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ON HARMONIC NON-COMMUTATIVE Lp-OPERATORS

ON LOCALLY COMPACT QUANTUM GROUPS

MEHRDAD KALANTAR

(Communicated by Marius Junge)

Abstract. For a locally compact quantum group G with tracial Haar weight
ϕ and a quantum measure μ on G, we study the space Hp

μ(G) of μ-harmonic op-
erators in the non-commutative Lp-space Lp(G) associated to the Haar weight
ϕ. The main result states that if μ is non-degenerate, then Hp

μ(G) is trivial
for all 1 ≤ p < ∞.

1. Introduction and preliminaries

Non-commutative Poisson boundaries of (discrete) quantum groups G was first
introduced and studied by Izumi in [6]. Motivated by the classical setting, in fact,
he defined the Poisson boundary of G associated to a ‘quantum measure’ μ as the
space of μ-harmonic ‘functions’, i.e., the fixed point space of the Markov operator
associated to μ. For discrete quantum groups, this was further studied by several
authors (cf. [7], [14], [15]). Poisson boundaries in the locally compact quantum
group setting was studied by Neufang, Ruan and the author in [9]. Quantum
versions of several important classical results regarding harmonic functions were
proved there. In particular, triviality of special classes of harmonic functions, such
as C0-functions, was proved.

Another important fact regarding classical harmonic functions on locally com-
pact groups is that for 1 ≤ p < ∞, any Lp-harmonic function associated to an
adapted probability measure is trivial. The main result of this paper is a quantum
version of this result. But, in order to talk about μ-harmonic elements in the non-
commutative Lp-spaces, we first need to define the convolution action by μ on such
spaces.

In his PhD thesis [4], Cooney studied the non-commutative Lp-spaces associated
to the Haar weight ϕ of a locally compact quantum group G. He mainly considered
Haagerup’s version and could prove that in the Kac algebra setting, the convolu-
tion action of an ‘absolutely continuous quantum measure’ can be extended to the
Haagerup non-commutative Lp-spaces. So, we cannot consider harmonic operators
in the general setting of all locally compact quantum groups. Moreover, in the case
of non-tracial ϕ, there are different ways to define the non-commutative Lp-spaces.
Although all these spaces are isometrically isomorphic as Banach spaces, the iden-
tifications are not necessarily compatible with the quantum group structure, so it
is not clear whether the space of μ-harmonic Lp-operators is the same, as a Banach
space, for all different definitions of non-commutative Lp-spaces.
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Therefore, in this paper, instead of restricting ourselves to the Kac algebra set-
ting, we consider locally compact quantum groups G whose Haar weight ϕ is a
trace. In this case, the convolution action is extended to the non-commutative Lp-
spaces, and the main result of the paper states that in the case of a non-degenerate
quantum measure μ, for 1 ≤ p < ∞, any μ-harmonic element which lies in the
non-commutative Lp-space of ϕ is trivial.

First, let us introduce our terminology and recall some results on locally compact
quantum groups which we will be using in this paper. For more details, we refer
the reader to [11].

A locally compact quantum group G is a quadruple (M,Γ, ϕ, ψ), where M is a
von Neumann algebra with a co-associative co-multiplication Γ : M → M⊗̄M ,
and ϕ and ψ are (normal faithful semi-finite) left and right Haar weights on M ,
respectively. We write M+

ϕ = {x ∈ M+ : ϕ(x) < ∞} and Nϕ = {x ∈ M+ :
ϕ(x∗x) < ∞}, and we denote by Λϕ the inclusion of Nϕ into the GNS Hilbert space
Hϕ of ϕ. For each locally compact quantum group G, there exists a left fundamental
unitary operator W on Hϕ ⊗Hϕ which satisfies the pentagonal relation and such
that the co-multiplication Γ on M can be expressed as

Γ(x) = W ∗(1⊗ x)W (x ∈ M).

There exists an anti-automorphism R on M , called the unitary antipode, such that
R2 = ι, and

Γ ◦R = χ(R⊗R) ◦ Γ,
where χ(x⊗y) = (y⊗x) is the flip map. It can be easily seen that if ϕ is a left Haar
weight, then ϕR defines a right Haar weight on M .

Let M∗ be the predual of M . Then the pre-adjoint of Γ induces on M∗ an
associative completely contractive multiplication

� : M∗⊗̂M∗ � f1 ⊗ f2 	−→ f1 � f2 = (f1 ⊗ f2) ◦ Γ ∈ M∗.

The left regular representation λ : M∗ → B(Hϕ) is defined by

λ : M∗ � f 	−→ λ(f) = (f ⊗ ι)(W ) ∈ B(Hϕ),

which is an injective and completely contractive algebra homomorphism from M∗
into B(Hϕ). Then M̂ = {λ(f) : f ∈ M∗}′′ is the von Neumann algebra associated

with the dual quantum group Ĝ. It follows that W ∈ M⊗̄M̂ . We also define the
completely contractive injection

λ̂ : M̂∗ � f̂ 	−→ λ̂(f̂) = (ι⊗ f̂)(W ) ∈ M.

The reduced quantum group C∗-algebra

C0(G) = λ̂(L1(Ĝ))
‖·‖

is a weak∗ dense C∗-subalgebra of M . Let M(G) denote the operator dual C0(G)
∗
.

There exists a completely contractive multiplication on M(G) given by the convo-
lution

� : M(G)⊗̂M(G) � μ⊗ν 	−→ μ � ν = μ(ι⊗ ν)Γ = ν(μ⊗ ι)Γ ∈ M(G)

such that M(G) contains M∗ as a norm closed two-sided ideal. Therefore, for each
μ ∈ M(G), we obtain a pair of completely bounded maps

f 	−→ μ � f and f 	−→ f � μ
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on M∗ through the left and right convolution products of M(G). The adjoint maps
give the convolution actions x 	→ μ � x and x 	→ x � μ that are normal completely
bounded maps on M .

We denote by P(G) the set of all states on C0(G) (i.e., ‘the quantum probability
measures’). For any such element the convolution action is a Markov operator, i.e.,
a unital normal completely positive map, on M .

Now assume that the left Haar weight ϕ on G is a trace, and let ψ = ϕR be the
right Haar weight. We denote by Lp(G) and L̃p(G) the non-commutative Lp-spaces
associated to ϕ and ψ, respectively. These spaces are obtained by taking the closure

of Mϕ and Mψ under the norms ‖x‖ = ϕ(|x|p) 1
p and ‖x‖ = ψ(|x|p) 1

p , respectively
(see [12] for details). We denote by L∞(G) the von Neumann algebra M . Similarly
to the classical case, one can also construct the non-commutative Lp-spaces using
the complex interpolation method (cf. [5], [10], [13]). The map

(1.1) Mϕ � x 	−→ ϕ · x ∈ M∗

extends to an isometric isomorphism between L1(G) and M∗, where 〈ϕ · x , y〉 =
ϕ(xy).

2. μ-harmonic operators

We assume that μ ∈ P(G) throughout this section. By invariance of the left
Haar weight ϕ, we can easily see that Lp(G) ∩ L∞(G) is invariant under the left
convolution action by μ. Since ϕ = ψR is a trace, by [11, Proposition 5.20] we have

R
(
(ι⊗ϕ)Γ(a)(1⊗b)

)
= (ι⊗ϕ)

(
(1⊗a)Γ(b)

)
for all a, b ∈ Nϕ. Therefore we obtain

〈μ � (ϕ · a) , b 〉 = 〈μ , (ι⊗ϕ)
(
(1⊗a)Γ(b)

)
〉 = 〈μR , (ι⊗ϕ)

(
Γ(a)(1⊗b)

)
〉

(2.1)

= 〈 (μR) � (b · ϕ) , a 〉 = 〈 (b · ϕ) , (μR) � a 〉 = 〈ϕ · ((μR) � a) , b 〉 .(2.2)

Since the map (1.1) is an isometry, this shows that the convolution action

Mϕ � x 	−→ ϕ · x 	−→ (μR) � (ϕ · x) = ϕ · (μ � x) 	−→ μ � x ∈ Mϕ

extends to an operator on L1(G) with the same norm as the convolution operator
by μ on L∞(G). Now, interpolating between L1(G) and L∞(G), we can extend the
convolution action

Lp(G) ∩ L∞(G) � x 	−→ μ � x ∈ Lp(G) ∩ L∞(G)

to Lp(G). An operator x ∈ Lp(G) is called μ-harmonic if μ � x = x and Hp
μ(G) =

{x ∈ Lp(G) : μ � x = x} is the space of μ-harmonic operators. It is easy to see that
Hp

μ(G) is a weak* closed subspace of Lp(G) for all 1 < p ≤ ∞.
Similarly to the case p = ∞, we have a projection Ep

μ : Lp(G) → Hp
μ(G) con-

structed as follows. Let U be a free ultra-filter on N, and define Ep
μ : Lp(G) → Lp(G)

by the weak∗ limit

Ep
μ(x) = lim

U

1

n

n∑
k=1

μk � x.

Then it is easy to see that Ep
μ ◦Ep

μ = Ep
μ and that Hp

μ(G) = Ep
μ(Lp(G)). Moreover,

by considering the convolution action on Lp(G)∩L∞(G) and passing to limits, we
can see that Ep

μ is also positive.
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Similarly, we can extend the right convolution action

L̃p(G) ∩ L∞(G) � x 	−→ x � μ ∈ L̃p(G) ∩ L∞(G)

to L̃p(G). Then H̃p
μ(G) = {x ∈ L̃p(G) : x � μ = x} is a weak* closed subspace

of L̃p(G) and there is a positive projection Ẽp
μ on L̃p(G) such that H̃p

μ(G) =

Ẽp
μ(L̃p(G)).

Proposition 2.1. The unitary antipode R extends to an isometric isomorphism

R : Lp(G) → L̃p(G)

such that R(Hp
μ(G)) = H̃p

μR for all 1 ≤ p ≤ ∞.

Proof. Since R is an anti-automorphism, we have

ψ(|R(a)|p) = ψ(R(|a|p)) = ϕ(|a|p)

for all a ∈ Mϕ. Therefore R extends to an isometry from Lp(G) onto L̃p(G).
Moreover, we have

R(μ � a) = R
(
(μ⊗ι)Γ(a)

)
= R

(
(μ⊗ι)Γ(R2(a))

)
= R

(
(ι⊗μ)(R⊗R)Γ(R(a))

)
= (ι⊗μR)Γ(R(a)) = R(a) � μR,

which implies that R(Hp
μ(G)) = H̃p

μR . �

Therefore, for 1 < p, q < ∞ with 1
p + 1

q = 1, we can identify each Lp(G) and

L̃q(G) with the dual space of the other via

〈a , b〉 = ϕ(aR(b)) = ψ(R(a)b), a ∈ Lp(G) , b ∈ L̃q(G) .

Theorem 2.2. Let 1 < p , q < ∞ be such that 1
p + 1

q = 1. Then we have linear

isometric isomorphisms

Hp
μ(G)

∗ ∼= H̃q
μ(G) and Hp

μ(G) ∼= H̃q
μ(G)

∗
.

Proof. Denote

J p
μ (G) := {x− μ � x : x ∈ Lp(G)}− and J̃ q

μ (G) := {y − y � μ : y ∈ L̃q(G)}−.
Since

〈x , y � μ〉 = ψ
(
R(x)(y � μ)

)
= ψ

(
R(x)(ι⊗μ)Γ(y)

)
= μ

(
(ψ⊗ι)(R(x)⊗1)Γ(y)

)
= μR

(
(ψ⊗ι)Γ(R(x))(y⊗1)

)
= ψ

(
(ι⊗μR)Γ(R(x)) y

)
= ψ

(
R
(
(μ⊗ι)Γ(x)

)
y
)
= ψ(R(μ � x) y) = 〈μ � x , y〉

for all x ∈ Mϕ and y ∈ Mψ, it follows that Hp
μ(G) = J̃ q

μ (G)
⊥
, and therefore

Hp
μ(G)∗ =

L̃q(G)

Hp
μ(G)

⊥ =
L̃q(G)

J̃ q
μ (G)

.

In the following we show that the correspondence

L̃q(G)

J̃ q
μ (G)

� y + J̃ q
μ (G) 	−→ Ẽq

μ(y) ∈ H̃q
μ(G)
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defines a linear isometric isomorphism. First we observe that

Ẽq
μ(y � μ− y) = lim

U

(
(y � μ− y) �

n∑
1

μk

n

)
= 0

for all y ∈ L̃q(G), which implies that the above map is well-defined. It is obviously
onto. To check the injectivity, first note that

y − y � μk = (y − y � μ) + (y � μ− y � μ2) + (y � μk−1 − y � μk) ∈ J̃ q
μ (G),

for all k ∈ N. Now suppose that Ẽq
μ(y) = 0. Then, by the above and by the weak*

closeness of J̃ q
μ (G), we have

y = y − Ẽq
μ(y) = y −

(
lim
U

1

n

n∑
k=1

y � μk

)
= lim

U

1

n

n∑
k=1

(
y − y � μk

)
∈ J̃ q

μ (G),

and therefore the injectivity of the map follows. Moreover, since Ẽq
μ is an idempo-

tent, it follows that

y + J̃ q
μ (G) = Ẽq

μ(y) + J̃ q
μ (G).

Therefore

‖y + J̃ q
μ (G)‖ ≤ ‖Ẽq

μ(y)‖.

On the other hand, we have

‖Ẽq
μ(y)‖ = sup

{∣∣ 〈Ẽq
μ(y) , x〉

∣∣ : x ∈ Lp(G) , ‖x‖ ≤ 1
}

= sup
{ ∣∣ 〈y , Ep

μ(x)〉
∣∣ : x ∈ Lp(G) , ‖x‖ ≤ 1

}
≤ ‖y + J̃ q

μ (G)‖ .

This shows that the map is isometric and so yields the first identification. The
second identification is proved along similar lines. �

Proposition 2.3. For 1 < p ≤ ∞ the space Hp
μ(G) is generated by its positive

elements.

Proof. By considering the polar decomposition, we observe that Lp(G)∩L∞(G) is
self-adjoint. Let x ∈ Hp

μ(G), and Lp(G) ∩ L∞(G) � xn → x in Lp(G). Using the
continuity of the adjoint on Lp(G), we obtain

μ � x∗ = lim
n

μ � x∗
n = lim

n
(μ � xn)

∗ = (lim
n

μ � xn)
∗ = x∗,

where the limits are taken in Lp(G). Therefore, Hp
μ(G) is self-adjoint and so is

generated by its self-adjoint elements. Now, let x be a self-adjoint element in
Lp(G), and let x = x+ − x− where both x+ and x− are in Lp(G)+. Then we have

x = Ep
μ(x) = Ep

μ(x+)− Ep
μ(x−),

which yields the result by positivity of the map Ep
μ. �
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Main Theorem: Case 1 < p < ∞. A state μ ∈ P(G) is called non-degenerate

on C0(G) if for every non-zero element x ∈ C0(G)
+

there exists n ∈ N such that
〈x , μn〉 �= 0.

Theorem 2.4. Let G be a non-compact, locally compact quantum group with a
tracial (left) Haar weight ϕ, and let μ ∈ P(G) be non-degenerate. Then for all
1 < p < ∞ we have

Hp
μ(G) = {0} .

Proof. First let 1 < p ≤ 2, and suppose 0 ≤ x ∈ Hp
μ(G) with ‖x‖p = 1. Define

μ̃ :=

∞∑
i=n

μn

2n
.

Since μ is non-degenerate, μ̃ is faithful, and μ̃ � x = x. Now, let q ≥ 2 be such that
1
p + 1

q = 1. Using the duality between Lp(G) and L̃q(G), we assign to each pair

a ∈ Lp(G) and b ∈ L̃q(G) an element Ωa,b ∈ L∞(G) defined by

〈f , Ωa,b〉 = 〈f � a , b〉 (f ∈ M∗).

We clearly have ‖Ωa,b‖ ≤ ‖a‖p‖b‖q. Now, choose y ∈ L̃q(G), ‖y‖q = 1, such that
〈x , y〉 = 1. We claim that Ωx,y ∈ C0(G) (in fact, Ωa,b ∈ C0(G) for all a ∈ Lp(G)

and b ∈ L̃q(G)). To see this, assume that

x =

∫ ∞

0

λ deλ

is the spectral decomposition of x, and let

xn =

∫ n

1
n

λ deλ.

Then xn ∈ Lp(G) ∩ L∞(G) ⊆ Nϕ, ‖xn‖p ≤ ‖x‖p, and ‖x − xn‖p → 0. Also let
yn ∈ Nψ be such that

‖yn − y‖q → 0.

Denote by ωη,ζ the vector functional associated with η , ζ ∈ Hϕ. Then, for
f ∈ M∗ we have

〈f , Ωxn,yn
〉 = 〈f � xn , yn〉 = 〈λ(f)Λϕ(xn) , Λϕ(R(yn))〉

= 〈ωΛϕ(xn) ,Λϕ(R(yn)), λ(f)〉 = 〈f , λ̂(ωΛϕ(xn),Λϕ(R(yn)))〉,

which implies that Ωxn,yn
= λ̂(ωΛϕ(xn),Λϕ(R(yn))) ∈ C0(G). Moreover, it follows

that

‖Ωx,y − Ωxn,yn
‖∞ ≤ ‖Ωx−xn,y‖∞ + ‖Ωxn,y−yn

‖∞
≤ ‖x− xn‖p ‖y‖q + ‖xn‖p ‖y − yn‖q → 0.

This shows that Ωx,y ∈ C0(G), as claimed. But then we have ‖Ωx,y‖ ≤ ‖x‖p‖y‖q =
1, and

〈μ̃ , Ωx,y〉 = 〈μ̃ � x , y〉 = 〈x , y〉 = 1.

Since μ̃ is faithful, it follows that Ωx,y = 1, and therefore 1 ∈ C0(G), which
contradicts our assumption of G being non-compact, so x = 0. This shows, by
Proposition 2.3, that Hp

μ(G) = {0} for all 1 < p ≤ 2. Now, a similar argu-

ment yields H̃q
μ(G) = 0 for all 1 < q ≤ 2, which implies by Theorem 2.2 that

Hp
μ(G) = H̃q

μ(G)
∗
= {0} for all 2 ≤ p < ∞. �
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Main Theorem: Case p = 1. Since L1(G) is not a dual Banach space, our proof
for 1 < p < ∞ does not work in this case, and so we have to treat this case
separately. We do this by first proving a similar result for M∗ and then using the
identification of the latter with L1(G). Note that for the following theorem we do
not assume that the Haar weight is a trace.

Theorem 2.5. Let G be a non-compact, locally compact quantum group, and let
μ ∈ P(G) be non-degenerate. If ω ∈ M(G) is such that μ � ω = ω, then ω = 0.

Proof. Assume that μ � ω = ω, and let μ̃ be as in the proof of Theorem 2.4. So, μ̃
is faithful, and μ̃ � ω = ω. Therefore we have

λ(μ̃)λ(ω)ξ = λ(μ̃ � ω)ξ = λ(ω)ξ

for all ξ ∈ Hϕ. Now if ω �= 0, there exists ξ ∈ Hϕ such that ‖λ(ω)ξ‖ = 1. Denote

by ω̂ the restriction of ωλ(ω)ξ to M̂ . Then ‖ω̂‖ = 1, and

〈μ̃ , λ̂(ω̂)〉 = 〈λ(μ̃) , ω̂〉 = 〈λ(μ̃)λ(ω)ξ , λ(ω)ξ〉 = 〈λ(ω)ξ , λ(ω)ξ〉 = 1.

Since ‖λ̂(ω̂)‖ ≤ 1 and μ̃ is faithful, it follows that λ̂(ω̂) = 1. But this implies
that 1 ∈ C0(G), which contradicts our assumption of G being non-compact. Hence,
ω = 0. �
Theorem 2.6. Let G be a non-compact, locally compact quantum group with a
tracial (left) Haar weight ϕ, and let μ ∈ P(G) be non-degenerate. Then

H1
μ(G) = {0} .

Proof. Let x ∈ H1
μ(G). We have that μR ∈ P(G) is non-degenerate, and from

equations (2.1) and (2.2) we get

μR � (ϕ · x) = ϕ · (μ � x) = ϕ · x.
Hence, ϕ · x = 0 by Theorem 2.5, and therefore x = 0. �
Remark 2.7. The statements of Theorems 2.4 and 2.6 are not true in general for the
case p = ∞. Any non-degenerate probability measure on a non-amenable discrete
group is a counterexample [8].

Compact Case. We conclude by proving the triviality of μ-harmonic operators
in the compact quantum group setting.

Theorem 2.8. Let G be a compact quantum group with tracial Haar state, and let
μ ∈ P(G) be non-degenerate. Then Hp

μ(G) = C1 for all 1 ≤ p ≤ ∞.

Proof. The case p = ∞ was proved in the general case in [9]. Let 1 ≤ p < ∞, and

assume that x ∈ Hp
μ(G), x /∈ C1 and ‖x‖p = 1. Then there exists y ∈ L̃q(G) with

‖y‖q = 1 such that 〈x , y〉 = 1 (we let q = ∞ for p = 1) and 〈1 , y〉 = 0. Then from
the proof of Theorem 2.4 (which we can also apply to the case of p = 1 and q = ∞,
since L∞(G) ⊆ L2(G) for a compact quantum group) we have Ωx,y = 1 and

(2.3) 〈ϕ � x , y〉 = 〈ϕ , 1〉 = 1,

where ϕ is the Haar state on G. Now, let xn ∈ L∞(G) be such that ‖xn−x‖p → 0.
Then

〈ϕ � x , y〉 = lim
n
〈ϕ � xn , y〉 = lim

n
〈ϕ , xn〉〈1 , y〉 = 0.

But this contradicts (2.3), and therefore x = 0. Hence, Hp
μ(G) = C1. �
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Remark 2.9. All of our results in this paper can be proved, by slight modifications
of the arguments, for a state μ on the universal C∗-algebra Cu(G).
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