PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 141, Number 11, November 2013, Pages 3925–3928 S 0002-9939(2013)11762-4 Article electronically published on July 23, 2013

DERIVATIONS OF SUBHOMOGENEOUS C^* -ALGEBRAS ARE IMPLEMENTED BY LOCAL MULTIPLIERS

ILJA GOGIĆ

(Communicated by Marius Junge)

ABSTRACT. Let A be a subhomogeneous C^* -algebra. Then A contains an essential closed ideal J with the property that for every derivation δ of A there exists a multiplier $a \in M(J)$ such that $\delta = \operatorname{ad}(a)$ and $\|\delta\| = 2\|a\|$.

1. Introduction

It is still unknown whether every derivation of a C^* -algebra A becomes inner in its local multiplier algebra $M_{\rm loc}(A)$. An affirmative answer was given by Elliott [6] for AF-algebras and by Pedersen [10] for general separable C^* -algebras (or, more generally, for C^* -algebras in which every essential closed ideal is σ -unital). However, in the inseparable case the problem seems to be wide open. Therefore, it is natural to begin by looking at the simplest cases, such as subhomogeneous C^* -algebras. In this paper we provide a short argument that every derivation of a (possibly inseparable) subhomogeneous C^* -algebra is also implemented by a local multiplier. Moreover, we obtained the following result.

Theorem 1.1. Let A be a subhomogeneous C^* -algebra. Then A contains an essential closed ideal J with the property that for every derivation δ of A there exists a multiplier $a \in M(J)$ such that $\delta = \operatorname{ad}(a)$ and $\|\delta\| = 2\|a\|$. In particular, every derivation of A is implemented by an element of the bounded symmetric algebra of quotients $Q_b(A)$ of A.

2. Notation and preliminaries

Throughout this paper A will denote a C^* -algebra (unless otherwise stated) and M(A) its multiplier algebra. By an *ideal* of A we always mean a closed two-sided ideal. Let I be an *essential ideal* of A (i.e. I has a non-zero intersection with every other closed non-zero ideal of A). If I' is another essential ideal of A which is contained in I, then M(I) is canonically embedded as a C^* -subalgebra into M(I') by restriction of multipliers to the smaller ideal. In this way, we obtain a directed system of C^* -algebras with isometric connecting morphisms, where I runs through the directed set of all essential ideals of A. Forming the algebraic direct limit of this directed family yields the pre- C^* -algebra $Q_b(A)$, which is called the *bounded symmetric algebra of quotients* of A. The completion of $Q_b(A)$ is called the *local multiplier algebra* of A, and it is denoted by $M_{loc}(A)$ (see [2] for details).

Received by the editors January 18, 2012 and, in revised form, January 24, 2012. 2010 Mathematics Subject Classification. Primary 46L57; Secondary 46L05. Key words and phrases. C*-algebra, derivation, local multiplier algebra, subhomogeneous.

3926 ILJA GOGIĆ

By \hat{A} and Prim(A) we respectively denote the *spectrum* of A (i.e. the set of all classes of irreducible representations of A) and the *primitive spectrum* of A (i.e. the set of all primitive ideals of A), equipped with the Jacobson topology.

As usual, for an ideal I of A we identify the open subset $\{P \in \operatorname{Prim}(A) : I \not\subseteq P\}$ (resp. closed subset $\{P \in \operatorname{Prim}(A) : I \subseteq P\}$) of $\operatorname{Prim}(A)$ with $\operatorname{Prim}(I)$ (resp. $\operatorname{Prim}(A/I)$), using the homeomorphism $P \mapsto P \cap I$ (resp. $P \mapsto P/I$). Note that I is essential if and only if $\operatorname{Prim}(I)$ is dense in $\operatorname{Prim}(A)$.

For $a \in A$ we define a function

$$\check{a}: \operatorname{Prim}(A) \to \mathbb{R}_+, \quad \check{a}(P) := \|a + P\|.$$

Since \check{a} is lower semi-continuous on Prim(A) [4, Proposition II.6.5.6], by [4, Corollary II.6.4.9] we have

$$||a|| = \sup \{ \check{a}(P) : P \in U \},\$$

for every dense subset U of Prim(A).

If all irreducible representations of A have the same finite dimension n, we say that A is n-homogeneous. In this case by [7, Section 3.2] $\operatorname{Prim}(A) = \hat{A}$ is a (locally compact) Hausdorff space, and there exists a locally trivial C^* -bundle E over $\operatorname{Prim}(A)$ with fibres isomorphic to the matrix algebra $\operatorname{M}_n(\mathbb{C})$ such that A is isomorphic to the C^* -algebra $\Gamma_0(E)$ of all continuous sections of E which vanish at infinity.

If A is a finite direct sum of homogeneous C^* -algebras, A is said to be *locally homogeneous*, and if

$$n := \sup\{\dim \pi : [\pi] \in \hat{A}\} < \infty,$$

A is said to be n-subhomogeneous. In this case by [11, 6.2.5], A has a finite standard composition series

$$(2.2) 0 = I_0 \subseteq I_1 \subseteq \cdots \subseteq I_k = A$$

of ideals of A such that each quotient I_i/I_{i-1} is a homogeneous C^* -algebra. The ideal I_1 is called the n-homogeneous ideal of A (since it is the largest ideal of A which is n-homogeneous as a C^* -algebra).

A derivation of an algebra A is a linear map $\delta:A\to A$ satisfying the Leibniz rule

$$\delta(xy) = \delta(x)y + x\delta(y) \quad (x, y \in A).$$

If A is a subalgebra of an algebra B, then every element $a \in B$ which derives A (i.e. $ax - xa \in A$ for all $x \in A$) implements an inner derivation $ad(a) : A \to A$ given by

$$ad(a)(x) := ax - xa \quad (x \in A).$$

If A is a C^* -algebra, it is well known that every derivation δ of A is (completely) bounded, and it leaves every ideal of A invariant. For an ideal I of A, by δ_I (resp. $\delta|_I$) we denote the induced derivation of A/I, $\delta_I(x+I) = \delta(x) + I$ ($x \in A$) (resp. the restriction derivation of I). Following [1] (see also [9, Remark 5.2]), we define a function

$$|\delta| : \operatorname{Prim}(A) \to \mathbb{R}_+, \quad |\delta|(P) := ||\delta_P||.$$

Note that $|\delta|$ is lower semi-continuous on Prim(A) [1, Lemma 2.2], and by [2, Theorem 5.3.12] we have

for every dense subset U of $\operatorname{Prim}(A)$. If in addition $|\delta|$ is continuous on $\operatorname{Prim}(A)$, δ is said to be *smooth*. By [1, Theorem 2.4] each smooth derivation δ of A is implemented by a multiplier of A. Moreover, there exists a unique multiplier $a \in M(A)$ such that $\delta = \operatorname{ad}(a)$ and $|\delta|(P) = 2\check{a}(P)$ for all $P \in \operatorname{Prim}(A)$.

3. Results

Remark 3.1. It is well known that every derivation of a unital locally homogeneous C^* -algebra A is inner [12, Theorem 1] (see also [5]). In this case Prim(A) is Hausdorff, so [9, Corollary 5.8] implies that every derivation of A is smooth.

We shall first extend this result to the non-unital case.

Proposition 3.2. If A is a locally homogeneous C^* -algebra, then every derivation δ of A is smooth. Therefore, there exists a unique multiplier $a \in M(A)$ such that $\delta = \operatorname{ad}(a)$ and $|\delta|(P) = 2\check{a}(P)$ for all $P \in \operatorname{Prim}(A)$.

Proof. It is sufficient to prove the assertion when A is (say n-)homogeneous. Let E be a locally trivial C^* -bundle over $\operatorname{Prim}(A)$ such that $A = \Gamma_0(E)$. For an arbitrary point $P_0 \in \operatorname{Prim}(A)$ choose a compact neighborhood V of P_0 such that the restriction bundle $E|_V$ is trivial. Let I be the ideal of $\Gamma_0(E)$ consisting of all sections in $\Gamma_0(E)$ which vanish at points of V. Using the Tietze extension theorem for sections of Banach bundles [8, Theorem II.14.8], we can identify A/I with $\Gamma(E|_V) \cong C(V, \operatorname{M}_n(\mathbb{C}))$. By Remark 3.1 the induced derivation δ_I of A/I is smooth. Since

$$|\delta_I|(P) = ||(\delta_I)_P|| = ||\delta_P|| = |\delta|(P) \quad (P \in V = Prim(A/I)),$$

we conclude that the function $|\delta|$ is continuous on V, so in particular it is continuous at $P_0 \in V$. Since $P_0 \in \text{Prim}(A)$ was arbitrary, the proof is finished.

Remark 3.3. One may wonder if for every derivation δ of a locally homogeneous C^* -algebra A (when extended to a derivation of M(A)), the function $|\delta|$ is in fact continuous on the whole space $\operatorname{Prim}(M(A))$. Obviously, this is true for derivations which are implemented by elements of A. However, R. Archbold and RD. Somerset informed us that there are examples of homogeneous R^* -algebras R for which $\operatorname{Prim}(M(A))$ is non-Hausdorff [3, Theorem 2.1]. If R is such an algebra, then by [9, Corollary 5.8] there exists an element R0 such that the function R1 is not continuous on R2 is continuous when restricted to R3.

Lemma 3.4. Let A be a subhomogeneous C^* -algebra. Then A contains an essential locally homogeneous ideal J.

Proof. We proceed by induction on the length k = k(A) of the standard composition series (2.2) of A. Suppose that k = 1. In this case A is homogeneous, so we may let J = A. Let k > 1, and suppose that the assertion is true for all subhomogeneous C^* -algebras B which satisfy k(B) < k. Let A be an n-subhomogeneous C^* -algebra with k(A) = k, and let I be the n-homogeneous ideal of A. If I is essential, the proof is finished, so assume that I is not essential. Let $U := \operatorname{Prim}(I)$ and $U' := \operatorname{Prim}(A) \setminus \overline{U}$. By assumption, U' is an open non-empty subset of $\operatorname{Prim}(A)$, and let K be the ideal of K such that $K = \operatorname{Prim}(U')$. Then K(K) < K, so our induction hypothesis implies that K contains an essential locally homogeneous ideal K = I' is an essential locally homogeneous ideal of K = I' is an essential locally homogeneous ideal of K = I'.

3928 ILJA GOGIĆ

Proof of Theorem 1.1. By Lemma 3.4 A contains an essential locally homogeneous ideal J. Since δ leaves J invariant, by Proposition 3.2 there exists a unique multiplier $a \in M(J)$ such that $\delta|_J = \operatorname{ad}(a)$ and $|\delta|(P) = |\delta|_J|(P) = 2\check{a}(P)$ for all $P \in \operatorname{Prim}(J)$. Since J is essential in A, we have $A \subseteq M(J)$, and the restriction of $\operatorname{ad}(a)$ (when considered as a derivation of M(J)) on A coincides with δ . Hence, $\delta(x) = \operatorname{ad}(a)(x)$ for all $x \in A$. Finally, using (2.3) and (2.1), we conclude that

```
\begin{split} \|\delta\| &= \sup\{|\delta|(P) : P \in \operatorname{Prim}(J)\} \\ &= 2\sup\{\check{a}(P) : P \in \operatorname{Prim}(J)\} \\ &= 2\|a\|, \end{split}
```

since Prim(J) is a dense (open) subset of Prim(A) and Prim(M(J)).

Note that the final statement of Theorem 1.1 is not true for general C^* -algebras (see [1, Example 6.5]). However, we state the following question.

Problem 3.5. If every irreducible representation of a C^* -algebra A is finite dimensional, is every derivation of A implemented by an element of $Q_b(A)$?

References

- Charles A. Akemann, George A. Elliott, Gert K. Pedersen, and Jun Tomiyama, Derivations and multipliers of C*-algebras, Amer. J. Math. 98 (1976), no. 3, 679–708. MR0425625 (54 #13579)
- [2] Pere Ara and Martin Mathieu, Local multipliers of C*-algebras, Springer Monographs in Mathematics, Springer-Verlag London Ltd., London, 2003. MR1940428 (2004b:46071)
- [3] R. J. Archbold and D. W. B. Somerset, Separation properties in the primitive ideal space of a multiplier algebra, to appear in Israel J. Math.
- [4] B. Blackadar, Operator algebras: Theory of C*-algebras and von Neumann algebras, Encyclopaedia of Mathematical Sciences, vol. 122, Operator Algebras and Non-commutative Geometry, III, Springer-Verlag, Berlin, 2006. MR2188261 (2006k:46082)
- [5] George A. Elliott, Some C*-algebras with outer derivations, Rocky Mountain J. Math. 3 (1973), 501–506. MR0365158 (51 #1411)
- [6] George A. Elliott, Automorphisms determined by multipliers on ideals of a C*-algebra,
 J. Functional Analysis 23 (1976), no. 1, 1–10. MR0440372 (55 #13247)
- [7] J. M. G. Fell, The structure of algebras of operator fields, Acta Math. 106 (1961), 233–280. MR0164248 (29 #1547)
- [8] J. M. G. Fell and R. S. Doran, Representations of *-algebras, locally compact groups, and Banach *-algebraic bundles. Vol. 1: Basic representation theory of groups and algebras, Pure and Applied Mathematics, vol. 125, Academic Press Inc., Boston, MA, 1988. MR936628 (90c:46001)
- [9] Ilja Gogić, Derivations which are inner as completely bounded maps, Oper. Matrices 4 (2010),
 no. 2, 193-211, DOI 10.7153/oam-04-09. MR2667333 (2011g:46126)
- [10] Gert K. Pedersen, Approximating derivations on ideals of C*-algebras, Invent. Math. 45 (1978), no. 3, 299–305. MR0477792 (57 #17302)
- [11] Gert K. Pedersen, C*-algebras and their automorphism groups, London Mathematical Society Monographs, vol. 14, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London, 1979. MR548006 (81e:46037)
- [12] J. P. Sproston, Derivations and automorphisms of homogeneous C*-algebras, Proc. London Math. Soc. (3) 32 (1976), no. 3, 521–536. MR0402517 (53 #6336)

Department of Mathematics, University of Zagreb, Bijenička 30, 10000 Zagreb, Croatia

E-mail address: ilja@math.hr