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TRAVELING WAVES AND WEAK SOLUTIONS

FOR AN EQUATION WITH DEGENERATE DISPERSION

DAVID M. AMBROSE AND J. DOUGLAS WRIGHT

(Communicated by James E. Colliander)

Abstract. We consider the following family of equations:

ut = 2uuxxx − uxuxx + 2kuux.

Here k �= 0 is a constant and x ∈ [−L0, L0]. We demonstrate that for these
equations there are compactly supported traveling wave solutions (which are in
H2), and the Cauchy problem (with H2 initial data) possesses a weak solution
which exists locally in time. These are the first degenerate dispersive evolution
PDE where both of these features are known to hold simultaneously. Moreover,
if k < 0 or L0 is not too large, the solution exists globally in time.

1. Introduction

Nonlinear dispersive partial differential equations, such as the nonlinear Schrö-
dinger (NLS) equation or Korteweg-deVries (KdV) equations, have been the subject
of intense mathematical scrutiny. The importance of linear dispersive effects in
understanding the dynamics of these equations cannot be understated, particularly
in establishing the existence of special solutions such as solitons and also in more
general studies of the associated Cauchy problem. However, there are a number of
dispersive equations in which the mechanism which generates the dispersive effects
is itself nonlinear. For instance, consider the following class of quasilinear equations
of KdV type studied in [6]:

(1) ut = g3uxxx + g2uxx + g1ux + g0u,

where gj = gj(∂
j
xu, . . . , u, x, t). Any dispersive character of these equations is due to

the leading “Airy”-like term g3uxxx. In [6], the authors show that if the dispersive
effects are, roughly speaking, uniform, then the equations are well-posed in Sobolev
space and moreover exhibit the Kato-smoothing effects common to semilinear dis-
persive equations. Specifically they require g3 to be uniformly bounded away from
zero; that is, |g3| ≥ c > 0. They also require g2 ≥ 0 so that g2uxx does not act
like a backwards diffusion operator. Likewise, in the study of the well-posedness of
quasilinear NLS equations in [10], there is an assumption that dispersive effects are
uniform.

Nevertheless there are problems in which the dispersive effects may vanish. We
call such equations degenerate dispersive equations, or DDE for short. The most
famous example is the K(m,n) family of equations developed in [18]:

ut = (un)x + (um)xxx.
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Observe that these equations are in fact of the form (1) but do not satisfy (if m ≥ 2)
the hypotheses of [6]. Other commonly studied DDE are degenerate variations of
NLS equations [23], Klein-Gordon equations [19], model equations for granular
media [11, 15], the Camassa-Holm equation1 [3], models for magma dynamics [22]
and equations which arise in the numerical analysis of the KdV equation [9]. The
most striking effect of degenerate dispersion is the existence of nonsmooth coherent
structures with compact support. While there are numerous careful numerical
studies ([7,12,20,21]) of compact traveling waves (i.e. compactons) and other types
of compact structures, there are very few rigorous results concerning the existence
and behavior of general solutions to the Cauchy problem ([2, 7, 8]).

In fact, recent results in [1] demonstrate that the degenerate Airy equation

(2) ut = 2uuxxx

is in fact ill-posed in the sense that solutions do not depend continuously on the
initial data. Equation (2), like K(m,n), is of the form (1) but does not meet
the “uniformly dispersive” hypothesis for well-posedness in [6]; it is perhaps the
simplest equation which could be said to be degenerate and dispersive. The article
[1] does not address the issue of existence and uniqueness of solutions to (2). It
is natural, then, to ask if there are any DDE of the form of (1) for which some
components of well-posedness are true for data in Sobolev spaces.

This paper answers this question in the affirmative. Specifically, we do so for the
following family of equations:

(3) ut = 2uuxxx − uxuxx + 2kuux.

Here k �= 0 is a constant and t > 0. We take x ∈ X := [−L0, L0] and assume u
satisfies periodic boundary conditions. We will be considering the Cauchy problem:

(4) u(x, 0) = φ(x) ∈ H2.

By rescaling the time and space variables we can set k = ±1. Note this has the
additional effect of changing the width of X, but since we view L0 as a parameter
in the problem, this change is not substantial. Note that (3) is a modification of
the K(2, 2) equation: vt = (v2)xxx + (v2)x = 2vvxxx + 6vxvxx + 2vvx.

We demonstrate (a) that (3) has compactly supported traveling wave solutions
and (b) the Cauchy problem (withH2 initial data) for (3) possesses a weak solution
which exists locally in time. Equation (3) is the first degenerate dispersive evolution
PDE where (a) and (b) are known to hold simultaneously. Since many studies of
degenerate dispersive equations focus on interactions between compactly supported
traveling waves, it is of fundamental importance that the Cauchy problem for initial
data in the same class as the traveling waves be understood. In our case, our
traveling wave solutions are in fact H2, as is the case for the K(m,n) equations.

In Section 2 we first prove some a priori estimates for smooth solutions of (3).
Namely, we show that the H2 norm is bounded uniformly in terms of the initial
data, at least for finite times. In certain situations, the H2 norm is bounded for all
t > 0. Subsequently we use those estimates to prove:

1The Camassa-Holm equation is both nonlocal and completely integrable. As such, it is not
obvious how to generalize results which hold for it to other systems.
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Theorem 1. For k = ±1, for all L0 > 0 and all φ ∈ H2(X), there exists T ∗ =
T ∗(k, L0, φ) ∈ (0,∞] so that for all 0 < T < T ∗ there is a function

u ∈ L2(0, T ;H7/4)

which is a weak solution of (3). Specifically u satisfies (6) below. Additionally, if

k = −1 or L0 < π/
√
2, then T ∗ = +∞.

Remark 1. The regularity we use above, H7/4, is not sharp. Our result could be
shown to hold in the Sobolev space H2−ε, where ε is any small and positive number.
We choose ε = 1/4 primarily for concreteness.

Surprisingly, we find that for each wave speed c > 0, there are multiple solitary
wave solutions to (3) with a continuum of different amplitudes. As is the case for
the K(2, 2) compactons, our traveling waves are not smooth, having a jump in the
second derivative. There are several substantial differences between the k = 1 and
k = −1 cases. If k = 1, there are solitary waves of arbitrarily large amplitude,
though their width is bounded by a universal constant, independent of the domain
size. On the other hand, if k = −1, the solitary waves have a maximal amplitude
but can be as wide as the whole of X. In the case where X = R, we find front
solutions whose support is a half-line. In Section 3 we derive explicit formulae for
the traveling wave solutions.

2. Existence of weak solutions

2.1. Energy estimates. In this section we prove several a priori estimates for (3).
Let

E[f ] :=

∫
X

(
1

2
f2(x)− 5k

4
f2
x(x) +

1

2
f2
xx(x)

)
dx.

Proposition 1. If u is a sufficiently smooth solution of (3) with initial condition
(4), we have for all t

E[u(t)] = E[φ].

Proof. Let

E0(t) :=
1

2

∫
X

u2(x, t)dx, E1(t) := −5k

4

∫
X

u2
x(x, t)dx,

E2(t) :=
1

2

∫
X

u2
xx(x, t)dx.

Differentiating E0 with respect to time, using the form of (3) given by (12) below,
and then integrating by parts gives

Ė0 =

∫
X

uutdx

=

∫
X

u(2uuxx − 3

2
u2
x + ku2)xdx

=−
∫
X

ux(2uuxx − 3

2
u2
x + ku2)dx.

Since 2uuxuxx = u(u2
x)x and u2ux = 1/3(u3)x, we can rewrite the last line above

as

−
∫
X

(u(u2
x)x − 3

2
u3
x +

k

3
(u3)x)dx.
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Now,
∫
X
(u3)x vanishes due to the periodic boundary conditions. A final integration

by parts then gives

Ė0 =
5

2

∫
X

u3
xdx.

Similarly for E1, we have after after integrating by parts in x one time:

Ė1 =− 5k

2

∫
X

uxuxtdx

=− 5k

2

∫
X

ux(2uuxx − 3

2
u2
x + ku2)xxdx

=
5k

2

∫
X

uxx(2uuxx − 3

2
u2
x + ku2)xdx.

Applying the derivative and multiplying out the integrand convert the last line
above to

5k

2

∫
X

uxx(−uxuxx + 2uuxxx + 2kuux)dx

=
5k

2

∫
X

(−uxu
2
xx + 2uuxxuxxx + 2kuuxuxx)dx.

We then use the fact that 2uuxxuxxx = u(u2
xx)x to get

5k

2

∫
X

(−uxu
2
xx + u(u2

xx)x + ku(u2
x)x)dx.

A final integration by parts in the middle term results in

Ė1 = −5k

∫
X

uxu
2
xxdx− 5k2

2

∫
X

u3
xdx.

Also, for E2, we apply the time derivative, use (12) (see below) and integrate by
parts one time:

Ė2 =

∫
X

uxxuxxtdx

=

∫
X

uxx(2uuxx − 3

2
u2
x + ku2)xxxdx

=−
∫
X

uxxx(2uuxx − 3

2
u2
x + ku2)xxdx.

If we apply the two x-derivatives to the quantity in parentheses above we arrive at

−
∫
X

uxxx(−uxuxx + 2uuxxx + 2kuux)xdx

=−
∫
X

uxxx(−u2
xx + uxuxxx + 2uuxxxx + 2kuuxx + 2ku2

x)dx

=−
∫
X

(−uxxxu
2
xx + uxu

2
xxx + 2uuxxxuxxxx + 2kuuxxuxxx + 2ku2

xuxxx)dx.

Since uxxxu
2
xx = 1/3(u3

xx)x and uxu
2
xxx + 2uuxxxuxxxx = (uu2

xxx)x we have

−
∫
X

(−1

3
(u3

xx)x + (uu2
xxx)x + 2kuuxxuxxx + 2ku2

xuxxx)dx.
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The first two terms are perfect derivatives and thus vanish upon integration due
to the periodic boundary conditions. Observing that 2uuxxuxxx = u(u2

xx)x and
integrating by parts, the term 2ku2

xuxxx gives

−
∫
X

(2kuuxxuxxx + 2ku2
xuxxx)dx

=−
∫
X

(ku(u2
xx)x − 4kuxu

2
xx)dx.

A final integration by parts gives

Ė2 = 5k

∫
X

uxu
2
xxdx.

Since k = ±1, we have k2 = 1, and therefore

Ė = Ė0 + Ė1 + Ė2 = 0.

�

When k = −1, it is clear that E1/2 is equivalent to the usual norm on H2.
On the other hand, when k = 1, then E1 is negative and E1/2 is not necessarily
equivalent to the H2 norm. We have

Lemma 2. If k = 1, then E1/2 is equivalent to the usual norm on H2 if and only

if 0 < L0 <

√
2π

2
.

Proof. Since X = [−L0, L0], by Plancherel’s theorem we have

E(t) = 2L0

∑
n∈Z

(
1

2
− 5

4

(
nπ

L0

)2

+
1

2

(
nπ

L0

)4
)
|ûn|2,

where ûn = (2L0)
−1

∫ L0

−L0

u(x, t)e−inπx/L0dx are the usual Fourier coefficients.

The polynomial

μ(n) :=
1

2
− 5

4

(
nπ

L0

)2

+
1

2

(
nπ

L0

)4

has μ(n) > 0 if and only if |nπ/L0| >
√
2 or |nπ/L0| <

√
2/2. Therefore, if there

are no integers n with |n| in the set [
√
2L0/2π,

√
2L0/π] we have μ(n) > 0 for all

n ∈ Z. This in turn implies that there exists C > 1 such that for all n ∈ Z,

C−1

(
1 +

(
nπ

L0

)4
)

< μ(n) < C

(
1 +

(
nπ

L0

)4
)
.

This then gives the equivalence of E1/2 to the normal H2 norm.
Thus we only need to determine when there are no integers n with |n| in the

set [
√
2L0π/2,

√
2L0π]. This happens precisely when L0 <

√
2π/2. On the other

hand, if L0 ≥
√
2π/2, μ(n) is not strictly bounded above zero on the integers, and

we cannot have the equivalence of the norms. �

The following corollary gives a useful a priori estimate in situations where E1/2

is not a norm on H2. Let

N [f ] :=
1

2
‖f‖2H2 =

1

2

(
‖f‖2L2 + ‖fxx‖2L2

)
.
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Corollary 3. For k = ±1 and any L0 > 0, we have for any sufficiently smooth
solution of (3):

d

dt
N [u(t)] ≤ CN3/2[u(t)].

Proof. Since N = N [u(t)] = E0(t) + E2(t), we have

(5)

Ṅ =
5

2

∫
X

u3
xdx+ 5k

∫
X

uxu
2
xxdx

≤ C‖ux‖L∞

∫
X

(u2
x + u2

xx)dx

≤ C‖u‖3H2

= CN3/2.

�

2.2. Construction of weak solutions. Let ψ : X × [0,∞) → R be a compactly
supported test function. Since ψ is compactly supported, there exists T > 0 such
that ψ(x, t) = 0 for all t ≥ T. If we multiply (3) by ψ, integrate over X × [0,∞)
and subsequently integrate by parts in each of x and t as appropriate, we arrive at
(6)∫ T

0

∫
X

[
−(∂tψ)u+ (∂3

xψ + k∂xψ)(u
2)− 7

2
(∂xψ)(∂xu)

2

]
dxdt =

∫
X

ψ(x, 0)φ(x) dx.

We say that u ∈ L2(0, T ;H7/4) is a weak solution of (3) provided this relation holds
for all test functions ψ. We now prove Theorem 1.

Proof of Theorem 1.

Step 1. Existence of approximate solutions. We begin by introducing a regularized
version of equation (3). Let ε > 0 be given, and let Jε be a family of Friedrichs
mollifiers (for instance, convolution with an appropriate smooth family of functions
[14]). Then consider

(7) ut = 2Jε

(
(Jεu)(∂

3
xJεu)

)
− Jε

(
(∂xJεu)(∂

2
xJεu)

)
+ 2kJε ((Jεu)(∂xJεu)) .

We use the same initial data as above, (4). It is sometimes useful to rewrite this as

(8) ∂tu = ∂3
xJε (Jεu)

2 − ∂xJε

(
7

2
(∂xJεu)

2

)
+ k∂xJε (Jεu)

2
.

With the abundance of mollifiers above, it is clear that the right hand side of (7)
is a bounded and continuous map from H2 into itself. Thus the Picard theorem
for ODEs on a Banach space applies: there is a solution of (7), denoted uε(x, t), in
C1(0, Tε;H

2) for some Tε > 0.

Step 2. Uniform time of existence. That the time of existence for uε depends upon
ε is a problem, as we would like to take ε → 0. Here we prove the following:

Lemma 4. For k = ±1 and L0 > 0 there exists T ∗ = T ∗(k, L0, φ) ∈ (0,∞] such
that for all T ∈ (0, T ∗) and ε > 0, the solutions uε of (7) satisfy

uε ∈ C1(0, T ;H2) ⊂ L2(0, T ;H2)

and

∂tuε ∈ C(0, T ;H−1) ⊂ L2(0, T ;H−1).
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These functions are bounded uniformly in ε in these spaces. Finally, if k = −1 or
L0 < π/

√
2, then T ∗ = ∞ for all φ.

Proof. This lemma follows from the energy estimates derived in the previous sec-
tion. The placement of mollifiers in (7) is done in such a way that these energy esti-
mates carry over to the regularized equation. Specifically, we have for all t ∈ [0, Tε),

(9) E[uε(t)] = E[φ]

and

(10)
d

dt
N [uε(t)] ≤ CN3/2[uε(t)].

Of course, the verification of (9) and (10) follows along lines similar to the proofs
of Proposition 1 and Corollary 3, and we will suppress most of the details. The
key point is to show that the mollifiers do not affect the structure of the energy
argument.

If we set F0(t) :=
1

2

∫
X

u2
εdx and vε = Jεuε, then

Ḟ0 =

∫
X

uεuε,tdx

=

∫
X

uεJε(2vεvε,xx − 3

2
v2ε,x + kv2ε )xdx

=

∫
X

(Jεuε)(2vεvε,xx − 3

2
v2ε,x + kv2ε )xdx

=

∫
X

vε(2vεvε,xx − 3

2
v2ε,x + kv2ε )xdx.

In going from the second to the third line we have made use of the fact that Jε is
self-adjoint. Notice that the final line here is the same as that which appears in the
expression for Ė0 in the proof of Proposition 1 except with vε appearing instead of
u. Thus the same steps used there lead us to

Ḟ0 =
5

2

∫
X

v3ε,xdx.

In exactly the same fashion, if we set

F1(t) := −5k

4

∫
X

u2
ε,xdx and F2(t) :=

1

2

∫
X

u2
ε,xxdx,

then

Ḟ1 = −5k

∫
X

vε,xv
2
ε,xxdx− 5k2

2

∫
X

v3ε,xdx, Ḟ2 = 5k

∫
X

vε,xv
2
ε,xxdx.

From this, (9) and (10) follow immediately.

If k = −1 or L0 < π/
√
2, Lemma 2 tells us that E1/2[uε(t)] is an equivalent

norm for H2. Thus (9) tells us that the H2 norm of the solution cannot blow up
at any time. Therefore, by the continuation theorem for autonomous ODEs on a
Banach space, for any 0 < T < ∞ the solutions uε of (7) exist on the interval [0, T )
and are in the space C1(0, T ;H2(X)), bounded uniformly in ε.

On the other hand, if k = 1 and L0 ≥ π/
√
2, then E1/2 is not a norm on H2.

Instead, we integrate the differential inequality (10) to find that there exists a time

T ∗ > 0, which is independent of ε, before which N [uε(t)] =
1

2
‖uε‖2H2 must remain
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finite. That is, in this case, for any 0 < T < T ∗ the solutions uε of (7) exist on the
interval [0, T ) and are in the space C1(0, T ;H2(X)), bounded uniformly in ε.

That ∂tuε are bounded uniformly in C(0, T ;H−1) follows by examining the right
hand side of (8). For instance, uε ∈ H2 implies u2

ε ∈ H2, which in turn implies
(u2

ε)xxx ∈ H−1. Thus the first term on the right hand side is in C(0, T ;H−1). All
the other terms are similar. �

Step 3. Convergence of uε to a weak solution. Fix T < T ∗. The Aubin-Lions
lemma states (see [4])

Lemma 5. Suppose that B0, B1, and B−1 are three separable reflexive Banach
spaces with B1 � B0 and B0 continuously embedded in B−1. Suppose that fm is a
bounded sequence in Lp(0, T ;B1) and ∂tfm is a bounded sequence in Lq(0, T ;B−1).
Here 1 < p, q < ∞. Then there is a subsequence fm′ which converges in Lp(0, T ;B0).

X is compact and thus H2 � H7/4 � H−1. Therefore this lemma together with
our Lemma 4 implies that there is a function u such that

uε → u

in L2(0, T ;H7/4) as ε → 0, along a subsequence. This function u is the weak
solution we are looking for, as we are about to see.

By multiplying (8) by ψ, a compactly supported test function, and then inte-
grating in both space and time and integrating by parts, we find that the solutions
uε satisfy

(11)∫ T

0

∫
X

[
−(∂tψ)uε + (∂3

xψ + k∂xψ)
(
Jε(Jεuε)

2
)
− (∂xψ)

(
7

2
Jε(∂xJεuε)

2

)]
dxdt

=

∫
X

ψ(x, 0)φ(x) dx.

Since we have uε converging strongly to u ∈ L2(0, T ;H7/4), we have enough regu-
larity to ensure that Jε(Jεuε)

2 converges strongly to u2 and Jε(∂xJεuε)
2 converges

strongly to (∂xu)
2. We can therefore take the limit as ε → 0 in (11), finding∫ T

0

∫
X

[
−(∂tψ)u+ (∂3

xψ + k∂xψ)(u
2)− 7

2
(∂xψ)(∂xu)

2

]
dxdt =

∫
X

ψ(x, 0)φ(x) dx.

Thus u is a weak solution and we are done. �

3. Existence of compactly supported traveling waves

Note that (3) can be rewritten as

(12) ut = ∂x

(
2uuxx − 3

2
u2
x + ku2

)
.

Making the traveling wave Ansatz u(x, t) = Q(s) where s = x− ct, we find

(13) −cQ = 2QQ̈− 3

2
Q̇2 + kQ2.

We have integrated in s one time.
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We rewrite (13) as a system

Q̇ = P,

Ṗ =
1

2Q

(
−cQ− kQ2 +

3

2
P 2

)
.

(14)

Our goal is to find a solution which is homoclinic to the origin and for which
the duration of the trajectory is finite. We are able to find explicit formulae for
such solutions. Notice that (14) has two equilibria: one at the origin (which is
degenerate) and another at Q = −c/k, P = 0.

Notice that when P < 0 we have Q̇ < 0. Therefore we can assert that a solution
which lies in the lower half of the QP -plane has a trajectory which is a graph over
the Q axis. That is,

P (t) = f(Q(t))

for an as yet unspecified function f . We differentiate this relationship and use (14):

Ṗ = f ′(Q)Q̇ = f ′(Q)P = f ′(Q)f(Q) =
1

2

d

dQ

(
f2(Q)

)
.

The second equation in (14) then becomes

1

2

d

dQ

(
f2(Q)

)
=

1

2Q

(
−cQ− kQ2 +

3

2
f2(Q)

)
.

Letting F = f2 and rearranging terms lead to the following ODE:

F ′ − 3

2Q
F = −c− kQ.

This can be solved explicitly for F :

F (Q) = 2cQ− 2kQ2 − β0Q
3/2,

where β0 ∈ R is an arbitrary constant.
Thus the solution of (13) lies on the graph P = −

√
F (Q), and therefore

(15) Q̇ = −
√
2cQ− 2kQ2 − β0Q3/2.

This equation can be solved explicitly, though the details vary depending on the
sign of k.

3.1. Traveling pulses and fronts for k = −1. Separating variables and inte-
grating (15) give∫ Q(s)

A

dQ√
2cQ+ 2Q2 − β0Q3/2

= −s

⇒
√
2 ln

⎛
⎝−

√
2β0/4 +

√
2Q(s) +

√
2c+ 2Q(s)− β0

√
Q(s)

−
√
2β0/4 +

√
2A+

√
2c+ 2A− β0

√
A

⎞
⎠ = −s.

If we take β0 so that Q(0) = A > 0, we find

(16) Q(s) =
1

4A

[
c+A− (c−A) cosh

(√
2

2
s

)]2

.
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This function diverges exponentially quickly as s → ∞ and so does not immedi-
ately give the profile of a compactly supported traveling wave for (3). Notice that
this function has two zeros when 0 < A < c at

s = L := ±
√
2 ln

(
c+A+ 2

√
cA

c−A

)
.

Since Q(s) is nonnegative and in C∞, it follows that Q̇(±L) = 0 and Q̈(±L) is
finite and positive. Thus we can cut the function Q off for |s| ≥ L and the resulting
truncated function is still a solution of (13), since it is degenerate at Q = 0.

That is to say, we have a pulse solution to (13) of the form

Q(s) = Q−
c,A(s) :=

1L(s)

4A

[
A+ c+ (A− c) cosh

(√
2

2
s

)]2

.

Here 1L(s) is the characteristic function of [−L,L]. Clearly we require L ≤ L0.
We make the following observations about Q−

c,A:

• The maximum of Q−
c,A is A; thus for any speed c > 0 there are compactly

supported traveling waves with any amplitude A ∈ (0, c).
• As A → c−, notice that L → +∞.

• lim
s→L−

d2

ds2
Q−

c,A(s) = lim
s→−L+

d2

ds2
Q−

c,A(s) = c.

There are also front solutions of (3) with speed c if we allow X = R. These
correspond to the two heteroclinic solutions of (14) connecting the origin to the
equilibrium at (c, 0). These are given by

Q−
c,front(s) =

⎧⎨
⎩c

[
1− e

√
2

2 s
]2

, if s < 0,

0, otherwise

and

Q−
c,back(s) = Q−

c,front(−s).

Observe that lims→0−
d2

ds2Q
−
c,front(s) = lims→0+

d2

ds2Q
−
c,back(s) = c. We plot the

various pulse and front solutions in Figures 1 and 2.

3.2. Traveling pulses for k = 1. We can likewise compute explicit formulae for
pulses when k = 1. The details are only slightly different than above, and so we
only provide the end result:

Q+
c,A(s) :=

1M (s)

4A

[
A− c+ (A+ c) cos

(√
2

2
s

)]2

.

Here 1M (s) is the characteristic function of [−M,M ] and

M :=
√
2 arccos

(
c−A

c+A

)
.

Clearly we require M ≤ L0.
We make the following observations about Q+

c,A:

• The maximum of Q+
c,A is A, and unlike when k = −1, there is no upper

limit on A. For any speed c > 0 there are compactly supported traveling
waves with any amplitude A > 0.
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s

speed=c=1

PULSES

Q1,A

FRONT BACK

−

Figure 1. Profiles for traveling waves, including the front and
back, of (3) when k = −1. Here, all waves move with the same
speed c = 1 but vary in amplitude. All traveling waves are asymp-
totic to the same parabola as they approach 0. Also observe that
pulses approach the front solution as their amplitude approaches
1.

c=11 c=2 c=1.1 c=1.01 c=1.001

s

Qc,1
−

Figure 2. Profiles for traveling waves of (3) when k = −1. Here,
all waves have the same amplitude A = 1 but vary in speed.

• As A → ∞, notice that M →
√
2 arccos(−1) =

√
2π monotonically. Thus

pulses have a maximum width in this setting.
• Similarly, for any amplitude A > 0, there is a standing pulse (c = 0) which
is of maximum width.

• As before lim
s→M−

d2

ds2
Q+

c,A(s) = lim
s→−M+

d2

ds2
Q+

c,A(s) = c.

We plot the various pulse solutions in Figures 3 and 4.
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s

speed=c=1

Q1,A
+

A=1024

Figure 3. Profiles for traveling waves when k = 1. Here, all waves
move with the same speed c = 1 but vary in amplitude. Observe
that the large amplitude solution has width approaching 4.4 ∼√
2π.

s

c=16 c=2 c=.5 c=0

c=512

Qc,1
+

Figure 4. Profiles for a variety of traveling waves for the k = 1
equation when A = 1 and c varies. Note that the c = 0 wave has
width exactly 4.4 ∼

√
2π.

Remark 2. Note that for any A ∈ R and c ∈ R,

Q̃(s) :=
1

4A

[
A− c+ (A+ c) cos

(√
2

2
s

)]2

gives the profile of a periodic traveling wave for (3) when k = 1 and the period of

Q̃ is compatible with the width of the domain X. When c > 0 and A < 0, these
periodic waves are negative valued and are strictly bounded away from zero; in

particular, we have Q̃ ∈ [ c
2

4A , A].
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