A NON-UNITAL *-ALGEBRA HAS U C^* NP IF AND ONLY IF ITS UNITIZATION HAS U C^* NP

H. V. DEDANIA AND H. J. KANANI

(Communicated by Marius Junge)

ABSTRACT. The result stated in the title is proved, thereby disproving the result shown in a 1983 paper by B. A. Barnes (Theorem 4.1).

1. Introduction

Let A be a non-unital algebra such that $a \in A$ and $aA = \{0\}$ or $Aa = \{0\}$ implies a = 0. Let $A_e = \{a + \lambda e : a \in A, \lambda \in \mathbb{C}\}$ be the unitization of A with the unit element denoted by e. For an (algebra) norm $\|\cdot\|$ on A, define the algebra norms on A_e as

 $||a + \lambda e||_{op} := \sup\{||ab + \lambda b|| : b \in A, ||b|| \le 1\}$ and $||a + \lambda e||_{1} := ||a|| + |\lambda|$ for all $a + \lambda e \in A_e$. We must note that throughout this paper, no norm on A is assumed to be complete.

A C^* -norm is a norm $\|\cdot\|$ on a *-algebra A such that $\|a^*a\|=\|a\|^2$ $(a\in A)$. The *-algebra A has unique C^* -norm property (UC^*NP) if A admits exactly one C^* -norm. The UC^*NP and the twin property of *-regularity were discovered by Barnes [2]. They are of significance in harmonic analysis [6, Section 10.5] and have inspired the study of unique uniform norm property (UUNP) in Banach algebras [5, Section 4.6]. For a non-unital, commutative Banach *-algebra A, Dabhi and Dedania have proved [4, Corollary 2.3(ii)] that A has UC^*NP iff A_e has UC^*NP . Here we prove the same for any non-unital *-algebra, not necessarily commutative. As a result, Theorem 4.1 in [2] is false.

2. Results

Suppose that $\|\cdot\|$ is a unital norm on the algebra A_e (i.e., $\|e\|=1$). Then $\|a+\lambda e\|_{op} \leq \|a+\lambda e\| \leq \|a+\lambda e\|_1$ ($a+\lambda e \in A_e$). Theorem 2.1 below implies that the norm $\|\cdot\|$ is equivalent to either $\|\cdot\|_{op}$ or $\|\cdot\|_1$. This theorem is inspired by [1].

Theorem 2.1. Let $\|\cdot\|$ be a unital norm on A_e .

- (1) If A is closed in $(A_e, \|\cdot\|)$, then $\|a + \lambda e\|_1 \le 3 \|a + \lambda e\|$ $(a + \lambda e \in A_e)$.
- (2) If A is dense in $(A_e, \|\cdot\|)$, then $\|a + \lambda e\|_{op} = \|a + \lambda e\|$ $(a + \lambda e \in A_e)$.

Received by the editors August 8, 2011 and, in revised form, January 23, 2012.

2010 Mathematics Subject Classification. Primary 46K05; Secondary 46H05.

 $Key\ words\ and\ phrases.$ Non-commutative *-algebra, C^* -norm, spectral norm, C^* -algebra.

This work has been supported by UGC-SAP-DRS-II Grant No. F.510/3/DRS/2009 provided to the Department of Mathematics, Sardar Patel University.

Proof. (1) Let $a + \lambda e \in A_e$. We may assume that $||a + \lambda e||_1 = 1$. First suppose that $|\lambda| \le 1/3$. Then $||a|| = 1 - |\lambda| \ge 2/3$. So $||a + \lambda e|| \ge ||a|| - |\lambda| \ge 2/3 - 1/3 = 1/3$. Hence $||a + \lambda e||_1 \le 3 ||a + \lambda e||$. Secondly, suppose that $|\lambda| > 1/3$. Since A is closed in $(A_e, ||\cdot||)$, the multiplicative linear functional $\varphi_{\infty}(a + \lambda e) := \lambda \ (a + \lambda e \in A_e)$ is $||\cdot||$ -continuous. Therefore $1 = |\varphi_{\infty}(e)| = |\varphi_{\infty}(b - e)| \le ||b - e|| \ (b \in A)$. In particular, $1/3 \le |\lambda| \le |\lambda| ||-\frac{a}{\lambda} - e|| = ||a + \lambda e||$. Thus $||a + \lambda e||_1 \le 3 ||a + \lambda e||$.

(2) Let $a + \lambda e \in A_e$. Since A is dense in $(A_e, \|\cdot\|)$, there exists a sequence $\{c_n\}$ in A such that $\|c_n\| = 1$ $(n \in \mathbb{N})$ and $c_n \longrightarrow e$ in $\|\cdot\|$ as $n \longrightarrow \infty$. Then

$$|| a + \lambda e ||_{op} \le || a + \lambda e || = || (a + \lambda e)e || = \lim_{n \to \infty} || (a + \lambda e)c_n ||$$

 $\le \sup\{|| (a + \lambda e)b || : b \in A; || b || \le 1\} = || a + \lambda e ||_{op}.$

Thus $||a + \lambda e||_{op} = ||a + \lambda e||$.

Corollary 2.2. Let A be a non-unital algebra.

- (1) Any norm $\|\cdot\|$ on A_e is equivalent to either $\|\cdot\|_{op}$ or $\|\cdot\|_1$.
- (2) [1, Corollary 2] Let $\|\cdot\|$ be a complete norm on A such that $\|a\|_{op} = \|a\|$ $(a \in A)$. Then $\|a + \lambda e\|_{1} \le 3 \|a + \lambda e\|_{op} (a + \lambda e \in A_{e})$.

Proof. (1) Without loss of generality, we may assume that $\|\cdot\|$ is unital. Now this is immediate from Theorem 2.1.

(2) Let $|\cdot| = ||\cdot||_{op}$ on A_e . Then $|\cdot|$ is a unital norm on A_e . Since $||\cdot||$ is a complete norm on A, $|\cdot| = ||\cdot||_{op}$ is complete on A_e , so A is closed in $(A_e, |\cdot|)$. So, by Theorem 2.1(1), $|a + \lambda e|_1 \leq 3|a + \lambda e|(a + \lambda e \in A_e)$. Hence

$$\|a + \lambda e\|_1 = \|a\| + |\lambda| = \|a\|_{op} + |\lambda|$$
 (by hypothesis)
= $|a| + |\lambda| = |a + \lambda|_1 \le 3|a + \lambda e| = 3 \|a + \lambda e\|_{op}$.

This proves (2).

Let A be a non-unital *-algebra with U C^* NP. In Lemma 2.3, we show that A_e cannot have more than two C^* -norms. Then in Theorem 2.6, we prove that, in fact, A_e must have U C^* NP.

Lemma 2.3. Let A be a non-unital *-algebra with UC*NP. Then A_e has at most two C^* -norms.

Proof. Assume that A has UC^*NP . Let $\|\cdot\|$ be the unique C^* -norm on A. Then $\|\cdot\|_{op}$ is a C^* -norm on A_e due to [3, Proposition 2.2(b)]. First we *claim* that $\|\cdot\|_{op}$ is the minimum C^* -norm on A_e . If $|\cdot|$ is a C^* -norm on A_e , then it is also a C^* -norm on A. So, by the hypothesis, $|\cdot| = \|\cdot\|$ on A. Hence, $\|\cdot\|_{op} = |\cdot|_{op} \le |\cdot|$ on A_e . This proves our claim.

Now let $|||\cdot|||$ be a C^* -norm on A_e other than $||\cdot||_{op}$. Because any two equivalent C^* -norms are identical, it is enough to show that $|||\cdot||| \cong ||\cdot||_1$ on A_e . Since A has UC^*NP , $|||\cdot||| = ||\cdot||$ on A. Hence $|||\cdot|||_{op} = ||\cdot||_{op}$ on A_e . Now A must be closed in $(A_e, |||\cdot|||)$. Otherwise, by Theorem 2.1(2), $|||\cdot||| = |||\cdot|||_{op}$ on A_e , and so $|||\cdot||| = |||\cdot|||_{op} = ||\cdot||_{op}$ on A_e , which is a contradiction. Then, by Theorem 2.1(1),

$$\begin{aligned} |||a + \lambda e||| & \leq |||a||| + |\lambda| = ||a|| + |\lambda| = ||a + \lambda e||_1 = ||a|| + |\lambda| \\ & = |||a||| + |\lambda| = |||a + \lambda e|||_1 \leq 3|||a + \lambda e|||. \end{aligned}$$

This completes the proof.

Lemma 2.4. Let A be a non-unital *-algebra. Let $\|\cdot\|$ be a C^* -norm on A. Let $(C^*(A), \|\cdot\|)$ be the completion of $(A, \|\cdot\|)$. If $(C^*(A), \|\cdot\|)$ contains the identity, then $\|\cdot\|_{op} = \|\cdot\|$ on A_e .

Proof. Clearly, $A_e \subset C^*(A)$. Let $a + \lambda e \in A_e \subset C^*(A)$ be non-zero. Then there exists a sequence (a_n) in A such that $a_n \longrightarrow a + \lambda e$ in $\|\cdot\|$. Let $b \in A$ be such that $\|b\| \le 1$. Then $a_n b \longrightarrow ab + \lambda b$ in $\|\cdot\| = \|\cdot\|$. So

$$\parallel ab + \lambda b \parallel = \lim_{n \to \infty} \parallel a_n b \parallel \leq \lim_{n \to \infty} \parallel a_n \parallel = \lim_{n \to \infty} \parallel a_n \parallel = \parallel a + \lambda e \parallel.$$

Hence $\|a + \lambda e\|_{op} \le \|a + \lambda e\|$. For the reverse inequality, consider a sequence (c_n) in A such that $\|c_n\| \le 1$ and $c_n \longrightarrow \frac{(a+\lambda e)^*}{\|a+\lambda e\|}$ in $\|\cdot\|$. Then

$$\| a + \lambda e \|_{op} \geq \sup_{n} \| (a + \lambda e)c_{n} \| \geq \lim_{n \to \infty} \| (a + \lambda e)c_{n} \| = \lim_{n \to \infty} \| (a + \lambda e)c_{n} \|^{2}$$

$$= \frac{\| (a + \lambda e)(a + \lambda e)^{*} \|^{2}}{\| a + \lambda e \|^{2}} = \| a + \lambda e \|^{2}.$$

Thus $||a + \lambda e||_{op} \ge ||a + \lambda e||$.

Lemma 2.5. Let A be a non-unital *-algebra. Let $\|\cdot\|$ be a C^* -norm on A. Let $(C^*(A), \|\cdot\|)$ be the completion of $(A, \|\cdot\|)$. If $(C^*(A), \|\cdot\|)$ does not contain the identity, then $\|\cdot\|_{op} = \|\cdot\|_{op}$ on A_e .

Proof. Since $A \subset C^*(A)$, we have $A_e \subset C^*(A)_e$. Let $a + \lambda e \in A_e$. Then

For the reverse inequality, let $b \in C^*(A)$ be such that $||b|| \leq 1$. Then there exists a sequence (b_n) in A such that $||b_n|| \leq 1$ and $b_n \longrightarrow b$ in $||\cdot||$. So

$$\| (a + \lambda e)b \|^{\widetilde{}} = \lim_{n \to \infty} \| (a + \lambda e)b_n \|^{\widetilde{}} = \lim_{n \to \infty} \| (a + \lambda e)b_n \|$$

$$\leq \sup_{n} \| (a + \lambda e)b_n \| \leq \| a + \lambda e \|_{op}.$$

Thus $||a + \lambda e||_{op} \le ||a + \lambda e||_{op}$.

The next result disproves [2, Theorem 4.1]. The gap in that proof lies in the first line. It is claimed that $C^*(A)$ can be identified with a closed maximal ideal of $C^*(A_e)$ of codimension one. But this is not true. In [2, Example 4.4], we have $C^*(A_e) = C^*(A)$.

Theorem 2.6. A non-unital *-algebra A has UC^*NP iff A_e has UC^*NP .

Proof. Let A have UC^*NP . Then, by Lemma 2.3, A_e has at most two C^* -norms. Also, by the first paragraph in the proof of Lemma 2.3, A_e has a minimum C^* -norm. Let $\|\cdot\|$ and $\|\cdot\|$ be these two C^* -norms on A_e with $\|\cdot\| \le \|\cdot\|$. Note that $\|\cdot\|_{op} = \|\cdot\|$ on A_e . Since A has UC^*NP , $\|\cdot\| = \|\cdot\|$ on A. Let $(C^*(A), \|\cdot\|)$ and $(C^*(A_e), \|\cdot\|)$ be the completions of $(A, \|\cdot\|)$ and $(A_e, \|\cdot\|)$, respectively.

We embed $C^*(A)$ into $C^*(A_e)$ as a *-subalgebra. Let $a \in C^*(A)$. Then there exists a sequence (a_n) in A converging to a in $\|\cdot\|$. Hence (a_n) is a Cauchy

sequence in $\|\cdot\| = \|\cdot\|$. So (a_n) is a Cauchy sequence in $|||\cdot|||$ because we have $\|\cdot\| = |||\cdot|||$ on A. Thus it is a Cauchy sequence in $(A_e, |||\cdot|||)$ and so it converges to some b in $C^*(A_e)$. Hence the map $j: C^*(A) \to C^*(A_e)$ defined by j(a) = b is a well defined, one-to-one *-homomorphism. Thus we have $C^*(A) \to C^*(A_e)$.

Conversely, let A_e have UC*NP. Since A is a *-ideal in A_e , A has UC*NP due to [2, Theorem 2.2(1)].

A norm $\|\cdot\|$ on an algebra A is spectral if $r_A(a) \leq \|a\|$ ($a \in A$), where $r_A(\cdot)$ is the spectral radius on A. The algebra A has Spectral Extension Property (SEP) if every norm on A is spectral. This property arose in the investigation of incomplete algebra norms on Banach algebras [5, Section 4.5]. The next result is in the direction of a non-commutative analogue of [3, Corollary 3.2].

Theorem 2.7. Let A be a semisimple, non-unital algebra.

- (1) If A_e has SEP, then A has SEP and A is closed in every norm on A_e .
- (2) If A has SEP and if A is closed in every norm on A_e , then A_e has SEP.

Proof. (1) Let $\|\cdot\|$ be any norm on A. Then, by the hypothesis, $\|\cdot\|_1$ is a spectral norm on A_e so that $r_{A_e}(a+\lambda e) \leq \|a+\lambda e\|_1$ $(a+\lambda e \in A_e)$, and hence $r_A(a) = r_{A_e}(a) \leq \|a\|$ $(a \in A)$. Thus A has SEP. Now let $\|\cdot\|$ be any norm on A_e . Since A_e has SEP, $\|\cdot\|$ is a spectral norm on A_e . Define $\varphi_{\infty}(a+\lambda e) := \lambda \ (a+\lambda e \in A_e)$. Then φ_{∞} is a multiplicative linear functional on A_e and $\ker \varphi_{\infty} = A$. Since $\|\cdot\|$ is a spectral norm on A_e , φ_{∞} is $\|\cdot\|$ -continuous. Hence $A = \ker \varphi_{\infty}$ is closed in $(A_e, \|\cdot\|)$.

(2) Let A have SEP. Let $|\cdot|$ be any norm on A_e . It is enough to show that

$$r_{A_e}(a + \lambda e) \le |a + \lambda e|_{op} \quad (a + \lambda e \in A_e).$$

Set $\|\cdot\| = |\cdot|_{op}$ on A_e . Then $\|\cdot\|$ is a unital norm on A_e . By the hypothesis, A is closed in $(A_e, \|\cdot\|)$. Hence, by Theorem 2.1(1), we have

$$\|(a+\lambda e)\|_1 \le 3 \|a+\lambda e\| \quad (a+\lambda e \in A_e).$$

Therefore,

$$r_{A_{e}}(a + \lambda e) \leq r_{A_{e}}(a) + |\lambda| = r_{A}(a) + |\lambda| \leq ||a|| + |\lambda| = ||a + \lambda e||_{1} \leq 3 ||a + \lambda e||.$$
 Since $r_{A_{e}}((a + \lambda e)^{n}) = r_{A_{e}}(a + \lambda e)^{n}$ and $||(a + \lambda e)^{n}|| \leq ||a + \lambda e||^{n}$ for all $n \in \mathbb{N}$, we get $r_{A_{e}}(a + \lambda e) \leq ||a + \lambda e|| = |a + \lambda e|_{op}$ $(a + \lambda e \in A_{e})$.

Remark 2.8. (1) Even if A is a non-unital *-algebra with UC^*NP , the C^* -algebra $C^*(A)$ may have the identity. For example, let $D:=\{(x,y,0)\in\mathbb{R}^3:x^2+y^2\leq 1\}$, let $R:=\{(x,0,t)\in\mathbb{R}^3:-1\leq x\leq 1,\ 0\leq t\leq 1\}$, and let $\Omega:=D\cup R$. Let A be the algebra of all continuous complex-valued functions f on Ω such that f is analytic on the interior of D and f(0,1,0)=f(0,-1,0)=0. For $f\in A$, define $f^*(x,y,t)=\overline{f(x,-y,t)}$ $((x,y,t)\in\mathbb{R}^3)$. Then A is a non-unital, commutative Banach *-algebra with UC^*NP . As in [2, Example 4.4], the $C^*(A)$ has identity.

(2) We do not know whether the assumption that "A is closed in every norm on A_e " in Theorem 2.7(2) can be omitted.

ACKNOWLEDGEMENTS

The authors are thankful to Professor S. J. Bhatt for reading this manuscript carefully. The second author is thankful to the University Grant Commission (UGC), New Delhi, for a scholarship. The authors also are thankful to the referee for various suggestions.

References

- J. Arhippainen and V. Müller, Norms on unitizations of Banach algebras revisited, Acta Math. Hungar., 114(3) (2007) 201-204. MR2296542 (2007k:46081)
- B. A. Barnes, The properties of *-regularity and uniqueness of C*-norm in a general *-algebra, Trans. Amer. Math. Soc., 279(2) (1983) 841-859. MR709587 (85f:46100)
- S. J. Bhatt and H. V. Dedania, Uniqueness of the uniform norm and adjoining identity in Banach algebras, Proc. Indian Acad. Sci. Math. Sci., 105(4)(1995) 405-409. MR1409578 (97g:46062)
- P. A. Dabhi and H. V. Dedania, On the uniqueness of uniform norms and C*-norms, Studia Mathematica, 191(3)(2009) 263-270. MR2481896 (2010c:46121)
- E. Kaniuth, A Course in Commutative Banach Algebras, Springer, New York, 2009. MR2458901 (2010d:46064)
- T. W. Palmer, Banach Algebras and the General Theory of *-algebras, Volumes I & II, Cambridge University Press, 1994, 2001. MR1270014 (95c:46002), MR1819503 (2002e:46002)

Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar-388120, Gujarat, India

E-mail address: hvdedania@yahoo.com

Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar-388120, Gujarat, India

 $E ext{-}mail\ address: hitenmaths 69@gmail.com}$