus ‖ a+ λe ‖op=‖ a+ λe ‖. �

Corollary 2.2. Let A be a non-unital algebra.

(1) Any norm ‖ · ‖ on Ae is equivalent to either ‖ · ‖op or ‖ · ‖1.
(2) [1, Corollary 2] Let ‖ · ‖ be a complete norm on A such that ‖ a ‖op=‖ a ‖

(a ∈ A). Then ‖ a+ λe ‖1≤ 3 ‖ a+ λe ‖op (a+ λe ∈ Ae).

Proof. (1) Without loss of generality, we may assume that ‖ · ‖ is unital. Now this
is immediate from Theorem 2.1.

(2) Let | · | =‖ · ‖op on Ae. Then | · | is a unital norm on Ae. Since ‖ · ‖ is a
complete norm on A, | · | =‖ · ‖op is complete on Ae, so A is closed in (Ae, | · |). So,
by Theorem 2.1(1), |a+ λe|1 ≤ 3|a+ λe|(a+ λe ∈ Ae). Hence

‖ a+ λe ‖1 = ‖ a ‖ +|λ| = ‖ a ‖op +|λ| (by hypothesis)

= |a|+ |λ| = |a+ λ|1 ≤ 3|a+ λe| = 3 ‖ a+ λe ‖op .

This proves (2). �

Let A be a non-unital ∗-algebra with UC∗NP. In Lemma 2.3, we show that Ae

cannot have more than two C∗-norms. Then in Theorem 2.6, we prove that, in
fact, Ae must have UC∗NP.

Lemma 2.3. Let A be a non-unital ∗-algebra with UC∗NP. Then Ae has at most
two C∗-norms.

Proof. Assume that A has UC∗NP. Let ‖ · ‖ be the unique C∗-norm on A. Then
‖ · ‖op is a C∗-norm on Ae due to [3, Proposition 2.2(b)]. First we claim that
‖ · ‖op is the minimum C∗-norm on Ae. If | · | is a C∗-norm on Ae, then it is also a
C∗-norm on A. So, by the hypothesis, | · | =‖ · ‖ on A. Hence, ‖ · ‖op= | · |op ≤ | · |
on Ae. This proves our claim.

Now let |||·||| be a C∗-norm on Ae other than ‖ · ‖op. Because any two equivalent
C∗-norms are identical, it is enough to show that ||| · ||| ∼=‖ · ‖1 on Ae. Since A
has UC∗NP, ||| · ||| =‖ · ‖ on A. Hence ||| · |||op =‖ · ‖op on Ae. Now A must be
closed in (Ae, ||| · |||). Otherwise, by Theorem 2.1(2), ||| · ||| = ||| · |||op on Ae, and so
||| · ||| = ||| · |||op =‖ · ‖op on Ae, which is a contradiction. Then, by Theorem 2.1(1),

|||a+ λe||| ≤ |||a|||+ |λ| =‖ a ‖ +|λ| =‖ a+ λe ‖1=‖ a ‖ +|λ|
= |||a|||+ |λ| = |||a+ λe|||1 ≤ 3|||a+ λe|||.

This completes the proof. �
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Lemma 2.4. Let A be a non-unital ∗-algebra. Let ‖ · ‖ be a C∗-norm on A. Let
(C∗(A), ‖ · ‖˜) be the completion of (A, ‖ · ‖). If (C∗(A), ‖ · ‖˜) contains the identity,
then ‖ · ‖op=‖ · ‖˜ on Ae.

Proof. Clearly, Ae ⊂ C∗(A). Let a + λe ∈ Ae ⊂ C∗(A) be non-zero. Then there
exists a sequence (an) in A such that an −→ a + λe in ‖ · ‖˜. Let b ∈ A be such
that ‖ b ‖≤ 1. Then anb −→ ab+ λb in ‖ · ‖˜=‖ · ‖. So

‖ ab+ λb ‖= lim
n→∞

‖ anb ‖≤ lim
n→∞

‖ an ‖= lim
n→∞

‖ an ‖˜=‖ a+ λe ‖˜ .

Hence ‖ a+λe ‖op≤‖ a+λe ‖˜. For the reverse inequality, consider a sequence (cn)

in A such that ‖ cn ‖≤ 1 and cn −→ (a+λe)∗

‖a+λe‖ in ‖ · ‖˜. Then

‖ a+ λe ‖op ≥ sup
n

‖ (a+ λe)cn ‖ ≥ lim
n→∞

‖ (a+ λe)cn ‖= lim
n→∞

‖ (a+ λe)cn ‖˜

=
‖ (a+ λe)(a+ λe)∗ ‖˜

‖ a+ λe ‖˜ =‖ a+ λe ‖˜ .

Thus ‖ a+ λe ‖op≥‖ a+ λe ‖˜. �

Lemma 2.5. Let A be a non-unital ∗-algebra. Let ‖ · ‖ be a C∗-norm on A. Let
(C∗(A), ‖ · ‖˜) be the completion of (A, ‖ · ‖). If (C∗(A), ‖ · ‖˜) does not contain the
identity, then ‖ · ‖op=‖ · ‖˜op on Ae.

Proof. Since A ⊂ C∗(A), we have Ae ⊂ C∗(A)e. Let a+ λe ∈ Ae. Then

‖ a+ λe ‖op = sup{‖ (a+ λe)b ‖: b ∈ A; ‖ b ‖≤ 1}
= sup{‖ (a+ λe)b ‖˜ : b ∈ A; ‖ b ‖˜≤ 1}
≤ sup{‖ (a+ λe)b ‖˜ : b ∈ C∗(A); ‖ b ‖˜≤ 1}
= ‖ a+ λe ‖˜op .

For the reverse inequality, let b ∈ C∗(A) be such that ‖ b ‖˜≤ 1. Then there exists
a sequence (bn) in A such that ‖ bn ‖≤ 1 and bn −→ b in ‖ · ‖˜. So

‖ (a+ λe)b ‖˜ = lim
n→∞

‖ (a+ λe)bn ‖˜= lim
n→∞

‖ (a+ λe)bn ‖

≤ sup
n

‖ (a+ λe)bn ‖≤‖ a+ λe ‖op .

Thus ‖ a+ λe ‖˜op≤‖ a+ λe ‖op. �

The next result disproves [2, Theorem 4.1]. The gap in that proof lies in the
first line. It is claimed that C∗(A) can be identified with a closed maximal ideal
of C∗(Ae) of codimension one. But this is not true. In [2, Example 4.4], we have
C∗(Ae) = C∗(A).

Theorem 2.6. A non-unital ∗-algebra A has UC∗NP iff Ae has UC∗NP.

Proof. Let A have UC∗NP. Then, by Lemma 2.3, Ae has at most two C∗-norms.
Also, by the first paragraph in the proof of Lemma 2.3, Ae has a minimum C∗-
norm. Let ‖ · ‖ and ||| · ||| be these two C∗-norms on Ae with ‖ · ‖≤ ||| · |||. Note
that ‖ · ‖op=‖ · ‖ on Ae. Since A has UC∗NP, ‖ · ‖= ||| · ||| on A. Let (C∗(A), ‖ · ‖˜)
and (C∗(Ae), ||| · |||˜) be the completions of (A, ‖ · ‖) and (Ae, ||| · |||), respectively.

We embed C∗(A) into C∗(Ae) as a ∗-subalgebra. Let a ∈ C∗(A). Then there
exists a sequence (an) in A converging to a in ‖ · ‖˜. Hence (an) is a Cauchy
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sequence in ‖ · ‖=‖ · ‖˜. So (an) is a Cauchy sequence in ||| · ||| because we have
‖ · ‖= ||| · ||| on A. Thus it is a Cauchy sequence in (Ae, ||| · |||) and so it converges
to some b in C∗(Ae). Hence the map j : C∗(A) → C∗(Ae) defined by j(a) = b is a
well defined, one-to-one ∗-homomorphism. Thus we have C∗(A) ↪→ C∗(Ae).

Assume that C∗(A) has identity. Then Ae ↪→ C∗(A) ↪→ C∗(Ae). Since every
C∗-algebra has UC∗NP, we have ‖ · ‖˜= ||| · |||˜ on C∗(A). So, by Lemma 2.4,
we have ‖ · ‖=‖ · ‖op=‖ · ‖˜= ||| · |||˜ = ||| · ||| on Ae. Now, assume that C∗(A)
does not have the identity. Then C∗(A) ↪→ C∗(A)e ↪→ C∗(Ae). Since C∗(A)e
is also a C∗-algebra with ‖ · ‖˜op, we have ‖ · ‖˜op= ||| · |||˜ on C∗(A)e and hence

on Ae because Ae ↪→ C∗(A)e. By Lemma 2.5, ‖ · ‖˜op=‖ · ‖op on Ae. Therefore

‖ · ‖=‖ · ‖op=‖ · ‖˜op= ||| · |||˜= ||| · ||| on Ae. Thus Ae has UC∗NP.
Conversely, let Ae have UC∗NP. Since A is a ∗-ideal in Ae, A has UC∗NP due

to [2, Theorem 2.2(1)]. �

A norm ‖ · ‖ on an algebra A is spectral if rA(a) ≤‖ a ‖ (a ∈ A), where
rA(·) is the spectral radius on A. The algebra A has Spectral Extension Property
(SEP) if every norm on A is spectral. This property arose in the investigation of
incomplete algebra norms on Banach algebras [5, Section 4.5]. The next result is
in the direction of a non-commutative analogue of [3, Corollary 3.2].

Theorem 2.7. Let A be a semisimple, non-unital algebra.
(1) If Ae has SEP, then A has SEP and A is closed in every norm on Ae.
(2) If A has SEP and if A is closed in every norm on Ae, then Ae has SEP.

Proof. (1) Let ‖ · ‖ be any norm on A. Then, by the hypothesis, ‖ · ‖1 is a
spectral norm on Ae so that rAe

(a + λe) ≤‖ a + λe ‖1 (a + λe ∈ Ae), and
hence rA(a) = rAe

(a) ≤‖ a ‖ (a ∈ A). Thus A has SEP. Now let ‖ · ‖ be
any norm on Ae. Since Ae has SEP, ‖ · ‖ is a spectral norm on Ae. Define
ϕ∞(a + λe) := λ (a + λe ∈ Ae). Then ϕ∞ is a multiplicative linear functional on
Ae and kerϕ∞ = A. Since ‖ · ‖ is a spectral norm on Ae, ϕ∞ is ‖ · ‖-continuous.
Hence A = kerϕ∞ is closed in (Ae, ‖ · ‖).

(2) Let A have SEP. Let | · | be any norm on Ae. It is enough to show that

rAe
(a+ λe) ≤ |a+ λe|op (a+ λe ∈ Ae).

Set ‖ · ‖= | · |op on Ae. Then ‖ · ‖ is a unital norm on Ae. By the hypothesis, A is
closed in (Ae, ‖ · ‖). Hence, by Theorem 2.1(1), we have

‖ (a+ λe) ‖1≤ 3 ‖ a+ λe ‖ (a+ λe ∈ Ae).

Therefore,

rAe
(a+ λe) ≤ rAe

(a) + |λ| = rA(a) + |λ| ≤‖ a ‖ +|λ| =‖ a+ λe ‖1≤ 3 ‖ a+ λe ‖ .

Since rAe
((a+ λe)n) = rAe

(a+ λe)n and ‖ (a+ λe)n ‖≤‖ a + λe ‖n for all n ∈ N,
we get rAe

(a+ λe) ≤‖ a+ λe ‖= |a+ λe|op (a+ λe ∈ Ae). �

Remark 2.8. (1) Even if A is a non-unital ∗-algebra with UC∗NP, the C∗-algebra
C∗(A) may have the identity. For example, let D := {(x, y, 0) ∈ R3 : x2 + y2 ≤ 1},
let R := {(x, 0, t) ∈ R

3 : −1 ≤ x ≤ 1, 0 ≤ t ≤ 1}, and let Ω := D ∪ R. Let A
be the algebra of all continuous complex-valued functions f on Ω such that f is
analytic on the interior of D and f(0, 1, 0) = f(0,−1, 0) = 0. For f ∈ A, define

f∗(x, y, t) = f(x,−y, t) ((x, y, t) ∈ R3). Then A is a non-unital, commutative
Banach ∗-algebra with UC∗NP. As in [2, Example 4.4], the C∗(A) has identity.
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(2) We do not know whether the assumption that “A is closed in every norm on
Ae” in Theorem 2.7(2) can be omitted.
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