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SPECTRAL RADIUS OF A NONNEGATIVE MATRIX:
FROM ROME TO INDY

MICHAL MISIUREWICZ

(Communicated by Nimish Shah)

ABSTRACT. We generalize the rome method of computing the spectral radius
of a nonnegative matrix, used often in one-dimensional dynamics, to the indy
method, which works well in many cases when using the rome method is diffi-
cult.

1. INTRODUCTION

There are many situations in which one would like to compute the spectral ra-
dius of a nonnegative matrix. This happens for instance in dynamical systems or
graph theory. In dynamical systems, topological entropy (and sometimes topological
pressure), which is one of the main invariants of a topological dynamical system
and tells us how chaotic the system is, can often be computed as a logarithm of the
spectral radius of a certain nonegative matrix (see, e.g., [B], [1]). Similarly, in graph
theory, the spectral radius of a digraph, defined as the spectral radius of its adja-
cency matrix (called often in dynamical systems transition matriz), characterizes
the complexity of a digraph and is of great importance (see, e.g., [3]).

While for a single matrix M one can use many computer programs to quickly
compute its spectral radius spr(M) (although this was not the case 30 or more
years ago), the situation is not that simple. First, one may be more interested in
finding a polynomial whose zero is spr(M) rather than the approximate numerical
value of spr(M). This task can also be performed by a computer, but the form of a
polynomial will not necessarily be the simplest one. Second, the dimension of the
matrix may be large, and its input into the program may take considerable time.
Third, instead of a single matrix, one often considers a family of matrices with
some special structure of larger and larger dimensions. Then the desired outcome
is some formula depending on the parameters, and for this more than a computer
program may be necessary.

In 1980, the rome method was invented in [2] to overcome those problems. It
works very well for problems appearing in one-dimensional dynamics (see, e.g., [1]).
In the interpretation via a digraph (with edges carrying nonnegative weights), we
need to find a small rome, that is, a set of vertices such that all infinite paths pass
through it. While in many cases this is possible, sometimes (for instance, if most of
the diagonal entries of the matrix are positive) this does not work. Here we present
a generalization of this method, which we call the indy method (Indianapolis is not
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Rome. .. ). While the restrictions on the set of vertices are absent in this method,
polynomials appearing in the rome method are replaced by a power series. Checking
that those power series converge makes the proof in the indy case considerably more
complicated than in the rome case.

The paper is organized as follows. In Section 2l we fix the notation used later. In
Section [3] we describe the rome method. In Section [l we describe the indy method
and prove that it works. In Section [B] we present a simple example when the rome
method works very well and then modify it so that the rome method does not give
any advantage, while the indy method works very well.

2. NOTATION

We consider square matrices. For two such matrices M = (mij)ﬁjzl and N =
(nij)ﬁjzl we write M < N if m;; < n;; for every 4,j5. If M < N and M # N, we
will write M < N (writing M < N would be more logical, but confusing, since it
could be understood as m;; < n;; for every ¢, 7). The zero matrix of any size will
be denoted just 0, and the unit matrix I. Thus, M > 0 means that the matrix M
is nonnegative (has all entries nonnegative).

Let M = (mg;){,_, be a nonnegative matrix. A sequence p = (ig,i1,...,in) of
elements of {1,...,d} will be called a road from ig to i,. Then n will be called the
length of p and be denoted by #(p), while the product

n
H My, i
k=1

will be called the width of p and be denoted by w(p). The function y +— w(p)y*®
will be called the characteristic of p and be denoted by ch(p).

For two roads p = (ig,41,--.,in) and ¢ = (Jo,J1,---,Jv), if én = jo, then we
can form their concatenation pq = (ig,%1,...,%n,J1,.--,Jv). Clearly, ch(pq) =
ch(p) ch(q).

A road p = (ig,i1,...,in) passes through j € {1,...,d} if there is k € {1,...,
n — 1} such that ¢y, = j. For 4,5 € {1,...,d} and S C {1,...,d}, we denote by
D(i, 7, S) the set of all roads from 7 to j not passing through any element of SU{i, j}.
We set

(2.1) fijs = Z ch(p),
peD(i,5,5)

and if S is nonempty, we set

(2.2) Ms = (fi,,8)i5es-

Finally, we will denote the spectral radius of a matrix M by spr(M) and its
characteristic polynomial by x,,. The determinant of a matrix M will be denoted
by det(M). For a finite set S its cardinality will be denoted by |S].

3. ROME METHOD

In dynamical systems topological entropy is often equal to the logarithm of the
spectral radius of some nonnegative matrix. If this matrix has many zeros, then
in order to compute its spectral radius one can use a very effective (especially for
computations “by hand”) rome method. It has been introduced in [2].
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Let M = (my;){;_; be a matrix. A subset R C {1,...,d} is called a rome if all
roads lead to it (omnes viae Romam ducunt); that is, for every i € {1,...,d} ~ R
every road of nonzero width from ¢ to ¢ passes through some element of R. The
following theorem can be found for instance in [2] or [IJ.

Theorem 3.1. If R is a rome for a d x d matriz M, then
(3.1) X (@) = (=)l det(Mp(z 1) — ).

If M is a nonnegative matrix, then its spectral radius is equal to the largest real
zero X,,. Therefore we get the following corollary.

Corollary 3.2. If R is a rome for a d X d nonnegative matrix M with positive
spectral radius, then spr(M) is the reciprocal of the smallest positive zero of the
polynomial det(Mg(y) — I).

4. INDY METHOD

We want to generalize the rome method to the case when R is not necessarily
a rome. Since unfortunately not all roads lead to Indy (Indianapolis), we can call
any subset R C {1,...,d} an indy. Then the entries of the matrix Mp will be
a series rather than polynomials. Therefore, in order to recover the characteristic
polynomial of M, as in @) we would have to multiply det(Mg(z~!) — I) by x
to the infinite power. This of course does not make sense, so we will generalize
Corollary rather than Theorem 311

In order to control the radii of convergence of the series that will appear in
the formulas, we will use the following theorem. It is an immediate corollary to a
somewhat more general Wielandt’s Theorem on spectral radii (see, e.g., [4]).

Theorem 4.1. Let M be a nonnegative irreducible d X d matriz, and let N be a
nonnegative d X d matriz such that N < M. Then spr(N) < spr(M).

Before we state our main result, we will prove some lemmas that will be used in
its proof.

Lemma 4.2. Let M be a nonnegative d X d matrix with positive spectral radius.
Then the radius of convergence of the series

(4.1) > ch(p),

where the summation is over all roads p, is equal to 1/spr(M).

Proof. Think of the formula for the ij-th entry of the matrix M"™, where M =
(mij)fl,j=1~ It is the sum of all products of the form my;, M 4, - - - M, _gip_ M1 -
That is, it is the sum of widths of all paths of length n from i to j. If M > 0, all
numbers involved are nonnegative. The spectral radius of M is equal to the growth
rate of the sum of all entries of M™, so it is equal to the growth rate of the sum of
widths of all paths of length n. Now we use the standard formula for the radius of
convergence of a power series. |

Lemma 4.3. Let M be a nonnegative d X d matrix with positive spectral radius.
If R = {1,...,d}, then spr(M) is the reciprocal of the smallest positive zero of
det(Mg(y) — I).
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Proof. For every i,j we have D(i,j, R) = {(i,4)}, so fijr(y) = mi;y. Thus, if
y # 0, we get

der(n) - 1) =t aen (3= 1) =y, (1)),

Since spr(M) is the largest zero of x,,, we see that it is the reciprocal of the smallest
positive zero of det(Mg(y) — I). O

Lemma 4.4. Let M be a nonnegative irreducible dx d matriz. Let S be a nonempty
subset of {1,...,d} and let k€ {1,...,d} \S. Set R=SU{k}. Then

(4.2) det(Mg(y) —I) = det(Ms(y) — I)(fxr.r(y) — 1)

for all y > 0 for which the series appearing in [E2l) converge. Moreover, for such
y we have | fr . r(y)| < 1.

Proof. Look at a road p € D(i,7,5), where i,j € S. If it does not pass through k,
then it belongs to D(i,j, R). If it passes n + 1 > 1 times through k, then it is a
concatenation of a road from D(i, k, R), then n roads from D(k,k, R), and finally
a road from D(k,j, R). Each such road belongs to D(%, j,.5). Thus,

fizs= > @ +> [ D (g DY ()| DY ch(s)

n

pED(i,5,R) n=0 \q€D(i,k,R) reD(k,j,R) s€D(k,k,R)
(4.3)
= fi,j,R + fi,k,R . fk,j,R : Z(fk,k:,R)n-
n=0

If | fr ke, r(y)] < 1, then we get
1
1= frrr
To compute det(Mp — I), we can add to each column of this matrix indexed by

J € S the column indexed by k multiplied by fi ; r/(1 — fik,r). If we denote the
entries that we get this way by ¢, ; (4,7 € R), then:

(4.4) fij.s = fijr+ fikR - [rijR-

ke = fr e, — 1

for j # k we have

Jkj.R
9rj = frgr+ (frpr — 1) ——5=— =0;
1- fk,k,R
fori,j5 € 5, if i # j we have
JrjR
9ij = fijr+ firr ——F—;
11— fk,k,R

SO by (M), 9i5 = fi,j,S and, similarly, if i € S, then Gii = fi,i,S — 1. Thus, m
holds. However, we had to assume that we were working with convergent series and

that |fk:,k,R(y)| <1
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Now, remove the assumption that |f x, zr(y)| < 1 and suppose that | fx x.r(y)| >
1. Since M is irreducible, there are i,j € S such that the sets D(i, k, R) and
D(k, j, R) are nonempty, and therefore f; p r and f; j r are positive. Then in ([E.3)
we get as a value at y a finite number on the left-hand side, but infinity on the
right-hand side, a contradiction. Therefore we get |fx x r(y)| < 1 whenever the
series we are working with are convergent. O

Lemma 4.5. Let M = (mij)ﬁjzl be a nonnegative irreducible matriz. Then for
every i,j € {1,...,d} and S C {1,...,d} the radius of convergence of the se-

ries 21)) is strictly larger than 1/spr(M).

Proof. We can write D(i, j,.5) as the union of its subsets Dy, consisting of the roads
that begin with (i, k), over all k € {1,...,d} ~ {i} (and the singleton of the path
(i,1) if 7 = i). The characteristic of any road from Dy, is equal to m;y times the
characteristic of this road without the initial i. However, such a road is also a road
from k to j for the matrix N which is obtained from M by replacing all entries
miy (€ = 1,...,d) by 0. Thus, by Lemma L2 the radius of convergence of the
series (2] is at least 1/spr(N).

Clearly, N < M. Since M is irreducible and N is not, we have N # M, and thus
N < M. By Theorem 1] spr(N) < spr(M). Therefore, the radius of convergence
of the series (Z1)) is strictly larger than 1/spr(M). O

Now we can prove our main theorem.

Theorem 4.6. Let M be a nonnegative d x d irreducible matriz. Then for any
indy S (a nonempty subset of {1,...,d}) spr(M) is the reciprocal of the smallest
positive zero of det(Mg(y) — I).

Proof. Since M is nonnegative and irreducible, it has a positive spectral radius, so
we can use Lemma L3l Then we use induction, removing one by one the elements
of {1,...,d} ~ S, and using Lemmas 1.4 and At each stage of induction we
have an indy R, whose smallest positive zero is 1/spr(M). O

5. EXAMPLE

Let us illustrate a simple example of how the rome and indy methods can work.
Let M = (mw)?;r:ll be a 0-1 matrix with my; = m;; = 1fori=2,...,n+1 and the
rest of the entries 0. It is the transition (adjacency) matrix of the digraph shown
in Figure [l

We can compute the spectral radius of M immediately by using the rome method
with the rome R = {1}. The set D(1, 1, R) consists of n roads of length 2 and width
1 each, so f1,1,r(y) = ny®. Thus, by Corollary B2 spr(M) is the reciprocal of the
smallest positive solution to the equation ny? = 1, that is, spr(M) = v/n.

Now consider the matrix N, obtained from M by replacing the diagonal entries,
except the first one, by 1. It is the transition matrix of the digraph shown in
Figure 2l Now using the rome method will not give us any big advantage, because
there are only 2 possible romes, {1,2,...,n+ 1} and {2,...,n+ 1}, and they are
big. However, we can compute the spectral radius of N very easily using the indy
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F1GURE 1. The digraph whose transition matrix is M.

|
e
|

/N

e
F1GURE 2. The digraph whose transition matrix is V.

method with the indy R = {1}. The set D(1, 1, R) now consists of n roads of length
k for all kK > 2. All roads have width 1. Therefore

oo ny2
— k _
f11,r(Y) —”k§_2y T1—y

Clearly, the matrix N is irreducible. Thus, by Theorem .6} spr(M) is the reciprocal
of the smallest positive solution to the equation

ny?

L—y

that is, of the equation ny? = (1 — y). Substituting z = 1/y, we get the equation

2?2 — 2 —n =0, and thus,

:17

14+ +v1+4n

spr(N) = )
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