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ABSTRACT. For a locally compact quantum group G with tracial Haar weight
¢ and a quantum measure p on G, we study the space H%,(G) of p-harmonic op-
erators in the non-commutative LP-space LP(G) associated to the Haar weight
. The main result states that if p is non-degenerate, then H%, (G) is trivial
for all 1 < p < 0.

1. INTRODUCTION AND PRELIMINARIES

Non-commutative Poisson boundaries of (discrete) quantum groups G was first
introduced and studied by Izumi in [6]. Motivated by the classical setting, in fact,
he defined the Poisson boundary of G associated to a ‘quantum measure’ u as the
space of u-harmonic ‘functions’; i.e., the fixed point space of the Markov operator
associated to p. For discrete quantum groups, this was further studied by several
authors (cf. [7], [I4], [I5]). Poisson boundaries in the locally compact quantum
group setting was studied by Neufang, Ruan and the author in [9]. Quantum
versions of several important classical results regarding harmonic functions were
proved there. In particular, triviality of special classes of harmonic functions, such
as Co-functions, was proved.

Another important fact regarding classical harmonic functions on locally com-
pact groups is that for 1 < p < oo, any LP-harmonic function associated to an
adapted probability measure is trivial. The main result of this paper is a quantum
version of this result. But, in order to talk about p-harmonic elements in the non-
commutative LP-spaces, we first need to define the convolution action by p on such
spaces.

In his PhD thesis [4], Cooney studied the non-commutative LP-spaces associated
to the Haar weight ¢ of a locally compact quantum group G. He mainly considered
Haagerup’s version and could prove that in the Kac algebra setting, the convolu-
tion action of an ‘absolutely continuous quantum measure’ can be extended to the
Haagerup non-commutative LP-spaces. So, we cannot consider harmonic operators
in the general setting of all locally compact quantum groups. Moreover, in the case
of non-tracial ¢, there are different ways to define the non-commutative LP-spaces.
Although all these spaces are isometrically isomorphic as Banach spaces, the iden-
tifications are not necessarily compatible with the quantum group structure, so it
is not clear whether the space of y-harmonic LP-operators is the same, as a Banach
space, for all different definitions of non-commutative LP-spaces.
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Therefore, in this paper, instead of restricting ourselves to the Kac algebra set-
ting, we consider locally compact quantum groups G whose Haar weight ¢ is a
trace. In this case, the convolution action is extended to the non-commutative LP-
spaces, and the main result of the paper states that in the case of a non-degenerate
quantum measure u, for 1 < p < oo, any p-harmonic element which lies in the
non-commutative LP-space of ¢ is trivial.

First, let us introduce our terminology and recall some results on locally compact
quantum groups which we will be using in this paper. For more details, we refer
the reader to [I1].

A locally compact quantum group G is a quadruple (M, T, ¢, ), where M is a
von Neumann algebra with a co-associative co-multiplication I" : M — M®M,
and ¢ and ¢ are (normal faithful semi-finite) left and right Haar weights on M,
respectively. We write ML = {x € M* : p(x) < oo} and N, = {z € M+ :
p(xz*x) < oo}, and we denote by A, the inclusion of 91, into the GNS Hilbert space
H, of . For each locally compact quantum group G, there exists a left fundamental
unitary operator W on H, ® H, which satisfies the pentagonal relation and such
that the co-multiplication I' on M can be expressed as

Nx)=W*"(1@x)W (zeM).
There exists an anti-automorphism R on M, called the unitary antipode, such that
R? =, and
I'oR=x(R®R)oT,
where x(z®y) = (y®x) is the flip map. It can be easily seen that if  is a left Haar
weight, then @R defines a right Haar weight on M.
Let M, be the predual of M. Then the pre-adjoint of I' induces on M, an
associative completely contractive multiplication
*: M,@M, 3 f1® fo — fixfo=(f1® f2) o € M..
The left reqular representation X : M, — B(H,) is defined by
AN M, 3 fr— ANf)=(f®)(W) e B(H,),

which is an injective and completely contractive algebra homomorphism from M,
into B(H,). Then M = {\(f): f € M.}" is the von Neumann algebra associated
with the dual quantum group G. It follows that W € M&M. We also define the
completely contractive injection

A:M, > f— Af)= (o f)(W) e M.
The reduced quantum group C*-algebra

Co(G) = ML1(G))

is a weak* dense C*-subalgebra of M. Let M(G) denote the operator dual Co(G)".
There exists a completely contractive multiplication on M(G) given by the convo-
lution

*: M(G)BM(G) 3 pv — pxv =p(t@ )T =v(p® )l € M(G)

such that M(G) contains M, as a norm closed two-sided ideal. Therefore, for each
@ € M(G), we obtain a pair of completely bounded maps

fr—uxf and fr+— fxpu
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on M, through the left and right convolution products of M(G). The adjoint maps
give the convolution actions x — pxx and x — x % u that are normal completely
bounded maps on M.

We denote by P(G) the set of all states on Co(G) (i.e., ‘the quantum probability
measures’). For any such element the convolution action is a Markov operator, i.e.,
a unital normal completely positive map, on M.

Now assume that the left Haar weight ¢ on G is a trace, and let ) = @R be the
right Haar weight. We denote by £7(G) and £P(G) the non-commutative LP-spaces
associated to ¢ and 1), respectively. These spaces are obtained by taking the closure
of M, and M, under the norms ||z| = <p(|x\p)i and ||z| = w(|x|p)i, respectively
(see [12] for details). We denote by £°(G) the von Neumann algebra M. Similarly
to the classical case, one can also construct the non-commutative LP-spaces using
the complex interpolation method (cf. [5], [I0], [13]). The map

(1.1) M, — p-x €M,
extends to an isometric isomorphism between £}(G) and M., where (¢ -z, y) =
p(zy)-

2. p-HARMONIC OPERATORS

We assume that g € P(G) throughout this section. By invariance of the left
Haar weight ¢, we can easily see that £P(G) N L°°(G) is invariant under the left
convolution action by . Since ¢ = R is a trace, by [I1, Proposition 5.20] we have

R((t@¢)l(a)(10b)) = (1@¢) ((12a)T'(b))

for all a,b € M. Therefore we obtain

(2.1)
(px(p-a), b)=(p, (1@p)((10a)L(b))) = (R, (12¢)(I(a)(12b)) )
(2.2) = ((uR)*(b-p),a)=((b-¢), (uR)xa) = (¢ ((uR)*a), b).

Since the map (1)) is an isometry, this shows that the convolution action
Mooz — -z r— (UR)*x(p-2)=¢- - (u*x) — prxx €M,

extends to an operator on £(G) with the same norm as the convolution operator
by 1 on £L>(G). Now, interpolating between £1(G) and L>(G), we can extend the
convolution action

LP(G)NLX(G) 3 & — pxz € L2(G) N L2(G)

to LP(G). An operator x € LP(G) is called p-harmonic if p* x = z and HE(G) =
{z € LP(G) : p*x = x} is the space of p-harmonic operators. It is easy to see that
HE(G) is a weak™ closed subspace of LP(G) for all 1 < p < oc.

Similarly to the case p = oo, we have a projection EF, : LP(G) — HE(G) con-
structed as follows. Let U be a free ultra-filter on N, and define E%, : LP(G) — LP(G)
by the weak* limit

1 n
Ei(z) = liLI{n - ;uk * I
Then it is easy to see that Ef, o Ef = EF and that H,(G) = EE(LP(G)). Moreover,
by considering the convolution action on £P(G) N L>*(G) and passing to limits, we
can see that ET is also positive.
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Similarly, we can extend the right convolution action
LP(G)NLX(G) >z — z+p € LP(G)NL®(G)

to £P(G). Then #ﬁ(G) = {z € LP(G) : % p = x} is a weak* closed subspace
of £P(G) and there is a positive projection Eﬁ on LP(G) such that ’ﬁﬁ(G) =
EL(LP(G)).
Proposition 2.1. The unitary antipode R extends to an isometric isomorphism
R : LP(G) — LP(G)

such that R(HL(G)) = Hbp for all 1 < p < oco.
Proof. Since R is an anti-automorphism, we have

U([R(a)”) = ¢ (R(|a]”)) = ¢(|al”)

for all a € 9M,. Therefore R extends to an isometry from LP(G) onto LP(G).
Moreover, we have

R(uxa) = R((ue0l(@) = R(

= R((ep)(RoR)T(R(a)))
= (WuR)I'(R(a)) = R(a) * pR,
which implies that R(HE(G)) = ’HﬁR . O

Therefore, for 1 < p,q < oo with % + % = 1, we can identify each £P(G) and
L£(G) with the dual space of the other via
(a,b) = p(aR(b)) = (R(a)b), a€LP(G), beL)G).

Theorem 2.2. Let 1 < p,q < oo be such that % + % = 1. Then we have linear
isometric isomorphisms

HE(G)" = HY(G) and  HL(G) = HL(G) .
Proof. Denote
JVG)i={z—p*z :x€LP(G)}” and JI(G):={y—y*p:yecLli(G)} .
Since
(x,yxp) = Y(R@)(y*p) =(R@)(uT(y)) = u((vow)(Rx)@1)T(y))
pR((Ypou)T(R(2))(y®1)) = ¥ ((1@uR)T(R(x)) y)
= P(R((u20)T(2))y) = p(R(pxx)y) = (urx, y)

for all z € M, and y € My, it follows that HE (G) = Ng(G)J‘7 and therefore
£(G) (©)

L4
HLG)T TG
In the following we show that the correspondence
L(G) . . -

7G) 5y + JHG) — El(y) € H](G)

H(G)" =
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defines a linear isometric isomorphism. First we observe that

n k

By *p—y) = lim (<y*u—y>*z%> =0

1

forall y € L4 (G), which implies that the above map is well-defined. It is obviously
onto. To check the injectivity, first note that

y—yxpF =@ —yxp) + yrp—yxp?)+ yxp Tt —yxpF) e JUG),
for all k£ € N. Now suppose that Eg(y) = 0. Then, by the above and by the weak*
closeness of jlf(((}), we have
y=y—Ely) =y— limliy*u’“ :limli(y—y*u’“) € J4(G)
p U n i U n i pA

and therefore the injectivity of the map follows. Moreover, since Eg is an idempo-
tent, it follows that

y+J1(G) = El(y) + TI(G).
Therefore
ly + T1G)| < [|IEL(y)]-

On the other hand, we have

1B3w)| = sup{| (Bi(w). )| : w € £2(G), [Jo] < 1)
= sup{|{y, BY(«))| : x € £7(G), [}« <1}
< ly+JL@).

This shows that the map is isometric and so yields the first identification. The
second identification is proved along similar lines. O

Proposition 2.3. For 1 < p < oo the space ’Hﬁ(G) is generated by its positive
elements.

Proof. By considering the polar decomposition, we observe that £LP(G) N L>®(G) is
self-adjoint. Let z € HE(G), and LP(G) N L2(G) > z,, — x in LP(G). Using the
continuity of the adjoint on £P(G), we obtain

*

pxrt =lmpxa) =lim(p*z,)* = (impxx,)* =",
n n n

where the limits are taken in LP(G). Therefore, HE (G) is self-adjoint and so is
generated by its self-adjoint elements. Now, let x be a self-adjoint element in
£P(G), and let 2 = x| — z_ where both ;. and z_ are in £?(G)". Then we have

v = Ej(z) = Ef(zy) — Ej(z-),

which yields the result by positivity of the map E¥. (Il
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Main Theorem: Case 1 < p < co. A state u € P(G) is called non-degenerate
on Co(G) if for every non-zero element 2 € Co(G)" there exists n € N such that
(z, u") #0.

Theorem 2.4. Let G be a non-compact, locally compact quantum group with a
tracial (left) Haar weight ¢, and let u € P(G) be non-degenerate. Then for all

1 < p < oo we have

H(G) = {0}
Proof. First let 1 < p <2, and suppose 0 < z € H}(G) with ||z][, = 1. Define
R
Since p is non-degenerate, [ is faithful, and fixx = x. Now, let ¢ > 2 be such that
% + % = 1. Using the duality between LP(G) and LI(G), we assign to each pair
a € LP(G) and b € L4(G) an element Q,, € L>(G) defined by

<fa Qa,b> = <f*a7 b> (f € M*)

We clearly have || Q] < [lall,||bllq- Now, choose y € £9(G), ||y|l, = 1, such that
(x,y) = 1. We claim that Q,, € Co(G) (in fact, Q. € Co(G) for all a € LP(G)
and b € £9(G)). To see this, assume that

x:/ Adey
0

is the spectral decomposition of z, and let

n
T :/ Adey.
1

Then z, € LP(G) N LX(G) C Ny, [ ]
Yn € My be such that

» < |lz|lp, and ||z — z,]|, — 0. Also let

[y —yllq = 0.
Denote by wy, ¢ the vector functional associated with ,( € H,. Then, for
f € M, we have

(fs Qo) = (Frxn, yn) = AMHAe(zn), Ap(R(yn)))
= {0, AR A = AW ()0, (R
which implies that Q, ., = S\(WA¢(mn,),A¢(R(yn,))) € Co(G). Moreover, it follows
that
122,y = Qe yulloo < 12—z ylloo + 12, y—yn llo
< e =anllp lyllg + llznllp [ly = ynlls = 0.

This shows that , , € Co(G), as claimed. But then we have || || < |lz|lpllylly =
1, and
(f, Quy)=(ixz,y)=(z,y) =1

Since fi is faithful, it follows that €., = 1, and therefore 1 € Cy(G), which
contradicts our assumption of G being non-compact, so x = 0. This shows, by
Proposition 2.3l that HE(G) = {0} for all 1 < p < 2. Now, a similar argu-
ment yields ’ﬁz(G) = 0 for all 1 < g < 2, which implies by Theorem that
HE(G) = ﬁz(G)* = {0} for all 2 < p < 0. O
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Main Theorem: Case p = 1. Since £!(G) is not a dual Banach space, our proof
for 1 < p < oo does not work in this case, and so we have to treat this case
separately. We do this by first proving a similar result for M, and then using the
identification of the latter with £(G). Note that for the following theorem we do
not assume that the Haar weight is a trace.

Theorem 2.5. Let G be a non-compact, locally compact quantum group, and let
€ P(G) be non-degenerate. If w € M(G) is such that p*w = w, then w = 0.

Proof. Assume that p*w = w, and let ji be as in the proof of Theorem [Z4l So, i
is faithful, and i x w = w. Therefore we have

A()A(w)E = AMfi*+w)§ = Aw)§
for all £ € H,. Now if w # 0, there exists £ € H, such that ||[A\(w)£|| = 1. Denote
by @ the restriction of wy (e to M. Then ||&|| =1, and

(i, A@)) = (@), @) = ABAW)E, Mw)E) = AW)E, Aw)§) = 1.
Since |A(@)| < 1 and /i is faithful, it follows that A(@) = 1. But this implies
that 1 € Co(G), which contradicts our assumption of G being non-compact. Hence,
w = 0. (]

Theorem 2.6. Let G be a non-compact, locally compact quantum group with a
tracial (left) Haar weight ¢, and let u € P(G) be non-degenerate. Then

1 _
H,.(G) =A{0}.
Proof. Let = € Hi(G). We have that pR € P(G) is non-degenerate, and from
equations (2.1) and (2.2) we get
pRx(p-z) =@ (n*z)=¢- .
Hence, ¢ - = 0 by Theorem [2Z5] and therefore = 0. O

Remark 2.7. The statements of Theorems [2.4] and [2.6] are not true in general for the
case p = co. Any non-degenerate probability measure on a non-amenable discrete
group is a counterexample [§].

Compact Case. We conclude by proving the triviality of p-harmonic operators
in the compact quantum group setting.

Theorem 2.8. Let G be a compact quantum group with tracial Haar state, and let
p € P(G) be non-degenerate. Then H}(G) = C1 for all 1 < p < oo.

Proof. The case p = oo was proved in the general case in [9]. Let 1 < p < oo, and
assume that x € H}(G), z ¢ C1 and ||z, = 1. Then there exists y € L£(G) with
llyll; = 1 such that (x, y) =1 (we let ¢ = 0o for p=1) and (1, y) = 0. Then from
the proof of Theorem 4] (which we can also apply to the case of p =1 and ¢ = oo,
since L>(G) C £L%(G) for a compact quantum group) we have Q, , = 1 and
(2.3) (pra,y)=(p, 1) =1,
where ¢ is the Haar state on G. Now, let =, € £L>(G) be such that ||z, — x|/, — 0.
Then

{pxz,y)=lim(pxa,, y) = lim{p, z,)(1, y) = 0.
But this contradicts (Z3)), and therefore x = 0. Hence, H%(G) = C1. O
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Remark 2.9. All of our results in this paper can be proved, by slight modifications
of the arguments, for a state p on the universal C*-algebra C,(G).
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