A NON-UNITAL *-ALGEBRA HAS U C^* NP IF AND ONLY IF ITS UNITIZATION HAS U C^* NP H. V. DEDANIA AND H. J. KANANI (Communicated by Marius Junge) ABSTRACT. The result stated in the title is proved, thereby disproving the result shown in a 1983 paper by B. A. Barnes (Theorem 4.1). #### 1. Introduction Let A be a non-unital algebra such that $a \in A$ and $aA = \{0\}$ or $Aa = \{0\}$ implies a = 0. Let $A_e = \{a + \lambda e : a \in A, \lambda \in \mathbb{C}\}$ be the unitization of A with the unit element denoted by e. For an (algebra) norm $\|\cdot\|$ on A, define the algebra norms on A_e as $||a + \lambda e||_{op} := \sup\{||ab + \lambda b|| : b \in A, ||b|| \le 1\}$ and $||a + \lambda e||_{1} := ||a|| + |\lambda|$ for all $a + \lambda e \in A_e$. We must note that throughout this paper, no norm on A is assumed to be complete. A C^* -norm is a norm $\|\cdot\|$ on a *-algebra A such that $\|a^*a\|=\|a\|^2$ $(a\in A)$. The *-algebra A has unique C^* -norm property (UC^*NP) if A admits exactly one C^* -norm. The UC^*NP and the twin property of *-regularity were discovered by Barnes [2]. They are of significance in harmonic analysis [6, Section 10.5] and have inspired the study of unique uniform norm property (UUNP) in Banach algebras [5, Section 4.6]. For a non-unital, commutative Banach *-algebra A, Dabhi and Dedania have proved [4, Corollary 2.3(ii)] that A has UC^*NP iff A_e has UC^*NP . Here we prove the same for any non-unital *-algebra, not necessarily commutative. As a result, Theorem 4.1 in [2] is false. ## 2. Results Suppose that $\|\cdot\|$ is a unital norm on the algebra A_e (i.e., $\|e\|=1$). Then $\|a+\lambda e\|_{op} \leq \|a+\lambda e\| \leq \|a+\lambda e\|_1$ ($a+\lambda e \in A_e$). Theorem 2.1 below implies that the norm $\|\cdot\|$ is equivalent to either $\|\cdot\|_{op}$ or $\|\cdot\|_1$. This theorem is inspired by [1]. **Theorem 2.1.** Let $\|\cdot\|$ be a unital norm on A_e . - (1) If A is closed in $(A_e, \|\cdot\|)$, then $\|a + \lambda e\|_1 \le 3 \|a + \lambda e\|$ $(a + \lambda e \in A_e)$. - (2) If A is dense in $(A_e, \|\cdot\|)$, then $\|a + \lambda e\|_{op} = \|a + \lambda e\|$ $(a + \lambda e \in A_e)$. Received by the editors August 8, 2011 and, in revised form, January 23, 2012. 2010 Mathematics Subject Classification. Primary 46K05; Secondary 46H05. $Key\ words\ and\ phrases.$ Non-commutative *-algebra, C^* -norm, spectral norm, C^* -algebra. This work has been supported by UGC-SAP-DRS-II Grant No. F.510/3/DRS/2009 provided to the Department of Mathematics, Sardar Patel University. Proof. (1) Let $a + \lambda e \in A_e$. We may assume that $||a + \lambda e||_1 = 1$. First suppose that $|\lambda| \le 1/3$. Then $||a|| = 1 - |\lambda| \ge 2/3$. So $||a + \lambda e|| \ge ||a|| - |\lambda| \ge 2/3 - 1/3 = 1/3$. Hence $||a + \lambda e||_1 \le 3 ||a + \lambda e||$. Secondly, suppose that $|\lambda| > 1/3$. Since A is closed in $(A_e, ||\cdot||)$, the multiplicative linear functional $\varphi_{\infty}(a + \lambda e) := \lambda \ (a + \lambda e \in A_e)$ is $||\cdot||$ -continuous. Therefore $1 = |\varphi_{\infty}(e)| = |\varphi_{\infty}(b - e)| \le ||b - e|| \ (b \in A)$. In particular, $1/3 \le |\lambda| \le |\lambda| ||-\frac{a}{\lambda} - e|| = ||a + \lambda e||$. Thus $||a + \lambda e||_1 \le 3 ||a + \lambda e||$. (2) Let $a + \lambda e \in A_e$. Since A is dense in $(A_e, \|\cdot\|)$, there exists a sequence $\{c_n\}$ in A such that $\|c_n\| = 1$ $(n \in \mathbb{N})$ and $c_n \longrightarrow e$ in $\|\cdot\|$ as $n \longrightarrow \infty$. Then $$|| a + \lambda e ||_{op} \le || a + \lambda e || = || (a + \lambda e)e || = \lim_{n \to \infty} || (a + \lambda e)c_n ||$$ $\le \sup\{|| (a + \lambda e)b || : b \in A; || b || \le 1\} = || a + \lambda e ||_{op}.$ Thus $||a + \lambda e||_{op} = ||a + \lambda e||$. Corollary 2.2. Let A be a non-unital algebra. - (1) Any norm $\|\cdot\|$ on A_e is equivalent to either $\|\cdot\|_{op}$ or $\|\cdot\|_1$. - (2) [1, Corollary 2] Let $\|\cdot\|$ be a complete norm on A such that $\|a\|_{op} = \|a\|$ $(a \in A)$. Then $\|a + \lambda e\|_{1} \le 3 \|a + \lambda e\|_{op} (a + \lambda e \in A_{e})$. *Proof.* (1) Without loss of generality, we may assume that $\|\cdot\|$ is unital. Now this is immediate from Theorem 2.1. (2) Let $|\cdot| = ||\cdot||_{op}$ on A_e . Then $|\cdot|$ is a unital norm on A_e . Since $||\cdot||$ is a complete norm on A, $|\cdot| = ||\cdot||_{op}$ is complete on A_e , so A is closed in $(A_e, |\cdot|)$. So, by Theorem 2.1(1), $|a + \lambda e|_1 \leq 3|a + \lambda e|(a + \lambda e \in A_e)$. Hence $$\|a + \lambda e\|_1 = \|a\| + |\lambda| = \|a\|_{op} + |\lambda|$$ (by hypothesis) = $|a| + |\lambda| = |a + \lambda|_1 \le 3|a + \lambda e| = 3 \|a + \lambda e\|_{op}$. This proves (2). Let A be a non-unital *-algebra with U C^* NP. In Lemma 2.3, we show that A_e cannot have more than two C^* -norms. Then in Theorem 2.6, we prove that, in fact, A_e must have U C^* NP. **Lemma 2.3.** Let A be a non-unital *-algebra with UC*NP. Then A_e has at most two C^* -norms. *Proof.* Assume that A has UC^*NP . Let $\|\cdot\|$ be the unique C^* -norm on A. Then $\|\cdot\|_{op}$ is a C^* -norm on A_e due to [3, Proposition 2.2(b)]. First we *claim* that $\|\cdot\|_{op}$ is the minimum C^* -norm on A_e . If $|\cdot|$ is a C^* -norm on A_e , then it is also a C^* -norm on A. So, by the hypothesis, $|\cdot| = \|\cdot\|$ on A. Hence, $\|\cdot\|_{op} = |\cdot|_{op} \le |\cdot|$ on A_e . This proves our claim. Now let $|||\cdot|||$ be a C^* -norm on A_e other than $||\cdot||_{op}$. Because any two equivalent C^* -norms are identical, it is enough to show that $|||\cdot||| \cong ||\cdot||_1$ on A_e . Since A has UC^*NP , $|||\cdot||| = ||\cdot||$ on A. Hence $|||\cdot|||_{op} = ||\cdot||_{op}$ on A_e . Now A must be closed in $(A_e, |||\cdot|||)$. Otherwise, by Theorem 2.1(2), $|||\cdot||| = |||\cdot|||_{op}$ on A_e , and so $|||\cdot||| = |||\cdot|||_{op} = ||\cdot||_{op}$ on A_e , which is a contradiction. Then, by Theorem 2.1(1), $$\begin{aligned} |||a + \lambda e||| & \leq |||a||| + |\lambda| = ||a|| + |\lambda| = ||a + \lambda e||_1 = ||a|| + |\lambda| \\ & = |||a||| + |\lambda| = |||a + \lambda e|||_1 \leq 3|||a + \lambda e|||. \end{aligned}$$ This completes the proof. **Lemma 2.4.** Let A be a non-unital *-algebra. Let $\|\cdot\|$ be a C^* -norm on A. Let $(C^*(A), \|\cdot\|)$ be the completion of $(A, \|\cdot\|)$. If $(C^*(A), \|\cdot\|)$ contains the identity, then $\|\cdot\|_{op} = \|\cdot\|$ on A_e . *Proof.* Clearly, $A_e \subset C^*(A)$. Let $a + \lambda e \in A_e \subset C^*(A)$ be non-zero. Then there exists a sequence (a_n) in A such that $a_n \longrightarrow a + \lambda e$ in $\|\cdot\|$. Let $b \in A$ be such that $\|b\| \le 1$. Then $a_n b \longrightarrow ab + \lambda b$ in $\|\cdot\| = \|\cdot\|$. So $$\parallel ab + \lambda b \parallel = \lim_{n \to \infty} \parallel a_n b \parallel \leq \lim_{n \to \infty} \parallel a_n \parallel = \lim_{n \to \infty} \parallel a_n \parallel = \parallel a + \lambda e \parallel.$$ Hence $\|a + \lambda e\|_{op} \le \|a + \lambda e\|$. For the reverse inequality, consider a sequence (c_n) in A such that $\|c_n\| \le 1$ and $c_n \longrightarrow \frac{(a+\lambda e)^*}{\|a+\lambda e\|}$ in $\|\cdot\|$. Then $$\| a + \lambda e \|_{op} \geq \sup_{n} \| (a + \lambda e)c_{n} \| \geq \lim_{n \to \infty} \| (a + \lambda e)c_{n} \| = \lim_{n \to \infty} \| (a + \lambda e)c_{n} \|^{2}$$ $$= \frac{\| (a + \lambda e)(a + \lambda e)^{*} \|^{2}}{\| a + \lambda e \|^{2}} = \| a + \lambda e \|^{2}.$$ Thus $||a + \lambda e||_{op} \ge ||a + \lambda e||$. **Lemma 2.5.** Let A be a non-unital *-algebra. Let $\|\cdot\|$ be a C^* -norm on A. Let $(C^*(A), \|\cdot\|)$ be the completion of $(A, \|\cdot\|)$. If $(C^*(A), \|\cdot\|)$ does not contain the identity, then $\|\cdot\|_{op} = \|\cdot\|_{op}$ on A_e . *Proof.* Since $A \subset C^*(A)$, we have $A_e \subset C^*(A)_e$. Let $a + \lambda e \in A_e$. Then For the reverse inequality, let $b \in C^*(A)$ be such that $||b|| \leq 1$. Then there exists a sequence (b_n) in A such that $||b_n|| \leq 1$ and $b_n \longrightarrow b$ in $||\cdot||$. So $$\| (a + \lambda e)b \|^{\widetilde{}} = \lim_{n \to \infty} \| (a + \lambda e)b_n \|^{\widetilde{}} = \lim_{n \to \infty} \| (a + \lambda e)b_n \|$$ $$\leq \sup_{n} \| (a + \lambda e)b_n \| \leq \| a + \lambda e \|_{op}.$$ Thus $||a + \lambda e||_{op} \le ||a + \lambda e||_{op}$. The next result disproves [2, Theorem 4.1]. The gap in that proof lies in the first line. It is claimed that $C^*(A)$ can be identified with a closed maximal ideal of $C^*(A_e)$ of codimension one. But this is not true. In [2, Example 4.4], we have $C^*(A_e) = C^*(A)$. **Theorem 2.6.** A non-unital *-algebra A has UC^*NP iff A_e has UC^*NP . *Proof.* Let A have UC^*NP . Then, by Lemma 2.3, A_e has at most two C^* -norms. Also, by the first paragraph in the proof of Lemma 2.3, A_e has a minimum C^* -norm. Let $\|\cdot\|$ and $\|\cdot\|$ be these two C^* -norms on A_e with $\|\cdot\| \le \|\cdot\|$. Note that $\|\cdot\|_{op} = \|\cdot\|$ on A_e . Since A has UC^*NP , $\|\cdot\| = \|\cdot\|$ on A. Let $(C^*(A), \|\cdot\|)$ and $(C^*(A_e), \|\cdot\|)$ be the completions of $(A, \|\cdot\|)$ and $(A_e, \|\cdot\|)$, respectively. We embed $C^*(A)$ into $C^*(A_e)$ as a *-subalgebra. Let $a \in C^*(A)$. Then there exists a sequence (a_n) in A converging to a in $\|\cdot\|$. Hence (a_n) is a Cauchy sequence in $\|\cdot\| = \|\cdot\|$. So (a_n) is a Cauchy sequence in $|||\cdot|||$ because we have $\|\cdot\| = |||\cdot|||$ on A. Thus it is a Cauchy sequence in $(A_e, |||\cdot|||)$ and so it converges to some b in $C^*(A_e)$. Hence the map $j: C^*(A) \to C^*(A_e)$ defined by j(a) = b is a well defined, one-to-one *-homomorphism. Thus we have $C^*(A) \to C^*(A_e)$. Conversely, let A_e have UC*NP. Since A is a *-ideal in A_e , A has UC*NP due to [2, Theorem 2.2(1)]. A norm $\|\cdot\|$ on an algebra A is spectral if $r_A(a) \leq \|a\|$ ($a \in A$), where $r_A(\cdot)$ is the spectral radius on A. The algebra A has Spectral Extension Property (SEP) if every norm on A is spectral. This property arose in the investigation of incomplete algebra norms on Banach algebras [5, Section 4.5]. The next result is in the direction of a non-commutative analogue of [3, Corollary 3.2]. **Theorem 2.7.** Let A be a semisimple, non-unital algebra. - (1) If A_e has SEP, then A has SEP and A is closed in every norm on A_e . - (2) If A has SEP and if A is closed in every norm on A_e , then A_e has SEP. Proof. (1) Let $\|\cdot\|$ be any norm on A. Then, by the hypothesis, $\|\cdot\|_1$ is a spectral norm on A_e so that $r_{A_e}(a+\lambda e) \leq \|a+\lambda e\|_1$ $(a+\lambda e \in A_e)$, and hence $r_A(a) = r_{A_e}(a) \leq \|a\|$ $(a \in A)$. Thus A has SEP. Now let $\|\cdot\|$ be any norm on A_e . Since A_e has SEP, $\|\cdot\|$ is a spectral norm on A_e . Define $\varphi_{\infty}(a+\lambda e) := \lambda \ (a+\lambda e \in A_e)$. Then φ_{∞} is a multiplicative linear functional on A_e and $\ker \varphi_{\infty} = A$. Since $\|\cdot\|$ is a spectral norm on A_e , φ_{∞} is $\|\cdot\|$ -continuous. Hence $A = \ker \varphi_{\infty}$ is closed in $(A_e, \|\cdot\|)$. (2) Let A have SEP. Let $|\cdot|$ be any norm on A_e . It is enough to show that $$r_{A_e}(a + \lambda e) \le |a + \lambda e|_{op} \quad (a + \lambda e \in A_e).$$ Set $\|\cdot\| = |\cdot|_{op}$ on A_e . Then $\|\cdot\|$ is a unital norm on A_e . By the hypothesis, A is closed in $(A_e, \|\cdot\|)$. Hence, by Theorem 2.1(1), we have $$\|(a+\lambda e)\|_1 \le 3 \|a+\lambda e\| \quad (a+\lambda e \in A_e).$$ Therefore, $$r_{A_{e}}(a + \lambda e) \leq r_{A_{e}}(a) + |\lambda| = r_{A}(a) + |\lambda| \leq ||a|| + |\lambda| = ||a + \lambda e||_{1} \leq 3 ||a + \lambda e||.$$ Since $r_{A_{e}}((a + \lambda e)^{n}) = r_{A_{e}}(a + \lambda e)^{n}$ and $||(a + \lambda e)^{n}|| \leq ||a + \lambda e||^{n}$ for all $n \in \mathbb{N}$, we get $r_{A_{e}}(a + \lambda e) \leq ||a + \lambda e|| = |a + \lambda e|_{op}$ $(a + \lambda e \in A_{e})$. Remark 2.8. (1) Even if A is a non-unital *-algebra with UC^*NP , the C^* -algebra $C^*(A)$ may have the identity. For example, let $D:=\{(x,y,0)\in\mathbb{R}^3:x^2+y^2\leq 1\}$, let $R:=\{(x,0,t)\in\mathbb{R}^3:-1\leq x\leq 1,\ 0\leq t\leq 1\}$, and let $\Omega:=D\cup R$. Let A be the algebra of all continuous complex-valued functions f on Ω such that f is analytic on the interior of D and f(0,1,0)=f(0,-1,0)=0. For $f\in A$, define $f^*(x,y,t)=\overline{f(x,-y,t)}$ $((x,y,t)\in\mathbb{R}^3)$. Then A is a non-unital, commutative Banach *-algebra with UC^*NP . As in [2, Example 4.4], the $C^*(A)$ has identity. (2) We do not know whether the assumption that "A is closed in every norm on A_e " in Theorem 2.7(2) can be omitted. #### ACKNOWLEDGEMENTS The authors are thankful to Professor S. J. Bhatt for reading this manuscript carefully. The second author is thankful to the University Grant Commission (UGC), New Delhi, for a scholarship. The authors also are thankful to the referee for various suggestions. ### References - J. Arhippainen and V. Müller, Norms on unitizations of Banach algebras revisited, Acta Math. Hungar., 114(3) (2007) 201-204. MR2296542 (2007k:46081) - B. A. Barnes, The properties of *-regularity and uniqueness of C*-norm in a general *-algebra, Trans. Amer. Math. Soc., 279(2) (1983) 841-859. MR709587 (85f:46100) - S. J. Bhatt and H. V. Dedania, Uniqueness of the uniform norm and adjoining identity in Banach algebras, Proc. Indian Acad. Sci. Math. Sci., 105(4)(1995) 405-409. MR1409578 (97g:46062) - P. A. Dabhi and H. V. Dedania, On the uniqueness of uniform norms and C*-norms, Studia Mathematica, 191(3)(2009) 263-270. MR2481896 (2010c:46121) - E. Kaniuth, A Course in Commutative Banach Algebras, Springer, New York, 2009. MR2458901 (2010d:46064) - T. W. Palmer, Banach Algebras and the General Theory of *-algebras, Volumes I & II, Cambridge University Press, 1994, 2001. MR1270014 (95c:46002), MR1819503 (2002e:46002) Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar-388120, Gujarat, India E-mail address: hvdedania@yahoo.com Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar-388120, Gujarat, India $E ext{-}mail\ address: hitenmaths 69@gmail.com}$