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Lp-NUCLEAR PSEUDO-DIFFERENTIAL OPERATORS

ON Z AND S1

JULIO DELGADO AND M. W. WONG

(Communicated by Michael Hitrik)

Abstract. Conditions for pseudo-differential operators from Lp1 (Z) into
Lp2 (Z) and from Lp1 (S1) into Lp2 (S1) to be nuclear are presented for 1 ≤ p1,
p2 < ∞. In the cases when p1 = p2, the trace formulas are given.

1. Introduction

Although all results in this paper are presented for Z and S1 only, extensions to
the lattice Z

n and the torus Tn are valid.
Let Z be the set of all integers and let σ be a measurable function on Z × S1.

Then for every sequence in Lp(Z), 1 ≤ p < ∞, we define the sequence Tσa formally
by

(Tσa)(n) =
1

2π

∫ π

−π

e−inθσ(n, θ)(FZa)(θ) dθ, n ∈ Z,

where FZa is the Fourier transform of a given by

(FZa)(θ) =
∞∑

n=−∞
a(n)einθ, θ ∈ [−π, π].

Let S1 be the unit circle centered at the origin and let τ be a measurable function
on S1 × Z. Then for all f in Lp(S1), 1 ≤ p < ∞, we define the function Tτf on S1

formally by

(Tτf)(θ) =
∞∑

n=−∞
einθτ (θ, n)f̂(n), θ ∈ [−π, π],

where f̂ , sometimes denoted by FS1f , is the Fourier transform of f defined by

f̂(n) =
1

2π

∫ π

−π

e−inθf(θ) dθ, n ∈ Z.

Sufficient conditions on σ are given in [10] to guarantee that the pseudo-differen-
tial operator Tσ : Lp(Z) → Lp(Z), 1 ≤ p < ∞, is a bounded linear operator.
Under additional mild conditions on σ, the bounded linear operator Tσ : Lp(Z) →
Lp(Z), 1 ≤ p < ∞, turns out to be compact.

Sufficient conditions on τ can be found in [11] in order to ensure that the pseudo-
differential operator Tτ : Lp(S1)→Lp(S1) is a bounded linear operator for 1≤p<∞.
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In the case when p = 2, a simple necessary and sufficient condition for Tτ :
L2(S1) → L2(S1) and Tσ : L2(Z) → L2(Z) to be Hilbert–Schmidt is that, respec-
tively, τ ∈ L2(S1 × Z) and σ ∈ L2(Z× S

1).
The results hitherto described can be found in the book [14]. Related results

can be found in [12, 13].
The aim of this paper is to give a systematic investigation when the pseudo-

differential operators Tσ : Lp1(Z) → Lp2(Z) and Tτ : Lp1(S1) → Lp2(S1) are
nuclear for 1 ≤ p1, p2 < ∞. If they are nuclear, we find formulas for the traces
when p1 = p2.

The main tools that we use are the following results in [3, 4], which are the
Lp-analogs of the L2-results in [1, 2].

Theorem 1.1. Let (X1, μ1) and (X2, μ2) be σ-finite measure spaces. A bounded
linear operator A : Lp1(X1, μ1) → Lp2(X2, μ2), 1 ≤ p1, p2 < ∞, is nuclear if and

only if there exist sequences {gn}∞n=1 in Lp2(X2, μ2) and {hn}∞n=1 in Lp′
1(X1, μ1)

such that
∞∑

n=1

‖gn‖Lp2 (X2,μ2)‖hn‖Lp′
1 (X1,μ1)

< ∞

and for all f in Lp1(X1, μ1),

(Af)(x) =

∫
X1

( ∞∑
n=1

gn(x)hn(y)

)
f(y) dμ1(y)

for almost all x in X1.

The function k defined by

k(x, y) =
∞∑

n=1

gn(x)hn(y), x ∈ X1, y ∈ X2,

is known as a kernel of the nuclear operator A : Lp1(X1, μ1) → Lp2(X2, μ2).

Theorem 1.2. Let (X,μ) be a σ-finite measure space. If A : Lp(X,μ) → Lp(X,μ),
1 ≤ p < ∞, is a nuclear operator, then the trace tr(A) of A : Lp(X,μ) → Lp(X,μ)
is given by

tr(A) =

∫
X

k(x, x) dμ(x),

where k is the kernel induced by Theorem 1.1.

Remark 1.3. Since k is defined only up to a set of measure zero on X × X, the
function k(x, x) on the diagonal ofX×X is not well-defined, resulting in a multitude
of traces for a given nuclear operator. This caveat, however, does not come up in
the case of the counting measure on Z.

The following theorem of Grothendieck [6, 7] gives a subclass of nuclear operators
known as 2/3-nuclear operators.

Theorem 1.4. Let (X,μ) be a σ-finite measure space and let 1 ≤ p < ∞. If there

exist sequences {gn}∞n=1 in Lp(X,μ) and {hn}∞n=1 in Lp′
(X,μ) such that

∞∑
n=1

‖gn‖2/3Lp(X,μ)‖hn‖2/3Lp′ (X,μ)
< ∞
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and for all f in Lp(X,μ),

(Af)(x) =

∫
X

( ∞∑
n=1

gn(x)hn(y)

)
f(y) dμ(y)

for almost all x in X, then A : Lp(X,μ) → Lp(X,μ) is a nuclear operator. If
{λj}∞j=1 is the set of all eigenvalues of A : Lp(X,μ) → Lp(X,μ) with multiplicities
counted, then

(1.1) tr(A) =

∞∑
j=1

λj ,

where the series is absloutely convergent.

Remark 1.5. It is important to point out that for 2/3-nuclear operators, Lidskii’s
formula (1.1) to the effect that the trace is the sum of all the eigenvalues with
multiplicities counted is valid [5, 9, 8]. The book [5] contains a lucid exposition of
nuclear operators on Banach spaces and Lidskii’s formula.

In Section 2 we give results on the nuclearity of pseudo-differential operators
from Lp1(Z) into Lp2(Z), where 1 ≤ p1, p2 < ∞, and the trace formulas when
p1 = p2. Analogous results for the unit circle S1 are given in Section 3.

2. Pseudo-differential operators on Z

To give conditions for nuclearity, we define for all n in Z the function en on Z by

en(m) = δnm,

where δnm is the Kronecker delta. Then we have the following theorem.

Theorem 2.1. Let k : Z× Z → C be a function such that

∞∑
n=−∞

( ∞∑
m=−∞

|k(n,m)|p2

)1/p2

< ∞.

Let A : Lp1(Z) → Lp2(Z), 1 ≤ p1, p2 < ∞, be the linear operator defined by

em(Aen) = k(n,m), n,m ∈ Z,

where em is considered to be an element in Lp′
2(Z). Then A : Lp1(Z) → Lp2(Z) is

a nuclear operator. Moreover if p1 = p2, then

tr(A) =

∞∑
n=−∞

k(n, n).

Proof. For all a in Lp1(Z), we have

a =

∞∑
n=−∞

en(a)en

and

Aa =
∞∑

n=−∞
en(a)Aen.
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So, by Minkowski’s inequality,

‖Aa‖Lp2 (Z) ≤
∞∑

n=−∞
‖en(a)Aen‖Lp2 (Z)

≤ sup
n∈Z

|an|
∞∑

n=−∞
‖Aen‖Lp2 (Z)

= sup
n∈Z

|an|
∞∑

n=−∞

( ∞∑
m=−∞

|k(n,m)|p2

)1/p2

< ∞.

So, A : Lp1(Z) → Lp2(Z) is a bounded linear operator. Since

∞∑
n=−∞

‖Aen‖Lp2 (Z)‖en‖Lp1 (Z) =

∞∑
n=−∞

‖Aen‖Lp2 (Z)

=
∞∑

n=−∞

( ∞∑
m=−∞

|k(n,m)|p2

)1/p2

< ∞,

it follows from Theorem 1.1 that A : Lp1(Z) → Lp2(Z) is a nuclear operator, and
by Theorem 1.2,

tr(A) =
∞∑

n=−∞
k(n, n).

�

The preceding theorem and Theorem 1.4 together imply the following theorem.

Theorem 2.2. Let k : Z× Z → C be a function such that

∞∑
n=−∞

( ∞∑
m=−∞

|k(n,m)|p2

)2/(3p2)

< ∞.

Then the linear operator A : Lp1(Z) → Lp2(Z) is a 2/3-nuclear operator.

We can now come back to pseudo-differential operators on Z.

Theorem 2.3. Let σ be a measurable function on Z× S1 such that we can find a
function c in L1(Z) and a function w in Lp(Z), 1 < p < ∞, for which

|(FS1σ)(n,m)| ≤ |c(n)| |w(m)|, n,m ∈ Z.

Then the pseudo-differential operator Tσ : Lp(Z) → Lp(Z) is a nuclear operator.
Moreover,

tr(Tσ) =
1

2π

∞∑
n=−∞

∫ π

−π

σ(n, θ) dθ.

Proof. Let k : Z× Z be the function defined by

k(n,m) = (FS1σ)(n, n−m), n,m ∈ Z.

Then

∞∑
n=−∞

( ∞∑
m=−∞

|(FS1σ)(n,m)|p
)1/p

=
∞∑

n=−∞
|c(n)|

( ∞∑
m=−∞

|w(m)|p
)1/p

< ∞.
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So, by Theorem 2.1, Tσ : Lp(Z) → Lp(Z) is a nuclear operator and

tr(Tσ) =
∞∑

n=−∞
(FS1σ)(n, 0) =

1

2π

∞∑
n=−∞

∫ π

−π

σ(n, θ) dθ.

�

If we use Theorem 2.2 instead of Theorem 2.1, then we can have Lidskii’s formula
as well.

Theorem 2.4. Let σ be a measurable function on Z× S1 such that we can find a
function c in L2/3(Z) and a function w in Lp(Z), 1 ≤ p < ∞, for which

|(FS1σ)(n,m)| ≤ |c(n)| |w(m)|, n,m ∈ Z.

Then the pseudo-differential operator Tσ : Lp(Z) → Lp(Z) is a 2/3-nuclear operator.
Moreover,

tr(Tσ) =
1

2π

∞∑
n=−∞

∫ π

−π

σ(n, θ) dθ,

which is Lidskii’s formula for the sum of all eigenvalues of Tσ : Lp(Z) → Lp(Z)
with multiplicities counted.

Proof. Again, let k : Z× Z → C be the function defined by

k(n,m) = (FS1σ)(n, n−m), n,m ∈ Z.

Then

∞∑
n=−∞

( ∞∑
m=−∞

|(FS1σ)(n,m)|p
)2/(3p)

=
∞∑

n=−∞
|c(n)|2/3

( ∞∑
m=−∞

|w(m)|p
)2/(3p)

< ∞.

So, by Theorem 2.2, the proof is complete. �

3. Pseudo-differential operators on S1

We begin this section with the kernel representation of pseudo-differential oper-
ators on S1.

For all f in Lp(S1), we get for all θ in [−π, π],

(Tτf)(θ) =

∞∑
n=−∞

einθτ (θ, n)f̂(n)

=

∞∑
n=−∞

einθτ (θ, n)
1

2π

∫ π

−π

e−inφf(φ) dφ

=
1

2π

∫ π

−π

( ∞∑
n=−∞

ein(θ−φ)τ (θ, n)

)
f(φ) dφ

=

∫ π

−π

k(θ, φ)f(φ) dφ,

where

(3.1) k(θ, φ) =
1

2π

∞∑
n=−∞

ein(θ−φ)τ (θ, n), θ, φ ∈ [−π, π].
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A sufficient condition on the symbol τ for the corresponding pseudo-differential
operator Tτ : Lp1(S1) → Lp2(S1), 1 ≤ p1, p2 < ∞, to be nuclear is given in the
following theorem.

Theorem 3.1. Let τ be a measurable function on S1 × Z such that
∞∑

n=−∞
‖τ (·, n)‖Lp2(S1) < ∞.

Then Tτ : Lp1(S1) → Lp2(S1) is a nuclear operator.

Proof. Let {gn}∞n=−∞ and {hn}∞n=−∞ be sequences given by

gn(θ) = einθτ (θ, n), θ ∈ [−π, π], n ∈ Z,

and

hn(φ) =
1

2π
e−inφ, φ ∈ [−π, π], n ∈ Z.

Then for all n in Z,
gn ∈ Lp2(S1)

and
hn ∈ Lp′

1(S1).

So,
∞∑

n=−∞
‖gn‖Lp2 (S1)‖hn‖Lp′

1 (S1)
=

∞∑
n=−∞

‖τ (·, n)‖Lp2(S1) < ∞.

Thus, by Theorem 1.1, the pseudo-differential operator Tτ : Lp1(S1) → Lp2(S1)
that has kernel k given by (3.1) is nuclear. �

This proof gives the following theorem.

Theorem 3.2. Let τ be a measurable function on S
1 × Z such that

∞∑
n=−∞

‖τ (·, n)‖2/3Lp(S1) < ∞.

Then the pseudo-differential operator Tτ : Lp(S1) → Lp(S1) is 2/3-nuclear. More-
over,

tr(Tτ ) =
1

2π

∞∑
n=−∞

∫ π

−π

τ (θ, n) dθ,

which is also equal to the sum of all eigenvalues of Tτ : Lp(S1) → Lp(S1) with
multiplicities counted.

Example 3.3. In polar coordinates, the Laplacian ΔS1 on S1 is given by

ΔS1 = − ∂2

∂θ2
.

The one-parameter semigroup generated by ΔS1 is etΔS1 , t > 0. In fact, ΔS1 :
Lp(S1) → Lp(S1), 1 ≤ p < ∞, is given by

(eΔS1 f)(θ) =
1

2π

∫ π

−π

∞∑
n=−∞

e−n2tein(θ−φ)f(φ) dφ

=
∞∑

n=−∞
einθe−n2tf̂(n), θ ∈ [−π, π],
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for all f in Lp(S1). Thus, for t > 0, etΔS : Lp(S1) → Lp(S1) is a pseudo-differential
operator on S1 with the symbol τt given by

τt(θ, n) = e−n2t, θ ∈ [−π, π], n ∈ Z,

and with kt given by

kt(θ, φ) =
1

2π

∞∑
n=−∞

ein(θ−φ)e−n2t, θ, φ ∈ [−π, π].

Now, for t > 0, let {gn}∞n=−∞ and {ht
n}∞n=−∞ be sequences in, respectively, Lp(S1)

and Lp′
(S1) given by

gn(φ) = einφ, φ ∈ [−π, π],

and

ht
n(φ) = e−n2t, φ ∈ [−π, π].

Thus, for t > 0,
∞∑

n=−∞
‖gn‖2/3Lp(S1)‖h

t
n‖

2/3

Lp′ (S1)
< ∞.

So, by Theorem 1.4, etΔS1 : Lp(S1) → Lp(S1) is nuclear and

tr(etΔS1 ) =

∫ π

−π

kt(φ, φ) dφ =

∞∑
n=−∞

e−n2t,

thus confirming Lidskii’s theorem.
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