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EXCURSION AND RETURN TIMES OF A GEODESIC

TO A SUBSET OF A HYPERBOLIC RIEMANN SURFACE

ANDREW HAAS

(Communicated by Michael Wolf)

Abstract. We calculate the asymptotic average rate at which a generic geo-
desic on a finite area hyperbolic 2-orbifold returns to a subsurface with geodesic
boundary. As a consequence we get the average time a generic geodesic spends
in such a subsurface. Related results are obtained for excursions into a collar
neighborhood of a simple closed geodesic and the associated distribution of
excursion depths.

1. Introduction

The geodesic flow on the unit tangent bundle of a finite area hyperbolic Riemann
surface is ergodic [15]. One important, well known consequence is that on average,
the time spent by a generic geodesic in a subset of the surface is equal to the relative
area of the set. At first glance it does not appear that this approach tells us anything
directly about other specific aspects of the behavior of the geodesic relative to the
set: for example, about the average rate at which the geodesic returns to the set; the
average length of each visit to the set, called the excursion time; or the average time
between visits—all related quantities. The reason for this is that these values are
determined by certain aspects of the geometry of the sets beyond just the relative
area. Nevertheless, for a reasonably large and interesting selection of sets, once the
geometry is properly accounted for, it is the classical Ergodic Theorem for flows
from which one can infer the existence of a limit and compute its value.

In the cases considered here, where the subset is a subsurface with geodesic
boundary or a collar neighborhood of a simple closed geodesic, it is possible to
provide precise descriptions of these types of behavior for a generic geodesic relative
to the set. In the case of subsurfaces the return time depends only on the length of
the boundary and the area of the surface, whereas excursion times are determined
by the area of the surface along with the length of the boundary. In the second case
the return time depends on the geodesic’s length, the width of its collar and the
area of the surface, while excursion times depend only on the width of the collar.
This last fact is at first surprising, yet it mirrors the result from [11], where it was
shown that the average excursion time into an embedded cusp neighborhood is π,
independent of the area of the neighborhood and, furthermore, independent of the
surface. In the latter case it is also possible to describe the distributions of the
maximal depths of geodesic excursions—again something that depends only on the
geometry of the collar. This is reminiscent of results from [5] and [10].
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The return time to a cusp relative to the depth of the excursion was studied
by Sullivan in [17], leading in various directions to generalizations and tangents.
One of these tangents was followed by Nakada in [14], where he found the average
return time to a cusp neighborhood of a finite volume 3-manifold as one step in his
study of approximation properties of rationals in an imaginary quadratic number
field. His approach was taken up by Stratmann [16], who used it to get estimates
for the average return time of a generic geodesic in a hyperbolic manifold to a cusp
neighborhood, where generic means with respect to the Liouville-Patterson measure
on the unit tangent bundle. We employed their methods in [11] to determine average
return and excursion times to a cusp neighborhood on a finite area hyperbolic
surface, and, like Nakada and Stratmann, we used these values to establish metrical
results for approximation by the cusps of a Fuchsian group.

Generic properties of geodesics returning to neighborhoods of a closed geodesic in
a negatively curved manifold were studied by Hersonsky and Paulin in [13]. Among
other things, they looked at geometric versions of one of Khintchin’s theorems and
related generalizations of Sullivan’s logarithm law for geodesics.

2. Background and main results

2.1. Geodesic boundary. A finite area hyperbolic 2-orbifold S is the quotient of
the Poincaré upper half-plane H by a discrete group H ⊂ PSL2(R).

Let γ1, . . . , γn be a collection of disjoint simple closed geodesics on S, which
together bound a subsurface M of S. We write Γ =

⋃
γi for the boundary of M .

The length of a closed geodesic β is written l(β). The total length of the boundary
of M is then l(Γ) =

∑
l(γi).

Each vector v in the unit tangent bundle T1S uniquely determines a geodesic ray
αv : [0,∞) → S which is the projection to S of the forward orbit {Gt(v) | t ∈ [0,∞)}
of the geodesic flow on the unit tangent bundle. If αv := αv([0,∞)) intersects the
boundary Γ of M infinitely often, then there is a sequence of pairs of parameter
values {(ti, si)}∞i=1 with ti < si < ti+1 so that

(2.1)

∞⋃
i=1

αv[(ti, si)] = αv ∩M.

In other words, αv meets the set M in precisely the arcs αv[(ti, si)] of αv. We
shall refer to these arcs as the excursions of αv into M and to the sequence of
parameters as the excursion parameters of αv. Let #X denote the cardinality of
the set X; area(T ) shall denote the hyperbolic area of T ⊂ S. Area is measured in
the hyperbolic metric. Henceforth we shall assume that the area of S is finite.

Then the asymptotic average rate at which a geodesic returns to the set M is
given as follows.

Theorem 1. For almost all v ∈ T1S, the excursion parameters of αv satisfy

(2.2) lim
t→∞

1

t
#{n | tn < t} =

l(Γ)

π area(S)
.

Since geodesics are parameterized by arc length, the length of the arc α[(ti, si)]
is si − ti. One consequence of the theorem is the value for the asymptotic average
length of an excursion.
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Corollary 1. For almost all v ∈ T1S,

(2.3) lim
n→∞

1

n

n∑
i=1

(si − ti) =
π area(M)

l(Γ)
.

Remark 1. The average distance between the starting points of the first n + 1
excursions is computed by the sum

1

n

n∑
i=1

(ti+1 − ti) =
tn+1 − t1

n
.

Since n is essentially #{i | ti ≤ tn}, by taking the limit as n → ∞, we see that the
average distance between consecutive excursions is generically equal to the inverse

of the value for the limit in (2.2),
π area(S)

l(Γ)
.

2.2. Collar neighborhoods. Let γ be a simple closed geodesic on S. Let Cr(γ) =
Cr be the collar neighborhood of γ. This is the set of points within a fixed distance

r of γ. If r is not too large (r < Rl(γ) = log coth l(γ)
4 ; see Section 2.5), the r-collar

about γ is divided by γ into disjoint open cylinders denoted Ar and Br, which we
will call half-collars. If a subsurface M is specified, then we shall suppose that
Ar ⊂ M. Let λAr

= ∂Cr ∩ ∂Ar and λBr
= ∂Cr ∩ ∂Br, where ∂D denotes the

boundary of D in S. The values r, l(γ) and area(Cr) are not independent, but
rather, any two of the values determine the third. This will be made precise in
Section 4.1, Proposition 2.

We shall suppose the geodesic ray αv, determined by the direction v in T1S,
intersects Cr infinitely often. Let Pr = {(ti, si)|i ∈ Z

+} and Qr = {(ρi, ηi)|i ∈ Z
+}

be sequences of pairs of parameter values with ti < si < ti+1, and ρi < ηi < ρi+1

so that αv(ti) ∈ λAr
, αv(ρi) ∈ λBr

, {αv(si), αv(ηi)} ⊂ {λAr
, λBr

} and

(2.4)
⋃
Pr

αv[(ti, si)] ∪
⋃
Qr

αv[(ρi, ηi)] = αv ∩Cr.

In other words, these parameters determine the segments of αv in Cr with both
endpoints on its boundary. We will focus on those that enter Cr at λAr

. Pr

is called the set of excursion parameters. Let P ′
r = {(t′i, s′i)} be the subset of

excursion parameters, reindexed by consecutive numbers, where both values αv(t
′
i)

and αv(s
′
i) lie in λAr

.

Theorem 2. For r < Rl(γ) and almost all v ∈ T1S,

(2.5) lim
t→∞

1

t
#{n | tn < t} =

l(γ) cosh r

π area(S)
=

√
l(γ)2 + ( 12area(Cr))2

π area(S)
,

(2.6) lim
t→∞

1

t
#{n | t′n < t} =

l(γ)(cosh r − 1)

π area(S)
=

√
l(γ)2 + ( 12area(Cr))2 − l(γ)

π area(S)
.

In this case the analogue of Corollary 1, the asymptotic average length of an
excursion entering at λAr

into a collar neighborhood, is given by the following.

Corollary 2. For r < R and almost all v ∈ T1S,

(2.7) lim
n→∞

1

n

n∑
i=1

(si − ti) = π tanh r =
π area(Cr)√

l(γ)2 + area(Cr)2
.
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2.3. The distribution of collar excursions. In [10] the number theoretic dis-
tributions from the Doeblin-Lenstra Conjecture [5],[8] and the related Theorem of
Bosma [4] were reinterpreted and expanded in a geometric setting. The analo-
gous notions can be defined in terms of the distribution of the depths of maximal
penetration of geodesic excursions into a collar neighborhood of a simple closed
geodesic. Given a geodesic αv with excursion parameters Pr, define Dv(i) =
inf{dist(αv(t), γ) | ti < t < si}, where dist(c, γ) is the distance between the point
c and the geodesic γ. This is the depth of the ith excursion. Using Theorem 2 we
show in the next corollary that the depths are nicely distributed in a fashion that
is independent of l(γ). Choose R0 < Rl(γ).

Corollary 3. For r ≤ R0 and almost all v ∈ T1S the limit

(2.8) lim
n→∞

1

n
#{i | 1 ≤ i ≤ n,Dv(i) ≤ r}

is defined and takes the value

(2.9) δv(r) =
cosh r

coshR0
.

2.4. The invariant measure. The unit tangent bundle of the hyperbolic plane H
can be given as a cartesian product T1H = H×S1. In these coordinates the natural
invariant measure for the geodesic flow G̃ has the form m̃ = dAdφ. There is another
set of very useful coordinates in which T1H is described, up to measure zero, as the
the set of triples (x, y, t) ∈ R

3 with x 	= y. Then (x, y, t) corresponds to the vector
v = α̇(t) ∈ T1H, where α is the geodesic in H oriented from the endpoint α− = x to
α+ = y and parameterized so that α(0) is the Euclidean midpoint of the semicircle

α(R). The geodesic flow on T1H satisfies G̃s(x, y, t) = (x, y, t + s). Furthermore,
the geodesic flow on T1S has the invariant probability measure μ, whose lift to T1H

is equal to [15]:

(2.10) μ̃ =
1

2π area(S)
m̃ =

1

π area(S)
(x− y)−2 dxdydt.

Let E ⊂ T1S be the set of vectors v for which the orbit Gt(v) is dense in T1S.
As a consequence of the Ergodic Theorem and the Poincaré Recurrence Theorem,
[15], E has full measure in T1S.

2.5. The normalization of H. Given a simple closed geodesic γ on S we may
suppose that the Fuchsian group H has been normalized so that the imaginary axis
I in H covers γ. Then the stabilizer of I in H is generated by the transformation
g(z) = ζz with log ζ = l(γ). The arc γ̃ = {it | 1 ≤ t < ζ} ⊂ I is mapped injectively
onto γ by the covering projection.

Cr(γ) is the image of the r-neighborhood Cr(I) of I under the covering pro-
jection. It follows from the Collar Lemma (see [1] and [7] for the many references)

that there is a value Rl(γ) = log coth l(γ)
4 so that for r < Rl(γ), the collar Cr(I) is

mapped disjointly from itself by any h ∈ H which is not a power of g. Consequently,
Cr(γ) is a cylinder embedded in S, as we have been assuming. Henceforth, we shall
suppose that r < Rl(γ).

The curves λAr
and λBr

lift to straight lines λ̃Ar
and λ̃Br

bounding Cr(I). They
emanate from the origin and make an angle φ with I. We shall further stipulate
that the lift of the half-collar Ar in Cr(I) lies in the left half-plane.
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3. Proofs for regions with geodesic boundary

3.1. The single geodesic. Let L∗(γ) = L∗(γ,Ar) be the subset of the unit tangent
bundle over γ where v ∈ L∗(γ) if there exists τ0 so that for 0 < t < τ0 the points
of αv(t) lie in Ar. This is the subset of vectors based on γ that point into Ar. Note
that the set does not depend on the choice of r < Rl(γ). Then L(γ) = L∗(γ) ∩ E
is a cross-section for the geodesic flow on T1S, [3]. In other words, for almost all
v ∈ T1S there exists an increasing sequence of values τi so that Gτi(v) ∈ L(γ).

Given ε < Rl(γ)− r, define the ε-thickened section Lε(γ) = {Gt(v) | t ∈ [0, ε], v ∈
L(γ)}. Analysis of the thickened section is the main tool in the proof of Theorem 1.

Proposition 1.

(3.1) μ(Lε(γ)) =
ε l(γ)

π area(S)
.

Proof. The cross-section L(γ) and the thickened section Lε(γ) lift to the sub-
sets L(γ̃) of T1H over γ̃ and its thickened section Lε(γ̃), respectively. Further-
more, the projection from Lε(γ̃) to Lε(γ) is injective. In this way we reduce
the computation in Proposition 1 to a calculation in (x, y, t)-coordinates in R

3

of μ̃(Lε(γ̃)) = μ(Lε(γ)).
For a given x ∈ R

+ and t > 0, the point y at which the geodesic xy with
endpoints x and y meets the point it ∈ I is the solution to the equation

(3.2) |it− x+ y

2
|2 = (

x− y

2
)2.

This is y = − t2

x . Therefore for a given x > 0, Ix = [− ζ2

x ,− 1
x ) is the interval of

values y ∈ R for which xy intersects the interval γ̃.
For x ∈ R and y ∈ Ix, let txy denote the parameter value for which the unit

tangent vector (x, y, txy) ∈ L(γ̃). Then
(3.3) Lε(γ̃) = {(x, y, t) |x ∈ R, y ∈ Ix and txy ≤ t ≤ txy + ε}.

Consequently,

(3.4) μ̃(Lε(γ̃)) =
1

π area(S)

∫
R+

∫
Ix

∫ txy+ε

txy

(x− y)−2 dtdydx

=
ε

π area(S)

∫ ∞

0

∫ − 1
x

− ζ2

x

(x− y)−2 dydx.

=
ε

π area(S)
log ζ =

ε

π area(S)
l(γ).

�

3.2. Many geodesics. We shall prove a theorem that is slightly more general than
Theorem 1. Let Γ = {γi}ni=1 be a finite sequence of mutually disjoint simple closed
geodesics, except that we allow geodesics to appear twice in the list. To each γi in
the sequence, associate a distinct half-collar Ai. With Γ as before and A =

⋃
Ai,

define L(Γ,A) =
⋃
L(γi, Ai) and Lε(Γ,A) =

⋃
Lε(γi, Ai). In this case there is not

necessarily a subsurface M with which the half-collars are associated.
Suppose v ∈ E . Then Gt(v) will meet L(Γ,A) in a sequence of points Gτj (v).

In other words, αv(τj) will lie on one of the γi with a tangent pointing into Ai.
Let Nv(t) = #{i|τi < t} denote the number of times the orbit lies in L(Γ,A) or
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the number of times αv crosses one of the geodesics in the direction stipulated by
a half-collar.

Theorem 3. For almost all v ∈ T1S,

(3.5) lim
t→∞

Nv(t)

t
=

l(Γ)

π area(S)
.

Proof. The characteristic function of a set Y is written χY . For ε small we have
the inequalities

(3.6)

∫ t

0

χLε(Γ,A)(Gτ (v))dτ − 2ε ≤ εNv(t) ≤
∫ t

0

χLε(Γ,A)(Gτ (v))dτ + 2ε.

Divide through by tε and let t → ∞. By the Ergodic Theorem and Proposition 1,
for almost all v ∈ T1S, the left- and right-hand limits converge to

(1/ε) lim
t→∞

1

t

∫ t

0

χLε(Γ,A)(Gτ (v))dτ = (1/ε)

n∑
i=1

lim
t→∞

1

t

∫ t

0

χLε(γi,Ai)(Gτ (v))dτ

= (1/ε)

n∑
i=1

μ(Lε(γi) =

∑n
i=1 l(γi)

π area(S)
=

l(Γ)

π area(S)
.

�

Proof of Theorem 1. The theorem follows from Theorem 3 by choosing Γ to be the
boundary of M and taking the half-collar Ai associated to γi to be the one inside
M . �

3.3. Excursion times.

Proof of Corollary 1. With the possible exception of the very first, the sum of the
first n excursion lengths is

n∑
i=1

(si − ti) =

∫ sn

0

χT1M (Gτ (v)) dτ.

The average can then be written in the form

1

sn

∫ sn

0

χT1M (Gτ (v)) dτ × sn
n
.

The value n on the right is #{i | ti < sn}, from Theorem 1. By that theorem, the
limit as n → ∞ of sn/n exists and is the inverse of the right-hand side of equation
(2.2). By the Ergodic Theorem, for almost all v the limit of the first factor also
exists and is the μ-measure of T1M ; this is the area of M divided by the area of
S. Note that in both instances convergence is almost everywhere. Taken together,
this completes the proof. �

4. Proofs for collars

4.1. Preliminaries. For the remainder of the paper we shall suppose that the lift
of the half-collar Ar lies in the right half-plane. Recall that φ is the angle made
by the ray λ̃Ar

and the imaginary axis. Write sinφ + i cosφ = a + ib = pφ. The
relationship between area(Cr), r and φ is given in the following proposition.
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Proposition 2. area(Cr(γ)) = 2l(γ) tanφ = 2l(γ) sinh r. In particular, cosh r =
1

cosφ
=

1

b
.

Proof. In order to see how r and φ are related, we look at the geodesic segment
that lies on the unit circle centered at 0 running between the imaginary axis and
the line λ̃Ar

. Using polar coordinates with the hyperbolic metric in H we see that

r =

∫ π
2

π
2 −φ

dθ

sin θ
= log(secφ+ tanφ).

Therefore, er = secφ+ tanφ =

√
1 + tan2 φ+ tanφ. Solving for tanφ gives sinh r.

The area of Cr(γ) is the area of the region in Cr(γ̃) between the two circles
centered at the origin with radii 1 and ζ respectively. Again, computing with the
hyperbolic metric in polar coordinates we have

area(Cr(γ)) = 2

∫ ζ

1

1

r
dr

∫ π
2

π
2 −φ

1

sin2 θ
dθ = 2 log ζ tanφ = 2l(γ) tanφ.

�

The following simple, geometric lemma will be very useful.

Lemma 1.

(1) Given x > 0, if the geodesic xy in H passes through x and the point tpφ,
t > 0, then

(4.1) y =
axt− t2

x− at
.

(2) The geodesic xy in H, x > y, tangent to λ̃A at the point tpφ has endpoints

(4.2) x = t(
1 + b

a
) and y = t(

1− b

a
).

Consequently, given x, xy is tangent to λ̃A when

(4.3) y = (
1− b

1 + b
)x.

Proof. As in formula (3.2) the geodesic xy contains tpφ if

|x+ y

2
− tpφ|2 = (

x− y

2
)2.

With pφ = a+ ib, we square both sides and simplify to get xy− tax− tay+ t2 = 0.
Solving for y gives (4.1).

Suppose that xy is tangent to λ̃A at tpφ. Let w be the midpoint on the real

axis between y and x. Then the line from w to tpφ is orthogonal to λ̃Ar
. Equating

slopes we have tb
ta−w = −a

b or w = t
a . Then the radius of the semicircle xy is

|tpφ − t
a | =

b
a t. With center and radius in hand it is easy to write x and y, which

gives (4.2). Formula (4.3) follows. �
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4.2. The thickened section. In order to prove Theorem 2 we shall recycle the
approach taken in the proof of Theorem 1, only this time the thickened section will
be defined with respect to the boundary λAr

of the collar neighborhood of γ. The
situation is somewhat more involved.

Recall that g(z) = ζz covers the geodesic γ. Let s denote the segment of λ̃Ar
be-

tween the points pφ and ζpφ. It is a preimage of λAr
under the covering projection.

Henceforth x will alway be a positive number.
We define a notion of intersection between the directed geodesic β = xy and the

arc s that only counts the first point at which the geodesic intersects λ̃Ar
. More

precisely, if β ∩ λ̃A = ∅, then set xy ∩̂ s = ∅. Also, if β intersects λ̃A in the points
β(t1) and β(t2), t1 ≤ t2, then

xy ∩̂ s =

{
{β(t1)} if β(t1) ∈ s

∅ otherwise.

We shall define several sections of the unit tangent bundle over λAr
by specifying

sets of triples (x, y, txy) in the unit tangent bundle over s. For i = 0, 1, 2, 3 let

J i∗(s) = {(x, y, txy)|Ri and xy ∩̂ s 	= ∅},

where R0, . . . , R3 denote respectively the conditions, R0 : x > 0, y ∈ R, R1 : 0 <
y < x, R2 : 0 < x < y, R3 : y < 0 < x. Given x, y, if xy ∩̂ s 	= ∅, then there is a
unique txy so that (x, y, txy) is the vector tangent to the directed geodesic xy at
the point of intersection with s.

As in Section 3.1, define J i(s) = E ∩ J i∗(s) and the thickened sections

J i
ε (s) = {(x, y, t)|(x, y, txy) ∈ J i(s) and txy ≤ t ≤ txy + ε}.

J i
ε (s) projects to the thickened section J i

ε (λAr
) in the unit tangent bundle of S

over the boundary of the collar. We let Lε(s) denote the union of the sections
J i
ε (s).
In order to see what these sets represent, note that up to measure zero, J 0(λAr

)
is equal to the set of all vectors over λAr

pointing into the collar. J 3(λAr
) is the

subset determining geodesics that cross γ. By elementary hyperbolic geometry such
geodesics will then exit the collar at λB. Removing J 3(λAr

) from J 0(λAr
) results

in two disjoint sets, which are J 1(λAr
) and J 2(λAr

). Geodesics determined by
vectors from these subsets enter λAr

from different sides of J 3(λAr
) and exit the

collar at λAr
. Together these are all the geodesics that enter and exit via λAr

.

Proposition 3. μ(J 1
ε (λAr

) ∪ J 3
ε (λAr

)) =
ε(1 + cosh r)l(γ)

2π area(S)
.

Proof. The computation is done in (x, y, t) coordinates for the sets J i
ε (s). We shall

describe the limits of integration by specifying potential x values and then giving
the corresponding set of y values using Lemma 1. Three cases are distinguished for
the domain of x. In all we have y < x. For now we make the additional assumption
that ζa < (1 + b)/a.

If x is larger than ζ(1 + b)/a, then for all y ∈ R, xy ∩̂ s = ∅. Thus, the first case
to consider is when (1+b)/a < x < ζ(1+b)/a. It follows from (4.2) that for such an

x there is a point y so that xy is tangent to λ̃A and that this point of tangency lies
in s. It also follows from (4.3) that given x, the interval of corresponding y values
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will vary between ( 1−b
1+b )x, the point at which xy is tangent to s, and axζ−ζ2

x−aζ , where

xy meets ζpθ, the upper endpoint of s. Thus the measure of the set of vectors in
Lε(s) determined by these (x, y) values is M1, where

π area(S)M1 =

∫ ζ( 1+b
a )

1+b
a

∫ ( 1−b
1+b )x

axζ−ζ2

x−aζ

∫ txy+ε

txy

(x− y)−2 dt dy dx

= ε

[
1 + b

2b
log ζ − log ζ − 1

2
log

(
(1 + b)2

a2
− 2(1 + b) + 1

)

+
1

2
log

(
(1 + b)2

a2
− 2(1 + b)ζ + ζ2

) ]
.

The second case is when ζa < x < (1+b)/a. According to the lemma, as y varies

between ax−1
x−a and axζ−ζ2

x−aζ , xy ∩̂ s varies between pφ and ζpφ, taking on all values

in s. Writing out the integral as in the previous case, we see that the measure of
the corresponding subset of Lε(s) is equal to M2, where

π area(S)M2 = ε

[
1

2
log

(
(1 + b)2

a2
− 2(1 + b) + 1

)
− 1

2
log

(
a2ζ2 − 2a2ζ + 1

)

+ log ζ + log(1− a2)− 1

2
log

(
(1 + b)2

a2
− 2(1 + b)ζ + ζ2

) ]
.

The final case is where a < x < ζa. Given x in this interval, xy will meet s at
pφ when y = ax−1

x−a and as y goes to −∞, xy limits at the vertical line intersecting
s in the point tpφ where t = x

sinφ . In this case the measure of the associated subset

of Lε(s) is M3 with

π area(S)M3 = ε[
1

2
log

(
a2ζ2 − 2a2ζ + 1

)
− 1

2
log(1− a2)].

Using Proposition 2 and the facts that a = sinφ, b = cosφ and log ζ = l(γ), we
get

M1 +M2 +M3 =
ε(1 + b)l(γ)

2πb area(S)
=

ε(1 + cosh r)l(γ)

2π area(S)
,

which is the proposition under the assumption that ζa < (1 + b)/a. If we reverse
the inequality a similar computation yields the same result. �

4.3. Returns to a collar.

Proof of Theorem 2. To begin we show that

(4.4) μ(J 3
ε (λAr

)) = μ(Lε(γ)) =
εl(γ)

π area(S)
.

It was observed in Section 3.1 that given v ∈ E , Gt(v) will meet L(Γ,A) in a
sequence of points Gτj (v), j ∈ Z

+. Each time αv meets the geodesic γ from the A
side, it must have either originated in A or else crossed λAr

first before proceeding
to γ. Conversely, each time αv crosses λAr

, so that its tangent lies in J 3
ε (λAr

), it
must go on to cross γ. Thus, for each j ≥ 2 there will be a corresponding value
ηj so that Gηj

(v) ∈ J 3
ε (λAr

), and if Gη(v) ∈ J 3
ε (λAr

), then η = ηj for some j. In

other words, the section J 3
ε (λAr

) counts the crossing of γ from the A side exactly
as does Lε(γ).
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As a consequence of the above, we can replace Lε(Γ,A) (with Γ = γ) in for-
mula (3.6) by J 3

ε (λAr
). It follows that the value in formula (2.2) of Theorem 1 is

(1/ε)μ(J 3
ε (λAr

)) = l(γ)
π area(S) , completing the argument.

The hyperbolic isometry h(z) = ζ/z induces an isometry of T1H that inter-
changes the sets J 1

ε (s) and J 2
ε (s). Therefore, we have

μ(J 1
ε (λAr

)) = μ(J 2
ε (λAr

)) or μ(J 1
ε (λAr

) ∪ J 2
ε (λAr

)) = 2μ(J 1
ε (λAr

)).

Now making use of the outcomes of formula (4.4) and Proposition 3, we have

μ(J 1
ε (λAr

)) = μ(J 1
ε (λAr

) ∪ J 3
ε (λAr

))− μ(J 3
ε (λAr

)) =
ε(cosh r − 1)l(γ)

2π area(S)

and

μ(J 0
ε (λAr

)) = 2μ(J 1
ε (λAr

)) + μ(J 3
ε (λAr

)) =
εl(γ) cosh r

π area(S)
.

Let P = {(ti, si)} and P ′ = {(t′i, s′i)} be the excursion parameters of αv. For
r > Rl(γ) and v ∈ E define the counting functions N0

v (r)(t) = #{i | ti < t} and

N1
v (r)(t) = #{i | t′i < t}. Taking the role of L(γ) from the proof of Theorem 1,

the sections J 0(λAr
) and Ĵ (λAr

) = J 1(λAr
) ∪ J 2(λAr

) count crossings by αv of
λAr

that go into A and crossings of λAr
by αv into A that exit A through λAr

,
respectively. Thus, rewriting formula (3.6) in the first instance gives, for ε > 0
sufficiently small,∫ t

0

χJ 0
ε (λAr )

(Gτ (v))dτ − 2ε ≤ εN0
v (r)(t) ≤

∫ t

0

χJ 0
ε (λAr )

(Gτ (v))dτ + 2ε.

Again, dividing by tε, letting t go to infinity and applying the Ergodic Theorem,
we prove the first part of Theorem 2. The proof of the second part of the theorem
follows if J 0 and N0 are replaced by Ĵ and N1. �

Proof of Corollary 2. Let VA ⊂ T1Cr denote the set of vectors that are tangent to
the geodesic segments in Cr which begin on λAr

. Then one has 2μ(VA) = μ(T1Cr).
Proceeding as in the proof of Corollary 1, we have

lim
n→∞

1

n

n∑
i=1

(si − ti) = lim
n→∞

1

n

∫ sn

0

χV(Gτ (v)) dτ

= lim
n→∞

1

sn

∫ sn

0

χV(Gτ (v)) dτ × sn
n
.

By the Ergodic Theorem and Theorem 2, this equals

area(Cr)

2 area(S)
× π area (S)

l(γ) cosh r
= π tanh r.

Here, the latter equality follows from Proposition 2. �

Proof of Corollary 3. We argue as in [11]. Write Nv(r)(t) = #{j | tj < t} for
the function that counts returns to the radius r collar. Using Theorem 2, the
distribution δ(r) can be written as

δ(r) = lim
n→∞

Nv(r)(t)

Nv(R0)(t)
=

cosh r

coshR0
.

This completes the proof of Corollary 2. �
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