
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 141, Number 11, November 2013, Pages 4015–4025
S 0002-9939(2013)11780-6
Article electronically published on July 12, 2013

RIGIDITY THEOREMS OF HYPERSURFACES

IN LOCALLY SYMMETRIC RIEMANNIAN MANIFOLD

SHICHENG ZHANG AND BAOQIANG WU

(Communicated by Lei Ni)

Abstract. In this paper, the linear Weingarten hypersurfaces in a locally
symmetric Riemannian manifold are investigated and the rigidity theorems
are proved by the operator � introduced by S. Y. Cheng and S. T. Yau, which

is a generalization of main results obtained by several authors.

1. Introduction

When the ambient manifolds possess very nice symmetry, for example, the
sphere, many results have been obtained in the study of the minimal hypersur-
face and the hypersurface with constant mean curvature or constant scalar curva-
ture in these ambient manifolds. (One can refer to [1]-[7]). Recently, Q.M. Cheng
and H. Nakagawa [8], and H.W. Xu [9] independently proved the optimal rigidity
theorem for the hypersurface of constant mean curvature in a sphere.

In order to study hypersurfaces with constant scalar curvature, Cheng and Yau
[12] introduced a new self-adjoint differential operator � acting on C2-functions
defined on Riemannian manifolds. As a by-product of this approach they were
able to classify closed hypersurface M with constant normalized scalar curvature R
satisfying R ≥ c and non-negative sectional curvatures immersed in complete and
simply connected (n+ 1)-dimensional Riemannian manifolds of constant sectional
curvature c, which will be denoted by Qn+1(c) and are also known as space forms.

By using the Cheng-Yau technique, X. Liu and H. Li [7] also obtained some
rigidity theorems for hypersurface with constant scalar curvature. Therefore, it
is important and natural to extend the Riemannian space forms to the locally
symmetric Riemannian manifolds.

Let the ambient manifold Nn+1 be a locally symmetric Riemannian manifold
with sectional curvature KN and M be an n-dimensional complete hypersurface
with constant mean curvature H in Nn+1. When 1

2 < δ ≤ KN ≤ 1 (δ is a constant)
at all points x ∈ M and the squared norm of the second fundamental form S

satisfies S < n+ n3

2(n−1)H2 − n(n−2)
2(n−1)

√
n2H4 + 4(n− 1)H2, S. Shu [13] and S. Ding

[14] have obtained that the hypersurface M is a totally umbilical hypersurface,
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respectively. H.W. Xu [15] has also obtained the same result when M is an n-
dimensional closed minimal hypersurface with constant mean curvature H in Nn+1

and sectional curvatureKN satisfying the condition δ ≤ KN ≤ 1 at all points x ∈ M
and the squared norm of the second fundamental form S satisfies S ≤ (2δ − 1)n.

Now let us introduce the notion of linear Weingarten hypersurfaces in an (n+1)-
dimensional locally symmetric Riemannian manifold Nn+1 as follows:

Definition 1.1. Let M be a hypersurface in an (n + 1)-dimensional locally sym-
metric Riemannian manifold Nn+1. We call M a linear Weingarten hypersurface
if cR+ dH + e = 0, where c, d and e are constants such that c2 + d2 �= 0, R and H
respectively denote the scalar curvature and the mean curvature of M .

Remark 1.1. When the constant d = 0 in Definition 1.1, a linear Weingarten hy-
persurface M reduces to a hypersurface with constant scalar curvature. When the
constant c = 0 in Definition 1.1, a linear Weingarten hypersurface M reduces to a
hypersurface with constant mean curvature. In such a sense, the linear Weingarten
hypersurfaces can be regarded as a natural generalization of hypersurfaces with
constant scalar curvature or with constant mean curvature.

In this paper, let the ambient manifold Nn+1 be a locally symmetric Riemannian
manifold with sectional curvature KN satisfying the condition K(u ∧ v) ≥ c2 (c2
is a constant), where u, v ∈ TM and K(ω ∧ v) = c1 (c1 is a constant), where
ω ∈ T⊥M and v ∈ TM ; we shall say the manifold Nn+1 satisfies condition (∗).
We study the linear Weingarten hypersurfaces in a locally symmetric Riemannian
manifold.

As in the computation of ([10, 11]), we compute the scalar curvature of a point
in Nn+1,

K =
n+1∑
A=1

KAA = 2
n∑

i=1

Kn+1in+1i +
n∑

i,j=1

Kijji = 2nc1 +
n∑

i,j=1

Kijji.

It is known that K is constant when Nn+1 is locally symmetric, so
∑n

i,j=1 Kijji is
constant.

From (2.3), we denote

n(n− 1)P = n2H2 − S = n(n− 1)r −
n∑

i,j=1

Kijji,(1.1)

where r is a normalized scalar curvature of M . By investigating Cheng and Yau’s
operator � given in [12] and using some new estimations, we are able to study
the compact or complete linear Weingarten hypersurfaces in a locally symmetric
Riemannian manifold as follows:

Theorem 1.1. Let M be an n-dimensional compact hypersurface in a locally sym-
metric Riemannian manifold Nn+1 satisfying condition (∗). If the squared norm of
the second fundamental form S and the mean curvature H satisfy the conditions

n(
P − b

a
)2 ≤ S ≤ n

(n− 2)(nP + 2c)
[n(n− 1)P 2 + 4c(n− 1)P + nc2]
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and P = aH + b, (n− 1)a2 + 4nb ≥ 0, then
(1) S = n(P−b

a )2 and M is a totally umbilical hypersurface or
(2) M is an isoparametric hypersurface with two distinct principal curvatures,

one of which is simple, and S = n
(n−2)(nP+2c) [n(n−1)P 2+4c(n−1)P +nc2], where

c = 2c2 − c1 ≥ 0.

Remark 1.2. Since n(n − 1)P = n(n − 1)r −
∑n

i,j=1 Kijji, a hypersurface M in
Theorem 1.1 satisfying P = aH + b is just a linear Weingarten hypersurface in
Definition 1.1.

Remark 1.3. If c1 = 1, c2 = 1, i.e. the locally symmetric Riemannian manifold
Nn+1 is the unit sphere Sn+1(1), our Theorem 1.1 reduces to Theorem 1.3 in [16].

Remark 1.4. If c1 = 1, c2 = 1, when the constant a in the above identically vanishes,
our Theorem 1.1 reduces to Theorem 2 in [17] and the main theorem in [7].

Theorem 1.2. Let M be an n-dimensional complete hypersurface in a locally
symmetric Riemannian manifold Nn+1 satisfying condition (∗). If the squared
norm of the second fundamental form S satisfies the conditions S < 2

√
n− 1c

and P = aH + b, a ≤ 0, (n − 1)a2 + 4nb ≥ 0, then S = nH2 and M is a totally
umbilical hypersurface, where c = 2c2 − c1 ≥ 0.

Example. We consider the Riemannian product manifold

Nn+1 = Sn(r)×R1 = {(x1, x2, · · · , xn+2) ∈ Rn+2,

n+1∑
A=1

(xA)2 = r2}.

Its sectional curvature is given by

K(ui, uj) =
1

r2
, K(ui, un+1) = 0 (i, j = 1, · · · , n).

Then,

M1 = {(x1, x2, · · · , xn+1, c) ∈ Rn+2} ⊂ Nn+1

is a totally umbilical hypersurface in a locally symmetric Riemannian manifold
Nn+1, and

M2 = {(0, x2, · · · , xn+2) ∈ Rn+2} ⊂ Nn+1

is an isoparametric hypersurface in a locally symmetric Riemannian manifoldNn+1,
respectively.

2. Preliminaries

If M is a hypersurface in Nn+1, let {e1, e2, · · · , en+1} be a local frame of or-
thonormal vector fields in Nn+1 such that, restricted to M , the vectors {e1, e2, · · · ,
en} are tangent to M and the vector en+1 is normal to M . Let {ω1, ω2, · · · , ωn+1}
be its dual frame field. We use the following convention on the range of indices:

1 ≤ A,B,C, · · · ≤ n+ 1, 1 ≤ i, j, k, · · · ≤ n.

Let KABCD and Rijkl be the components of the curvature tensors of Nn+1 and M ,
respectively. Let h = hij be the second fundamental form of M ; the square of the
norm of h is denoted by S =

∑n
i,j=1(hij)

2.
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It is well known that for an arbitrary hypersurface M of Nn+1, we have

dωij = −
∑
k

ωik ∧ ωkj +
1

2

∑
k,l

Rijklω
k ∧ ωl,(2.1)

Rijkl = Kijkl + hikhjl − hilhjk.(2.2)

The components Rij of Ricci tensor and the normalized scalar curvature r of M
are given by

Rij =

n∑
k=1

Kkijk + nHhij −
n∑

k=1

hikhkj ,

n(n− 1)r =

n∑
i,j=1

Kijji + (nH)2 − S.(2.3)

We denote the first and second covariant derivatives of hij by hijk and hijkl respec-
tively, which are defined as in [1]. Following [1] and [19], we have

hijk − hikj = −Kn+1ijk,(2.4)

∑
k

hijkωk = dhij −
∑
k

hikωkj −
∑
k

hkjωki,(2.5)

and the Ricci formula

hijkl − hijlk =
∑
s

hsjRsikl +
∑
s

hisRsjkl.(2.6)

Let Kn+1ijk,l be the covariant derivative of Kn+1ijk as the section of T⊥M ⊗
T ∗M ⊗ T ∗M ⊗ T ∗M and let KABCD,E be the covariant derivative of KABCD as
the curvature tensor of Nn+1. Restricted to M we have

(2.7)
∑
l

Kn+1ijklωl = dKn+1ijk +
∑
s

Kn+1sjkωis +
∑
s

Kn+1ijsωks

and

(2.8) Kn+1ijk,l = Kn+1ijkl −Kn+1in+1khjl −Kn+1ijn+1hkl +
∑
m

Kmijkhml.

The mean curvature of M is given by H = 1
n

∑n
i=1 hiien+1, and the Laplacian

Δhij of the second fundamental form h of M is defined by Δhij =
∑n

k=1 hijkk:

Δhij =
∑
k

hkkij + nHKn+1in+1j −
∑
k

Kn+1kn+1khij + nH
∑
k

hikhkj − Shij

+
∑
k

(Klkikhlj +Klkjkhli + 2Klijkhlk)−
∑
k

(Kn+1ijk,k +Kn+1kik,j).(2.9)

Since Nn+1 is complete and locally symmetric, we have

KABCD,E = 0,
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for all A,B,C,D,E. This together with (2.2), (2.7) and (2.8) implies

1

2
ΔS =

∑
i,j,k

h2
ijk +

∑
i,j,k

hijkkhij

= nHtrH3
n+1 − S2 +

∑
i,j,k

h2
ijk +

∑
i,j,k,l

2(hijhklKlijk + hlihijKlkjk)

+
∑
i,j,k

hijkkhij +
∑
i,j

nHhijKn+1ijn+1 − S
∑
k

Kn+1kn+1k.(2.10)

Following Cheng-Yau [12], we introduce a modified operator � acting on any
C2-function f by

�f =
∑
i,j

(nHδij − hij)fij −
n− 1

2
aΔf.(2.11)

It follows [12] that the operator � is self-adjoint relative to the L2 inner product
of M , i.e. ∫

M

f�g =

∫
M

g�f.

Choose a local frame of orthonormal vector fields {ei} so that at an arbitrary point
x of M , hij = λiδij ; then at the point x, and by use of (1.1) and (2.10), we have

�(nH) = nHΔ(nH)−
∑
l

λi(nH)ii −
n− 1

2
aΔ(nH)

=
1

2
Δ(n(n− 1)r −

n∑
i,j=1

Kijji) +
1

2
ΔS

− n2|∇H|2 −
∑
i

λi(nH)ii −
1

2
Δ(n(n− 1)r)

=
1

2
ΔS − n2|∇H|2 −

∑
i

λi(nH)ii.(2.12)

Putting (2.10) into (2.12), we obtain

�(nH) = nHΔ(nH)−
∑
l

λi(nH)ii

=
∑
i,j,k

h2
ijk − n2|∇H|2 +X + Y + Z,(2.13)

where

X = nHtrH3
n+1 − S2,

Y =
∑
i,j,k,l

2(hijhklKlijk + hlihijKlkjk),

Z =
∑
i,j

nHhijKn+1ijn+1 − S
∑
k

Kn+1kn+1k.
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3. Proof of theorems

The following lemmas are useful in the proofs of Theorems 1.1 and 1.2.

Lemma 3.1. Let M be an n-dimensional compact hypersurface in a locally sym-
metric Riemannian Manifold Nn+1 satisfying condition (∗). If P = aH+b, a, b ∈ R
and (n− 1)a2 + 4nb ≥ 0, then we have

|∇h|2 =
∑

α,i,j,k

(hα
ijk)

2 ≥ n2|∇H|2.

Proof. From the Gauss equation, we have

S = n2H2 − n(n− 1)P = n2H2 − n(n− 1)(aH + b).

Taking the covariant derivative of the above equation, we have

2
∑
α,i,j

hα
ijh

α
ijk = 2n2HHk − n(n− 1)aHk.

Therefore,

4|h|2|∇h|2 ≥ 4
∑
k

(
hα
ijh

α
ijk

)2

= [2n2H − n(n− 1)a]2|∇H|2.

On the other hand,

[2n2H − n(n− 1)a]2 − 4n2S

= 4n4H2 + n2(n− 1)2a2 − 4n3(n− 1)Ha

− 4n3[nH2 − (n− 1)(aH + b)]

= n2(n− 1)[(n− 1)a2 + 4nb]

≥ 0.

It follows that

|∇h|2 ≥ n2|∇H|2.
�

Lemma 3.2 ([19]). Let μ1, · · · , μn be real numbers such that
∑

i μi = 0 and∑
i μ

2
i = B, where B = const. ≥ 0. Then

|
∑
i

μ3
i | ≤

n− 2√
n(n− 1)

B
3
2 ,

and equality holds if and only if

μ1 = · · · = μn−1 = −
√

1

n(n− 1)
B, μn =

√
n− 1

n
B.

Choose a local frame of orthonormal vector fields {ei} so that at an arbitrary
point x of M , hij = λiδij ; then at the point x we have

S =
∑
i

λ2
i .

Putting μj = H − λj , we obtain∑
j

μj = 0, |φ|2 =
∑
j

μ2
j = S − nH2,(3.1)
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and ∑
i

λ3
i = nH3 + 3H

∑
i

μ2
i −

∑
i

μ3
i .(3.2)

So

nHtrH3
n+1 = nH(nH3 + 3H

∑
i

μ2
i −

∑
i

μ3
i )

≥ 3nH2|φ|2 + n2H4 − n|H| n− 2√
n(n− 1)

|φ|3,

and we obtain

Lemma 3.3. X ≥ |φ|2
[
nH2 − |φ|2 − n(n−2)√

n(n−1)
|H||φ|

]
.

Lemma 3.4 ([15]). Y ≥ 2nc2|φ|2.

Lemma 3.5. Z = c1n(nH
2 − S) = −c1n|φ|2.

Proof.

Z =
∑
i,j

nHhijKn+1ijn+1 − S
∑
k

Kn+1kn+1k

= nH
∑
i

λiKn+1in+1i − S
∑
i

Kn+1in+1i

=
∑
i

(S − nHλi)Kn+1in+1i = c1n(nH
2 − S).

This proves Lemma 3.5. �

From the assumption of Theorem 1.1 and Lemmas 3.1, 3.3, 3.4 and 3.5, we obtain

�(nH) ≥ |φ|2
[
nc− |φ|2 − n|H| n− 2√

n(n− 1)
|φ|+ nH2

]
,(3.3)

where c = 2c2 − c1.
The next lemmas have essential roles in the proof of Theorem 1.2.

Lemma 3.6 ([20]). Let M be an n-dimensional complete Riemannian manifold
whose sectional curvature is bounded from below and let f : M −→ R be a smooth
function which is bounded from above on M . Then there is a sequence of points
{pk} in M such that

lim
k→∞

f(pk) = sup f ; lim
k→∞

|∇f(pk)| = 0; lim
k→∞

sup(Δf(pk)) ≤ 0.

Lemma 3.7. Let M be a complete hypersurface in an (n+ 1)-dimensional locally
symmetric Riemannian manifold Nn+1 with bounded mean curvature. If P = aH+
b, (n− 1)a2 + 4nb ≥ 0, then there is a sequence of points {pk} ∈ M such that

lim
k→∞

nH(pk) = n supH; lim
k→∞

|∇nH(pk)| = 0; lim
k→∞

sup(�(nH)(pk)) ≤ 0.

Proof. Choose a local orthonormal frame field {e1, e2, · · · , en} at p ∈ M such that
hij = λjδij . Then,

�(nH) =
∑
i

(
(nH − λn+1

i )− n− 1

2
a

)
(nH)ii.
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If H ≡ 0, Theorem 1.1 is obvious. Let us suppose that H is not identically zero.
By changing the orientation of M if necessary, we may assume H > 0.

From (1.1), we have

n(n− 1)P = n2H2 − S,

(λn+1
i )2 ≤ S = n2H2 − n(n− 1)(aH + b)

= (nH)2 − (n− 1)a(nH)− n(n− 1)b

=

(
nH − 1

2
(n− 1)a

)2

− 1

4
(n− 1)

(
(n− 1)a2 + 4nb

)

≤
(
nH − 1

2
(n− 1)a

)2

,

and so

|λn+1
i | ≤ |nH − 1

2
(n− 1)a|.(3.4)

From (2.2) and (3.4), we show that

Rijij = Kijij + hn+1
ii hn+1

jj − (hn+1
ij )2 ≥ c2 −

(
nH − 1

2
(n− 1)a

)2

.

Since H is bounded, we may apply Lemma 3.6 to nH, obtaining a sequence of
points {pk} ∈ M such that
(3.5)

lim
k→∞

nH(pk) = n supH, lim
k→∞

|∇nH(pk)| = 0 and lim
k→∞

sup((nH)ii(pk)) ≤ 0.

Since H is bounded, taking subsequences if necessary, we can arrive at a sequence
{pk} ∈ M and such that H(pk) ≥ 0. Thus from (3.4), we get

0 ≤ nH(pk)−
1

2
(n− 1)a− |λn+1

i |

≤ nH(pk)−
1

2
(n− 1)a− λn+1

i

≤ nH(pk)−
1

2
(n− 1)a+ |λn+1

i |

≤ 2nH(pk)− (n− 1)a.(3.6)

Using once more the fact that H is bounded, from (3.6) and a ≤ 0 we infer that
nH(pk)− 1

2 (n − 1)a− λn+1
i is non-negative and bounded. By applying �(nH) at

pk, taking the limit and using (3.5) and (3.6), we have

lim
k→∞

sup(�(nH)(pk)) ≤
∑
i

lim
k→∞

sup[(nH)(pk)−
1

2
(n− 1)a)− λn+1

i ](nH)ii(pk)

≤ 0.

�

Proof of Theorem 1.1. Since M is a compact hypersurface in locally symmetric
Riemannian manifold Nn+1, from (3.3) we have

(3.7) 0 ≥
∫
M

(S−nH2)

[
nc− (S−nH2)−n|H| n− 2√

n(n− 1)

√
S − nH2 +nH2

]
dv.
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On the other hand, since

S ≤ n

(n− 2)(nP + 2c)
[n(n− 1)P 2 + 4c(n− 1)P + nc2],

we get

n− 2

n

√
(n(n− 1)P + S)(S − nP ) ≤ nc+ 2(n− 1)P +

n− 2

n
S.

From (1.1) and (3.1), we have

S − nH2 =
n− 1

n
(S − nP ).(3.8)

So, we obtain

nc− nH2 + (S − nH2)− n(n− 2)√
n(n− 1)

|H|
√

S − nH2

= nc+ 2(n− 1)P +
n− 2

n
S − n− 2

n

√
(n(n− 1)P + S)(S − nP ).(3.9)

This implies that

(3.10) (S − nH2)

[
nc− (S − nH2)− n|H| n− 2√

n(n− 1)

√
S − nH2 + nH2

]
≥ 0.

By (3.4) and (3.7), we obtain either S − nH2 = S − n(P−b
a )2 = 0 and M is

totally umbilical or S = n
(n−2)(nP+2c) [n(n− 1)P 2 + 4c(n− 1)P + nc2].

If M is not totally umbilical, we can see that S = n
(n−2)(nP+2c) [n(n − 1)P 2 +

4c(n−1)P+nc2]. Hence equalities hold in Lemma 3.1 and Lemma 3.2, and it follows
that λi = const. for all i and (n − 1) of the λi’s are equal. After re-numbering if
necessary, we can assume that

λ1 = λ2 = · · · = λn−1, λ1 �= λn.

Therefore, M is an isoparametric hypersurface with two distinct principal curva-
tures, one of which is simple. This completes the proof of Theorem 1.1. �
Proof of Theorem 1.2. Now we assume P = aH + b and (n− 1)a2 + 4nb ≥ 0. For

a real number d = n+2
√
n−1

n−2

√
n > 0, we have

2|H||φ| ≤ dH2 +
1

d
|φ|2.(3.11)

From (3.3) and (3.11), we obtain

�(nH) ≥ |φ|2
[
nc+ nH2

(
2− (n− 2)d

2
√
n(n− 1)

+
n(n− 2)

2
√
n(n− 1)d

)

− S

(
1 +

n(n− 2)

2
√
n(n− 1)d

)]
,

that is,

�(nH) ≥ |φ|2(nc− n

2
√
n− 1

S).(3.12)

From the assumption S < 2
√
n− 1c and according to Lemma 3.7, there exists a

sequence of points {pk} in M such that

(3.13) lim
k→∞

sup(�(nH)(pk)) ≤ 0, lim
k→∞

nH(pk) = sup(nH).



4024 SHICHENG ZHANG AND BAOQIANG WU

From (1.1) and (3.1), we have

|φ|2 = n(n− 1)(H2 − aH − b).

Notice that limk→∞ nH(pk) = sup(nH), so we have

lim
k→∞

|φ|2(pk) = sup |φ|2, lim
k→∞

S(pk) = supS.

Evaluating (3.12) at the points pk of the sequence, taking the limit and using (3.13),
we obtain

(3.14) 0 ≥ lim
k→∞

sup(�(nH)(pk)) ≥ sup |φ|2(nc− n

2
√
n− 1

supS).

If supS < 2
√
n− 1c, then we have sup |φ|2 = 0, that is, |φ|2 = 0. Thus, we infer

that S = nH2 and M is a totally umbilical hypersurface.
This completes the proof of Theorem 1.2. �
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