ON HARMONIC NON-COMMUTATIVE L^p-OPERATORS ON LOCALLY COMPACT QUANTUM GROUPS

MEHRDAD KALANTAR

(Communicated by Marius Junge)

ABSTRACT. For a locally compact quantum group \mathbb{G} with tracial Haar weight φ and a quantum measure μ on \mathbb{G} , we study the space $\mathcal{H}^p_{\mu}(\mathbb{G})$ of μ -harmonic operators in the non-commutative L^p -space $\mathcal{L}^p(\mathbb{G})$ associated to the Haar weight φ . The main result states that if μ is non-degenerate, then $\mathcal{H}^p_{\mu}(\mathbb{G})$ is trivial for all $1 \leq p < \infty$.

1. INTRODUCTION AND PRELIMINARIES

Non-commutative Poisson boundaries of (discrete) quantum groups \mathbb{G} was first introduced and studied by Izumi in [6]. Motivated by the classical setting, in fact, he defined the Poisson boundary of \mathbb{G} associated to a 'quantum measure' μ as the space of μ -harmonic 'functions', i.e., the fixed point space of the Markov operator associated to μ . For discrete quantum groups, this was further studied by several authors (cf. [7], [14], [15]). Poisson boundaries in the locally compact quantum group setting was studied by Neufang, Ruan and the author in [9]. Quantum versions of several important classical results regarding harmonic functions were proved there. In particular, triviality of special classes of harmonic functions, such as C_0 -functions, was proved.

Another important fact regarding classical harmonic functions on locally compact groups is that for $1 \leq p < \infty$, any L^p -harmonic function associated to an adapted probability measure is trivial. The main result of this paper is a quantum version of this result. But, in order to talk about μ -harmonic elements in the noncommutative L^p -spaces, we first need to define the convolution action by μ on such spaces.

In his PhD thesis [4], Cooney studied the non-commutative L^p -spaces associated to the Haar weight φ of a locally compact quantum group \mathbb{G} . He mainly considered Haagerup's version and could prove that in the Kac algebra setting, the convolution action of an 'absolutely continuous quantum measure' can be extended to the Haagerup non-commutative L^p -spaces. So, we cannot consider harmonic operators in the general setting of all locally compact quantum groups. Moreover, in the case of non-tracial φ , there are different ways to define the non-commutative L^p -spaces. Although all these spaces are isometrically isomorphic as Banach spaces, the identifications are not necessarily compatible with the quantum group structure, so it is not clear whether the space of μ -harmonic L^p -operators is the same, as a Banach space, for all different definitions of non-commutative L^p -spaces.

Received by the editors January 29, 2012.

²⁰¹⁰ Mathematics Subject Classification. Primary 46L52, 46L53, 46L65.

Therefore, in this paper, instead of restricting ourselves to the Kac algebra setting, we consider locally compact quantum groups \mathbb{G} whose Haar weight φ is a trace. In this case, the convolution action is extended to the non-commutative L^p spaces, and the main result of the paper states that in the case of a non-degenerate quantum measure μ , for $1 \leq p < \infty$, any μ -harmonic element which lies in the non-commutative L^p -space of φ is trivial.

First, let us introduce our terminology and recall some results on locally compact quantum groups which we will be using in this paper. For more details, we refer the reader to [11].

A locally compact quantum group \mathbb{G} is a quadruple $(M, \Gamma, \varphi, \psi)$, where M is a von Neumann algebra with a co-associative co-multiplication $\Gamma : M \to M \bar{\otimes} M$, and φ and ψ are (normal faithful semi-finite) left and right Haar weights on M, respectively. We write $\mathfrak{M}^+_{\varphi} = \{x \in M^+ : \varphi(x) < \infty\}$ and $\mathfrak{N}_{\varphi} = \{x \in M^+ : \varphi(x^*x) < \infty\}$, and we denote by Λ_{φ} the inclusion of \mathfrak{N}_{φ} into the GNS Hilbert space H_{φ} of φ . For each locally compact quantum group \mathbb{G} , there exists a *left fundamental unitary operator* W on $H_{\varphi} \otimes H_{\varphi}$ which satisfies the pentagonal relation and such that the co-multiplication Γ on M can be expressed as

$$\Gamma(x) = W^*(1 \otimes x)W \quad (x \in M).$$

There exists an anti-automorphism R on M, called the *unitary antipode*, such that $R^2 = \iota$, and

$$\Gamma \circ R = \chi(R \otimes R) \circ \Gamma,$$

where $\chi(x \otimes y) = (y \otimes x)$ is the flip map. It can be easily seen that if φ is a left Haar weight, then φR defines a right Haar weight on M.

Let M_* be the predual of M. Then the pre-adjoint of Γ induces on M_* an associative completely contractive multiplication

$$\star: M_* \hat{\otimes} M_* \ni f_1 \otimes f_2 \longmapsto f_1 \star f_2 = (f_1 \otimes f_2) \circ \Gamma \in M_*.$$

The left regular representation $\lambda: M_* \to \mathcal{B}(H_{\omega})$ is defined by

$$\lambda: M_* \ni f \longmapsto \lambda(f) = (f \otimes \iota)(W) \in \mathcal{B}(H_{\varphi}).$$

which is an injective and completely contractive algebra homomorphism from M_* into $\mathcal{B}(H_{\varphi})$. Then $\hat{M} = \{\lambda(f) : f \in M_*\}''$ is the von Neumann algebra associated with the dual quantum group $\hat{\mathbb{G}}$. It follows that $W \in M \otimes \hat{M}$. We also define the completely contractive injection

$$\hat{\lambda}: \hat{M}_* \ni \hat{f} \longmapsto \hat{\lambda}(\hat{f}) = (\iota \otimes \hat{f})(W) \in M.$$

The reduced quantum group C^* -algebra

$$\mathcal{C}_0(\mathbb{G}) = \overline{\hat{\lambda}(L_1(\hat{\mathbb{G}}))}^{\|\cdot\|}$$

is a weak^{*} dense C^* -subalgebra of M. Let $\mathcal{M}(\mathbb{G})$ denote the operator dual $\mathcal{C}_0(\mathbb{G})^*$. There exists a completely contractive multiplication on $\mathcal{M}(\mathbb{G})$ given by the convolution

$$\star: \mathcal{M}(\mathbb{G}) \widehat{\otimes} \mathcal{M}(\mathbb{G}) \ni \mu \otimes \nu \longmapsto \mu \star \nu = \mu(\iota \otimes \nu)\Gamma = \nu(\mu \otimes \iota)\Gamma \in \mathcal{M}(\mathbb{G})$$

such that $\mathcal{M}(\mathbb{G})$ contains M_* as a norm closed two-sided ideal. Therefore, for each $\mu \in \mathcal{M}(\mathbb{G})$, we obtain a pair of completely bounded maps

$$f \longmapsto \mu \star f \text{ and } f \longmapsto f \star \mu$$

on M_* through the left and right convolution products of $\mathcal{M}(\mathbb{G})$. The adjoint maps give the convolution actions $x \mapsto \mu \star x$ and $x \mapsto x \star \mu$ that are normal completely bounded maps on M.

We denote by $\mathcal{P}(\mathbb{G})$ the set of all states on $\mathcal{C}_0(\mathbb{G})$ (i.e., 'the quantum probability measures'). For any such element the convolution action is a *Markov operator*, i.e., a unital normal completely positive map, on M.

Now assume that the left Haar weight φ on \mathbb{G} is a trace, and let $\psi = \varphi R$ be the right Haar weight. We denote by $\mathcal{L}^p(\mathbb{G})$ and $\tilde{\mathcal{L}}^p(\mathbb{G})$ the non-commutative L^p -spaces associated to φ and ψ , respectively. These spaces are obtained by taking the closure of \mathfrak{M}_{φ} and \mathfrak{M}_{ψ} under the norms $||x|| = \varphi(|x|^p)^{\frac{1}{p}}$ and $||x|| = \psi(|x|^p)^{\frac{1}{p}}$, respectively (see [12] for details). We denote by $\mathcal{L}^{\infty}(\mathbb{G})$ the von Neumann algebra M. Similarly to the classical case, one can also construct the non-commutative L^p -spaces using the complex interpolation method (cf. [5], [10], [13]). The map

(1.1)
$$\mathfrak{M}_{\varphi} \ni x \longmapsto \varphi \cdot x \in M_*$$

extends to an isometric isomorphism between $\mathcal{L}^1(\mathbb{G})$ and M_* , where $\langle \varphi \cdot x, y \rangle = \varphi(xy)$.

2. μ -harmonic operators

We assume that $\mu \in \mathcal{P}(\mathbb{G})$ throughout this section. By invariance of the left Haar weight φ , we can easily see that $\mathcal{L}^p(\mathbb{G}) \cap \mathcal{L}^\infty(\mathbb{G})$ is invariant under the left convolution action by μ . Since $\varphi = \psi R$ is a trace, by [11, Proposition 5.20] we have

$$R\big((\iota \otimes \varphi)\Gamma(a)(1 \otimes b)\big) = (\iota \otimes \varphi)\big((1 \otimes a)\Gamma(b)\big)$$

for all $a, b \in \mathfrak{N}_{\varphi}$. Therefore we obtain

(2.1)

$$\langle \mu \star (\varphi \cdot a), b \rangle = \langle \mu, (\iota \otimes \varphi) ((1 \otimes a) \Gamma(b)) \rangle = \langle \mu R, (\iota \otimes \varphi) (\Gamma(a) (1 \otimes b)) \rangle$$

$$(2.2) \qquad \qquad = \langle (\mu R) \star (b \cdot \varphi), a \rangle = \langle (b \cdot \varphi), (\mu R) \star a \rangle = \langle \varphi \cdot ((\mu R) \star a), b \rangle.$$

Since the map (1.1) is an isometry, this shows that the convolution action

$$\mathfrak{M}_{\varphi} \ni x \longmapsto \varphi \cdot x \longmapsto (\mu R) \star (\varphi \cdot x) = \varphi \cdot (\mu \star x) \longmapsto \mu \star x \in \mathfrak{M}_{\varphi}$$

extends to an operator on $\mathcal{L}^1(\mathbb{G})$ with the same norm as the convolution operator by μ on $\mathcal{L}^{\infty}(\mathbb{G})$. Now, interpolating between $\mathcal{L}^1(\mathbb{G})$ and $\mathcal{L}^{\infty}(\mathbb{G})$, we can extend the convolution action

$$\mathcal{L}^{p}(\mathbb{G}) \cap \mathcal{L}^{\infty}(\mathbb{G}) \ni x \longmapsto \mu \star x \in \mathcal{L}^{p}(\mathbb{G}) \cap \mathcal{L}^{\infty}(\mathbb{G})$$

to $\mathcal{L}^{p}(\mathbb{G})$. An operator $x \in \mathcal{L}^{p}(\mathbb{G})$ is called μ -harmonic if $\mu \star x = x$ and $\mathcal{H}^{p}_{\mu}(\mathbb{G}) = \{x \in \mathcal{L}^{p}(\mathbb{G}) : \mu \star x = x\}$ is the space of μ -harmonic operators. It is easy to see that $\mathcal{H}^{p}_{\mu}(\mathbb{G})$ is a weak* closed subspace of $\mathcal{L}^{p}(\mathbb{G})$ for all 1 .

Similarly to the case $p = \infty$, we have a projection $E^p_{\mu} : \mathcal{L}^p(\mathbb{G}) \to \mathcal{H}^p_{\mu}(\mathbb{G})$ constructed as follows. Let \mathcal{U} be a free ultra-filter on \mathbb{N} , and define $E^p_{\mu} : \mathcal{L}^p(\mathbb{G}) \to \mathcal{L}^p(\mathbb{G})$ by the weak^{*} limit

$$E^p_{\mu}(x) = \lim_{\mathcal{U}} \frac{1}{n} \sum_{k=1}^n \mu^k \star x.$$

Then it is easy to see that $E^p_{\mu} \circ E^p_{\mu} = E^p_{\mu}$ and that $\mathcal{H}^p_{\mu}(\mathbb{G}) = E^p_{\mu}(\mathcal{L}^p(\mathbb{G}))$. Moreover, by considering the convolution action on $\mathcal{L}^p(\mathbb{G}) \cap \mathcal{L}^{\infty}(\mathbb{G})$ and passing to limits, we can see that E^p_{μ} is also positive. Similarly, we can extend the right convolution action

 $\tilde{\mathcal{L}}^p(\mathbb{G}) \cap \mathcal{L}^\infty(\mathbb{G}) \ni x \longmapsto x \star \mu \in \tilde{\mathcal{L}}^p(\mathbb{G}) \cap \mathcal{L}^\infty(\mathbb{G})$

to $\tilde{\mathcal{L}}^p(\mathbb{G})$. Then $\tilde{\mathcal{H}}^p_{\mu}(\mathbb{G}) = \{x \in \tilde{\mathcal{L}}^p(\mathbb{G}) : x \star \mu = x\}$ is a weak* closed subspace of $\tilde{\mathcal{L}}^p(\mathbb{G})$ and there is a positive projection \tilde{E}^p_{μ} on $\tilde{\mathcal{L}}^p(\mathbb{G})$ such that $\tilde{\mathcal{H}}^p_{\mu}(\mathbb{G}) = \tilde{E}^p_{\mu}(\tilde{\mathcal{L}}^p(\mathbb{G}))$.

Proposition 2.1. The unitary antipode R extends to an isometric isomorphism

$$R : \mathcal{L}^p(\mathbb{G}) \to \hat{\mathcal{L}}^p(\mathbb{G})$$

such that $R(\mathcal{H}^p_{\mu}(\mathbb{G})) = \tilde{\mathcal{H}}^p_{\mu R}$ for all $1 \leq p \leq \infty$.

Proof. Since R is an anti-automorphism, we have

$$\psi(|R(a)|^p) = \psi(R(|a|^p)) = \varphi(|a|^p)$$

for all $a \in \mathfrak{M}_{\varphi}$. Therefore R extends to an isometry from $\mathcal{L}^{p}(\mathbb{G})$ onto $\tilde{\mathcal{L}}^{p}(\mathbb{G})$. Moreover, we have

$$R(\mu \star a) = R((\mu \otimes \iota)\Gamma(a)) = R((\mu \otimes \iota)\Gamma(R^{2}(a)))$$

= $R((\iota \otimes \mu)(R \otimes R)\Gamma(R(a)))$
= $(\iota \otimes \mu R)\Gamma(R(a)) = R(a) \star \mu R,$

which implies that $R(\mathcal{H}^p_{\mu}(\mathbb{G})) = \tilde{\mathcal{H}}^p_{\mu R}$.

Therefore, for $1 < p, q < \infty$ with $\frac{1}{p} + \frac{1}{q} = 1$, we can identify each $\mathcal{L}^p(\mathbb{G})$ and $\tilde{\mathcal{L}}^q(\mathbb{G})$ with the dual space of the other via

$$\langle a, b \rangle = \varphi(aR(b)) = \psi(R(a)b), \quad a \in \mathcal{L}^p(\mathbb{G}), \quad b \in \tilde{\mathcal{L}}^q(\mathbb{G}).$$

Theorem 2.2. Let $1 < p, q < \infty$ be such that $\frac{1}{p} + \frac{1}{q} = 1$. Then we have linear isometric isomorphisms

$$\mathcal{H}^p_\mu(\mathbb{G})^* \cong \tilde{\mathcal{H}}^q_\mu(\mathbb{G}) \qquad and \qquad \mathcal{H}^p_\mu(\mathbb{G}) \cong \tilde{\mathcal{H}}^q_\mu(\mathbb{G})^*.$$

Proof. Denote

$$\mathcal{J}^p_{\mu}(\mathbb{G}) := \{ x - \mu \star x : x \in \mathcal{L}^p(\mathbb{G}) \}^- \text{ and } \tilde{\mathcal{J}}^q_{\mu}(\mathbb{G}) := \{ y - y \star \mu : y \in \tilde{\mathcal{L}}^q(\mathbb{G}) \}^-.$$
Since

$$\begin{aligned} \langle x , y \star \mu \rangle &= \psi \big(R(x)(y \star \mu) \big) = \psi \big(R(x)(\iota \otimes \mu) \Gamma(y) \big) = \mu \big((\psi \otimes \iota)(R(x) \otimes 1) \Gamma(y) \big) \\ &= \mu R \big((\psi \otimes \iota) \Gamma(R(x))(y \otimes 1) \big) = \psi \big((\iota \otimes \mu R) \Gamma(R(x)) y \big) \\ &= \psi \big(R \big((\mu \otimes \iota) \Gamma(x) \big) y \big) = \psi (R(\mu \star x) y) = \langle \mu \star x , y \rangle \end{aligned}$$

for all $x \in \mathfrak{M}_{\varphi}$ and $y \in \mathfrak{M}_{\psi}$, it follows that $\mathcal{H}^p_{\mu}(\mathbb{G}) = \tilde{\mathcal{J}}^q_{\mu}(\mathbb{G})^{\perp}$, and therefore

$$\mathcal{H}^p_{\mu}(\mathbb{G})^* = \frac{\hat{\mathcal{L}}^q(\mathbb{G})}{\mathcal{H}^p_{\mu}(\mathbb{G})^{\perp}} = \frac{\hat{\mathcal{L}}^q(\mathbb{G})}{\tilde{\mathcal{J}}^q_{\mu}(\mathbb{G})}$$

In the following we show that the correspondence

$$\frac{\mathcal{L}^q(\mathbb{G})}{\tilde{\mathcal{J}}^q_{\mu}(\mathbb{G})} \ni y + \tilde{\mathcal{J}}^q_{\mu}(\mathbb{G}) \longmapsto \tilde{E}^q_{\mu}(y) \in \tilde{\mathcal{H}}^q_{\mu}(\mathbb{G})$$

3972

defines a linear isometric isomorphism. First we observe that

$$\tilde{E}^q_{\mu}(y \star \mu - y) = \lim_{\mathcal{U}} \left((y \star \mu - y) \star \sum_{1}^{n} \frac{\mu^k}{n} \right) = 0$$

for all $y \in \tilde{\mathcal{L}}^q(\mathbb{G})$, which implies that the above map is well-defined. It is obviously onto. To check the injectivity, first note that

$$y - y \star \mu^k = (y - y \star \mu) + (y \star \mu - y \star \mu^2) + (y \star \mu^{k-1} - y \star \mu^k) \in \tilde{\mathcal{J}}^q_{\mu}(\mathbb{G}),$$

for all $k \in \mathbb{N}$. Now suppose that $\tilde{E}^q_{\mu}(y) = 0$. Then, by the above and by the weak^{*} closeness of $\tilde{\mathcal{J}}^q_{\mu}(\mathbb{G})$, we have

$$y = y - \tilde{E}^q_{\mu}(y) = y - \left(\lim_{\mathcal{U}} \frac{1}{n} \sum_{k=1}^n y \star \mu^k\right) = \lim_{\mathcal{U}} \frac{1}{n} \sum_{k=1}^n \left(y - y \star \mu^k\right) \in \tilde{\mathcal{J}}^q_{\mu}(\mathbb{G}),$$

and therefore the injectivity of the map follows. Moreover, since \tilde{E}^q_{μ} is an idempotent, it follows that

$$y + \tilde{\mathcal{J}}^q_\mu(\mathbb{G}) = \tilde{E}^q_\mu(y) + \tilde{\mathcal{J}}^q_\mu(\mathbb{G}).$$

Therefore

$$\|y + \tilde{\mathcal{J}}^q_{\mu}(\mathbb{G})\| \le \|\tilde{E}^q_{\mu}(y)\|.$$

On the other hand, we have

$$\begin{split} \|\tilde{E}^{q}_{\mu}(y)\| &= \sup\left\{\left|\left\langle\tilde{E}^{q}_{\mu}(y), x\right\rangle\right| : x \in \mathcal{L}^{p}(\mathbb{G}), \ \|x\| \leq 1\right\} \\ &= \sup\left\{\left|\left\langle y, \, E^{p}_{\mu}(x)\right\rangle\right| : x \in \mathcal{L}^{p}(\mathbb{G}), \ \|x\| \leq 1\right\} \\ &\leq \|y + \tilde{\mathcal{J}}^{q}_{\mu}(\mathbb{G})\|. \end{split}$$

This shows that the map is isometric and so yields the first identification. The second identification is proved along similar lines. $\hfill \Box$

Proposition 2.3. For $1 the space <math>\mathcal{H}^p_{\mu}(\mathbb{G})$ is generated by its positive elements.

Proof. By considering the polar decomposition, we observe that $\mathcal{L}^{p}(\mathbb{G}) \cap \mathcal{L}^{\infty}(\mathbb{G})$ is self-adjoint. Let $x \in \mathcal{H}^{p}_{\mu}(\mathbb{G})$, and $\mathcal{L}^{p}(\mathbb{G}) \cap \mathcal{L}^{\infty}(\mathbb{G}) \ni x_{n} \to x$ in $\mathcal{L}^{p}(\mathbb{G})$. Using the continuity of the adjoint on $\mathcal{L}^{p}(\mathbb{G})$, we obtain

$$\mu \star x^* = \lim_{n} \mu \star x^*_n = \lim_{n} (\mu \star x_n)^* = (\lim_{n} \mu \star x_n)^* = x^*,$$

where the limits are taken in $\mathcal{L}^{p}(\mathbb{G})$. Therefore, $\mathcal{H}^{p}_{\mu}(\mathbb{G})$ is self-adjoint and so is generated by its self-adjoint elements. Now, let x be a self-adjoint element in $\mathcal{L}^{p}(\mathbb{G})$, and let $x = x_{+} - x_{-}$ where both x_{+} and x_{-} are in $\mathcal{L}^{p}(\mathbb{G})^{+}$. Then we have

$$x = E^p_{\mu}(x) = E^p_{\mu}(x_+) - E^p_{\mu}(x_-),$$

which yields the result by positivity of the map E^p_{μ} .

3973

Main Theorem: Case $1 . A state <math>\mu \in \mathcal{P}(\mathbb{G})$ is called *non-degenerate* on $\mathcal{C}_0(\mathbb{G})$ if for every non-zero element $x \in \mathcal{C}_0(\mathbb{G})^+$ there exists $n \in \mathbb{N}$ such that $\langle x, \mu^n \rangle \neq 0$.

Theorem 2.4. Let \mathbb{G} be a non-compact, locally compact quantum group with a tracial (left) Haar weight φ , and let $\mu \in \mathcal{P}(\mathbb{G})$ be non-degenerate. Then for all 1 we have

$$\mathcal{H}^p_\mu(\mathbb{G}) = \{0\}$$

Proof. First let $1 , and suppose <math>0 \leq x \in \mathcal{H}^p_{\mu}(\mathbb{G})$ with $||x||_p = 1$. Define

$$\tilde{\mu} := \sum_{i=n}^{\infty} \frac{\mu^n}{2^n}.$$

Since μ is non-degenerate, $\tilde{\mu}$ is faithful, and $\tilde{\mu} \star x = x$. Now, let $q \geq 2$ be such that $\frac{1}{p} + \frac{1}{q} = 1$. Using the duality between $\mathcal{L}^p(\mathbb{G})$ and $\tilde{\mathcal{L}}^q(\mathbb{G})$, we assign to each pair $a \in \mathcal{L}^p(\mathbb{G})$ and $b \in \tilde{\mathcal{L}}^q(\mathbb{G})$ an element $\Omega_{a,b} \in \mathcal{L}^\infty(\mathbb{G})$ defined by

$$\langle f, \Omega_{a,b} \rangle = \langle f \star a, b \rangle \qquad (f \in M_*).$$

We clearly have $\|\Omega_{a,b}\| \leq \|a\|_p \|b\|_q$. Now, choose $y \in \tilde{\mathcal{L}}^q(\mathbb{G})$, $\|y\|_q = 1$, such that $\langle x, y \rangle = 1$. We claim that $\Omega_{x,y} \in \mathcal{C}_0(\mathbb{G})$ (in fact, $\Omega_{a,b} \in \mathcal{C}_0(\mathbb{G})$ for all $a \in \mathcal{L}^p(\mathbb{G})$ and $b \in \tilde{\mathcal{L}}^q(\mathbb{G})$). To see this, assume that

$$x = \int_0^\infty \lambda \, de_\lambda$$

is the spectral decomposition of x, and let

$$x_n = \int_{\frac{1}{n}}^n \lambda \, de_\lambda.$$

Then $x_n \in \mathcal{L}^p(\mathbb{G}) \cap \mathcal{L}^\infty(\mathbb{G}) \subseteq \mathfrak{N}_{\varphi}$, $||x_n||_p \leq ||x||_p$, and $||x - x_n||_p \to 0$. Also let $y_n \in \mathfrak{N}_{\psi}$ be such that

$$\|y_n - y\|_q \to 0.$$

Denote by $\omega_{\eta,\zeta}$ the vector functional associated with $\eta, \zeta \in H_{\varphi}$. Then, for $f \in M_*$ we have

$$\begin{split} \langle f , \, \Omega_{x_n, y_n} \rangle &= \langle f \star x_n \,, \, y_n \rangle = \langle \lambda(f) \Lambda_{\varphi}(x_n) \,, \, \Lambda_{\varphi}(R(y_n)) \rangle \\ &= \langle \omega_{\Lambda_{\varphi}(x_n) \,, \, \Lambda_{\varphi}(R(y_n))}, \lambda(f) \rangle = \langle f \,, \, \hat{\lambda}(\omega_{\Lambda_{\varphi}(x_n), \Lambda_{\varphi}(R(y_n))}) \rangle, \end{split}$$

which implies that $\Omega_{x_n,y_n} = \hat{\lambda}(\omega_{\Lambda_{\varphi}(x_n),\Lambda_{\varphi}(R(y_n))}) \in \mathcal{C}_0(\mathbb{G})$. Moreover, it follows that

$$\begin{aligned} \|\Omega_{x,y} - \Omega_{x_n,y_n}\|_{\infty} &\leq \|\Omega_{x-x_n,y}\|_{\infty} + \|\Omega_{x_n,y-y_n}\|_{\infty} \\ &\leq \|x - x_n\|_p \|y\|_q + \|x_n\|_p \|y - y_n\|_q \to 0. \end{aligned}$$

This shows that $\Omega_{x,y} \in \mathcal{C}_0(\mathbb{G})$, as claimed. But then we have $\|\Omega_{x,y}\| \le \|x\|_p \|y\|_q = 1$, and

 $\langle \tilde{\mu}, \Omega_{x,y} \rangle = \langle \tilde{\mu} \star x, y \rangle = \langle x, y \rangle = 1.$

Since $\tilde{\mu}$ is faithful, it follows that $\Omega_{x,y} = 1$, and therefore $1 \in \mathcal{C}_0(\mathbb{G})$, which contradicts our assumption of \mathbb{G} being non-compact, so x = 0. This shows, by Proposition 2.3, that $\mathcal{H}^p_{\mu}(\mathbb{G}) = \{0\}$ for all $1 . Now, a similar argument yields <math>\tilde{\mathcal{H}}^q_{\mu}(\mathbb{G}) = 0$ for all $1 < q \leq 2$, which implies by Theorem 2.2 that $\mathcal{H}^p_{\mu}(\mathbb{G}) = \tilde{\mathcal{H}}^q_{\mu}(\mathbb{G})^* = \{0\}$ for all $2 \leq p < \infty$.

Main Theorem: Case p = 1. Since $\mathcal{L}^1(\mathbb{G})$ is not a dual Banach space, our proof for 1 does not work in this case, and so we have to treat this case $separately. We do this by first proving a similar result for <math>M_*$ and then using the identification of the latter with $\mathcal{L}^1(\mathbb{G})$. Note that for the following theorem we do not assume that the Haar weight is a trace.

Theorem 2.5. Let \mathbb{G} be a non-compact, locally compact quantum group, and let $\mu \in \mathcal{P}(\mathbb{G})$ be non-degenerate. If $\omega \in \mathcal{M}(\mathbb{G})$ is such that $\mu \star \omega = \omega$, then $\omega = 0$.

Proof. Assume that $\mu \star \omega = \omega$, and let $\tilde{\mu}$ be as in the proof of Theorem 2.4. So, $\tilde{\mu}$ is faithful, and $\tilde{\mu} \star \omega = \omega$. Therefore we have

$$\lambda(\tilde{\mu})\lambda(\omega)\xi = \lambda(\tilde{\mu}\star\omega)\xi = \lambda(\omega)\xi$$

for all $\xi \in H_{\varphi}$. Now if $\omega \neq 0$, there exists $\xi \in H_{\varphi}$ such that $\|\lambda(\omega)\xi\| = 1$. Denote by $\hat{\omega}$ the restriction of $\omega_{\lambda(\omega)\xi}$ to \hat{M} . Then $\|\hat{\omega}\| = 1$, and

$$\langle \tilde{\mu}, \hat{\lambda}(\hat{\omega})
angle = \langle \lambda(\tilde{\mu}), \hat{\omega}
angle = \langle \lambda(\tilde{\mu})\lambda(\omega)\xi, \lambda(\omega)\xi
angle, \lambda(\omega)\xi
angle = \langle \lambda(\omega)\xi, \lambda(\omega)\xi
angle = 1.$$

Since $\|\hat{\lambda}(\hat{\omega})\| \leq 1$ and $\tilde{\mu}$ is faithful, it follows that $\hat{\lambda}(\hat{\omega}) = 1$. But this implies that $1 \in C_0(\mathbb{G})$, which contradicts our assumption of \mathbb{G} being non-compact. Hence, $\omega = 0$.

Theorem 2.6. Let \mathbb{G} be a non-compact, locally compact quantum group with a tracial (left) Haar weight φ , and let $\mu \in \mathcal{P}(\mathbb{G})$ be non-degenerate. Then

$$\mathcal{H}^1_\mu(\mathbb{G}) = \{0\}$$
 .

Proof. Let $x \in \mathcal{H}^1_{\mu}(\mathbb{G})$. We have that $\mu R \in \mathcal{P}(\mathbb{G})$ is non-degenerate, and from equations (2.1) and (2.2) we get

$$\mu R \star (\varphi \cdot x) = \varphi \cdot (\mu \star x) = \varphi \cdot x$$

Hence, $\varphi \cdot x = 0$ by Theorem 2.5, and therefore x = 0.

Remark 2.7. The statements of Theorems 2.4 and 2.6 are not true in general for the case $p = \infty$. Any non-degenerate probability measure on a non-amenable discrete group is a counterexample [8].

Compact Case. We conclude by proving the triviality of μ -harmonic operators in the compact quantum group setting.

Theorem 2.8. Let \mathbb{G} be a compact quantum group with tracial Haar state, and let $\mu \in \mathcal{P}(\mathbb{G})$ be non-degenerate. Then $\mathcal{H}^p_{\mu}(\mathbb{G}) = \mathbb{C}1$ for all $1 \leq p \leq \infty$.

Proof. The case $p = \infty$ was proved in the general case in [9]. Let $1 \leq p < \infty$, and assume that $x \in \mathcal{H}^p_{\mu}(\mathbb{G}), x \notin \mathbb{C}1$ and $||x||_p = 1$. Then there exists $y \in \tilde{\mathcal{L}}^q(\mathbb{G})$ with $||y||_q = 1$ such that $\langle x, y \rangle = 1$ (we let $q = \infty$ for p = 1) and $\langle 1, y \rangle = 0$. Then from the proof of Theorem 2.4 (which we can also apply to the case of p = 1 and $q = \infty$, since $\mathcal{L}^\infty(\mathbb{G}) \subseteq \mathcal{L}^2(\mathbb{G})$ for a compact quantum group) we have $\Omega_{x,y} = 1$ and

(2.3)
$$\langle \varphi \star x, y \rangle = \langle \varphi, 1 \rangle = 1$$

where φ is the Haar state on \mathbb{G} . Now, let $x_n \in \mathcal{L}^{\infty}(\mathbb{G})$ be such that $||x_n - x||_p \to 0$. Then

$$\langle \varphi \star x, y \rangle = \lim_{n} \langle \varphi \star x_n, y \rangle = \lim_{n} \langle \varphi, x_n \rangle \langle 1, y \rangle = 0.$$

But this contradicts (2.3), and therefore x = 0. Hence, $\mathcal{H}^p_{\mu}(\mathbb{G}) = \mathbb{C}1$.

Remark 2.9. All of our results in this paper can be proved, by slight modifications of the arguments, for a state μ on the universal C^* -algebra $C_u(\mathbb{G})$.

References

- E. Bédos and L. Tuset, Amenability and co-amenability for locally compact quantum groups, Internat. J. Math. 14 (2003), no. 8, 865–884, DOI 10.1142/S0129167X03002046. MR2013149 (2004k:46129)
- [2] Gustave Choquet and Jacques Deny, Sur l'équation de convolution μ = μ * σ, C. R. Acad. Sci. Paris 250 (1960), 799–801 (French). MR0119041 (22 #9808)
- [3] Cho-Ho Chu, Harmonic function spaces on groups, J. London Math. Soc. (2) 70 (2004), no. 1, 182–198, DOI 10.1112/S0024610704005265. MR2064757 (2005h:43001)
- [4] T. J. Cooney, Noncommutative L_p-spaces associated with locally compact quantum groups, Ph.D. thesis, University of Illinois at Urbana–Champaign, 2010.
- [5] Hideaki Izumi, Constructions of non-commutative L^p-spaces with a complex parameter arising from modular actions, Internat. J. Math. 8 (1997), no. 8, 1029–1066, DOI 10.1142/S0129167X97000494. MR1484866 (99a:46114)
- [6] Masaki Izumi, Non-commutative Poisson boundaries and compact quantum group actions, Adv. Math. 169 (2002), no. 1, 1–57, DOI 10.1006/aima.2001.2053. MR1916370 (2003j:46105)
- [7] Masaki Izumi, Sergey Neshveyev, and Lars Tuset, Poisson boundary of the dual of $SU_q(n)$, Comm. Math. Phys. **262** (2006), no. 2, 505–531, DOI 10.1007/s00220-005-1439-x. MR2200270 (2007f:58012)
- [8] V. A. Kaĭmanovich and A. M. Vershik, Random walks on discrete groups: boundary and entropy, Ann. Probab. 11 (1983), no. 3, 457–490. MR704539 (85d:60024)
- M. Kalantar, M. Neufang, and Z.-J. Ruan, Poisson boundaries over locally compact quantum groups, Internat. J. Math. 24 (2013), no. 3, 21 pp., DOI 10.1142/S0129167X13500237.
- [10] Hideki Kosaki, Applications of the complex interpolation method to a von Neumann algebra: noncommutative L^p-spaces, J. Funct. Anal. 56 (1984), no. 1, 29–78, DOI 10.1016/0022-1236(84)90025-9. MR735704 (86a:46085)
- Johan Kustermans and Stefaan Vaes, Locally compact quantum groups, Ann. Sci. École Norm. Sup. (4) 33 (2000), no. 6, 837–934, DOI 10.1016/S0012-9593(00)01055-7 (English, with English and French summaries). MR1832993 (2002f:46108)
- [12] M. Takesaki, *Theory of operator algebras. II*, Encyclopaedia of Mathematical Sciences, vol. 125, Springer-Verlag, Berlin, 2003. Operator Algebras and Non-commutative Geometry, 6. MR1943006 (2004g:46079)
- [13] Marianne Terp, Interpolation spaces between a von Neumann algebra and its predual, J. Operator Theory 8 (1982), no. 2, 327–360. MR677418 (85b:46075)
- [14] Stefaan Vaes and Nikolas Vander Vennet, Poisson boundary of the discrete quantum group $\widehat{A_u(F)}$, Compos. Math. **146** (2010), no. 4, 1073–1095, DOI 10.1112/S0010437X1000477X. MR2660685 (2011m:46120)
- [15] Stefaan Vaes and Roland Vergnioux, The boundary of universal discrete quantum groups, exactness, and factoriality, Duke Math. J. 140 (2007), no. 1, 35–84, DOI 10.1215/S0012-7094-07-14012-2. MR2355067 (2010a:46166)

School of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada K1S $5\mathrm{B}6$

E-mail address: mkalanta@math.carleton.ca