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NONDEGENERACY OF THE BUBBLE IN THE CRITICAL CASE

FOR NONLOCAL EQUATIONS

JUAN DÁVILA, MANUEL DEL PINO, AND YANNICK SIRE

(Communicated by James E. Colliander)

Abstract. We prove the nondegeneracy of the extremals of the fractional
Sobolev inequality as solutions of a critical semilinear nonlocal equation in-
volving the fractional Laplacian.

1. Introduction

This paper establishes the linear nondegeneracy property of the extremals of
the optimal Hardy-Littlewood-Sobolev inequality, which states the existence of a
positive number S such that for all u ∈ C∞

0 (RN ) one has

(1.1) S‖u‖2L2∗(RN ) ≤ ‖(−Δ)
s
2u‖2L2(RN ).

Here 0 < s < 1, N > 2s and 2∗ = 2N
N−2s .

The validity of this inequality, without its optimal constant, traces back to Hardy
and Littlewood [13,14] and Sobolev [20]. For s = 1, (1.1) corresponds to the classical
Sobolev inequality

(1.2) S‖u‖2
L

2N
N−2 (RN )

≤ ‖∇u‖2L2(RN ).

Aubin [1] and Talenti [15] found the optimal constant and extremals for inequality
(1.2). Indeed, equality is achieved precisely by the functions

(1.3) wμ,ξ(x) = α

(
μ

μ2 + |x− ξ|2

)N−2
2

,

which for the choice α = (N(N − 2))
N−2

4 solve the equation

(1.4) −Δw = w
N+2
N−2 , w > 0 in R

N .

The solutions (1.3) are indeed the only ones of (1.4); see Caffarelli, Gidas and Spruk
[2].

For s �= 1, the optimal constant in inequality (1.1) was first found by Lieb in
1983 [18], while alternative proofs have been provided by Carlen and Loss [4] and
by Frank and Lieb [10,11]. Lieb established that the extremals correspond precisely
to functions of the form

(1.5) wμ,ξ(x) = α

(
μ

μ2 + |x− ξ|2

)N−2s
2

, α > 0,
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which for a suitable choice α = αN,s solve the equation

(1.6) (−Δ)sw = w
N+2s
N−2s , w > 0 in R

N .

Besides, under suitable decay assumptions, these are the only solutions of the equa-
tion; see Chen, Li and Ou [6], Li [16], and Li and Zhu [17].

In equation (1.6) and in what remains of this paper, we will always mean that
the equation

(−Δ)su = f in R
N

is satisfied if

u(x) = (−Δ)−sf(x) := γ

∫
RN

f(y)

|x− y|N−2s
dy,(1.7)

as long as f has enough decay for the integral to be well defined. The constant
γ = γN,s > 0 is so that (1.7) defines an inverse for the operator whose Fourier
multiplier is |ξ|2s, namely,

|ξ|2sû(ξ) = f̂(ξ).

There are other definitions of (−Δ)su which are equivalent to (1.7) under suitable
assumptions; see [3].

When analyzing bubbling (blowing-up) concentration behavior of families of so-
lutions to semilinear elliptic equations involving critical Sobolev growth such as
Yamabe type problems, a crucial ingredient is understanding the linear nondegen-
eracy of the solutions (1.3) of equation (1.4). Let us observe that

(1.8) wμ,ξ(x) = μ
N−2

2 w(μ(x− ξ)), w(x) = αN

(
1

1 + |x|2

)N−2
2

,

which actually reflects the invariance of the equation under the above scaling and
translations. We say that the solution w is nondegenerate if the generators of these
operations are the only nontrivial elements in the kernel of the associated linearized
operator. This property of equation (1.4) is well-known; see for instance [19].

The purpose of this note is to establish the validity of this property for the
solutions (1.5) of the fractional critical equation (1.6). We observe now that

(1.9) wμ,ξ(x) = μ
N−2s

2 w(μ(x− ξ)), w(x) = αN,s

(
1

1 + |x|2

)N−2s
2

.

Differentiating the equation

(−Δ)swμ,ξ = wp
μ,ξ in R

N , p =
N + 2s

N − 2s
,

with respect of the parameters at μ = 1, ξ = 0, we see that the functions

(1.10) ∂μwμ,ξ =
N − 2s

2
w + x · ∇w, ∂ξiwμ,ξ = −∂xi

w

annihilate the linearized operator around w; namely, they satisfy the equation

(1.11) (−Δ)sφ = pwp−1φ in R
N .

Our main result states the nondegeneracy of the solution w in the following sense.
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Theorem 1.1. The solution

w(x) = αN,s

(
1

1 + |x|2

)N−2s
2

of equation (1.5) is nondegenerate in the sense that all bounded solutions of equation
(1.11) are linear combinations of the functions

N − 2s

2
w + x · ∇w, ∂xi

w, 1 ≤ i ≤ N.(1.12)

We shall devote the rest of this paper to the proof of Theorem 1.1. Semilinear
equations involving fractional operators have attracted substantial research in re-
cent years. In particular, the issue of nondegeneracy of least energy solutions in
the related equation (−Δ)su + u − up = 0, p > 1, has been treated by Frank and
Lenzmann [8], Frank, Lenzmann and Silvestre [9] and Fall and Valdinoci [7]. See
also [5], [12].

2. Proof of Theorem 1.1

Let φ be a bounded solution of equation (1.11). Then φ solves the integral
equation

φ(x) = γ

∫
RN

pw(y)p−1φ(y)

|x− y|N−2s
dy, ∀x ∈ R

N ,(2.1)

as we note that the integral is well defined thanks to the decay of w.
The proof of the theorem is based on transforming equation (2.1) into the sphere

by means of stereographic projection. Let S
N be the sphere (contained in R

N+1)
and S : RN → S

N \ {pole},

S(x) =

(
2x

1 + |x|2 ,
1− |x|2
1 + |x|2

)
,

be the stereographic projection. We have the following well-known formula for the
Jacobian of the stereographic projection:

JS(x) = (
2

1 + |x|2 )
N = cw(x)

N−2s
2N = cw(x)

1
p∗+1 .

Here and later c > 0 is a constant that depends on N, s. For ϕ : RN → R define
ϕ̃ : SN → R by

ϕ(x) = J(x)
N+2s
2N ϕ̃(S(x)).(2.2)

Then we have∫
RN

∫
RN

ϕ(x)ψ(y)

|x− y|N−2s
dx dy =

∫
SN

∫
SN

ϕ̃(ω)ψ̃(η)

|ω − η|N−2s
dω dη,(2.3)

where |ω − η| is the Euclidean distance in R
N+1 from ω to η; see [10].

We rewrite (2.1) as

φ(x) = c

∫
RN

J(y)
2s
N φ(y)

|x− y|N−2s
dy, for all x ∈ R

N .(2.4)
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Let ψ ∈ C∞
c (RN ). Multiplying equation (2.4) by ψJ− 2s

N and integrating in R
N , we

get ∫
RN

J(x)−
2s
N φ(x)ψ(x) dx =

∫
RN

∫
RN

J(y)
2s
N φ(y)J(x)−

2s
N ψ(x)

|x− y|N−2s
dy dx.

Let φ̃, ψ̃ be defined by (2.2). Then, using (2.3) we obtain∫
RN

J(x)−
2s
N φ(x)ψ(x) dx =

∫
SN

∫
SN

J(S−1(ω))
2s
N φ̃(ω)J(S−1(η))−

2s
N ψ̃(η)

|ω − η|N−2s
dω dη.

But∫
RN

J(x)−
2s
N φ(x)ψ(x) dx =

∫
RN

J(x)φ̃(S(x))ψ̃(S(x)) dx =

∫
SN

φ̃(ω)ψ̃(ω)dω,

so replacing ψ̃ by a new test function of the form ψ̃J
2s
N ◦ S−1, we get∫

SN

J
2s
N ◦ S−1φ̃ψ̃ = c

∫
SN

∫
SN

J
2s
N ◦ S−1(ω)φ̃(ω)ψ̃(η)

|ω − η|N−2s
dω dη.

Since ψ̃ is arbitrary (smooth with support away from the pole), the function

h = J
2s
N ◦ S−1φ̃(2.5)

satisfies the integral equation

ah(ω) =

∫
SN

h(η)

|ω − η|N−2s
dη,(2.6)

for all ω �= pole, where a > 0 depends only on N, s. Note that h is a bounded
function. Indeed, in terms of φ this is equivalent to the estimate

|φ(x)| ≤ C

|x|N−2s
for all |x| ≥ 1.(2.7)

We observe that if v : RN → R satisfies |v(x)| ≤ C/(1 + |x|)ν and ν ≥ 0, then∣∣∣∣∣
∫
RN

J(y)
2s
N

|x− y|N−2s
v(y) dy

∣∣∣∣∣ ≤ C

(1 + |x|)min(ν+2s,N−2s)
.(2.8)

Hence, starting from the hypothesis that φ is bounded, we get estimate (2.7) after
a finite number of applications of (2.8). This implies that h is bounded. Then
equation (2.6) shows that h has a continuous extension to all SN .

Let T denote the linear integral operator defined by the right hand side of (2.6).
Then T is a self-adjoint compact operator on L2(SN ) whose spectral decomposition
can be described in terms of the spaces Hl, l ≥ 0, that consist of restrictions to S

N

of homogeneous harmonic polynomials in R
N+1 of degree l. Then L2(SN ) is the

closure of the direct sum of Hl, l ≥ 0, and the elements in Hl are eigenvectors of T
with eigenvalue

el = κN2α(−1)l
Γ(1− α)Γ(N/2− α)

Γ(−l + 1− α)Γ(l+N − α)
,(2.9)

where α = N/2− s and

κN =

{
2π1/2 if N = 1,

22(N−1)π(N−1)/2 Γ((N−1)/2)Γ(N/2)
(N−2)! if N ≥ 2.
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Moreover these are the only eigenvalues of T ; see e.g. [10]. Formula (2.9) and
standard identities of the gamma function give

el+1

el
=

l + α

l +N − α
< 1.

We note that if φ is any of the functions in (1.12), then the corresponding function
h belongs to H1 and is a nontrivial solution of (2.6). Thus the number a appearing
in (2.6) must be equal to e1 (this could also be deduced from an explicit formula for
a). Therefore, if h is a solution of (2.6), then h ∈ H1. Since the dimension of H1 is
N + 1, H1 is generated by functions obtained by the transformation (2.5) applied
to the functions in (1.12). The proof is concluded. �
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