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REFINED BOUNDS FOR THE EIGENVALUES

OF THE KLEIN-GORDON OPERATOR

TÜRKAY YOLCU

(Communicated by Michael Hitrik)

Abstract. The aim of this article is twofold. First we establish sharper lower

bounds for the sums of eigenvalues of (−Δ)
1
2 |D, the Klein-Gordon operator

restricted to a bounded domain D ⊂ R
d, than the bounds obtained in works

by E. Harrell; S. Yıldırım Yolcu; and G. Wei, H. Sun, and L. Zeng. Then
we study upper bounds for the sums of negative powers of the eigenvalues of

(−Δ)
1
2 |D.

1. Introduction

This article focuses on the estimates pertaining to the eigenvalues {βj}∞j=1 of the
Klein-Gordon operator restricted to D defined by

(−Δ)
1
2 wj = βj wj in D,

wj = 0 on ∂D,(1.1)

where D ⊂ R
d is an open bounded domain and d ≥ 2.

Note that from a probabilistic point of view (−Δ)
1
2 restricted to D is consid-

ered to be the generator of the Cauchy stochastic process killed upon exiting ∂D
and conveniently defined to be a non-local pseudo-differential operator in terms of
Fourier transform as follows:

(1.2) (−Δ)
1
2 |Dw = F−1[|ξ|F [wχD]].

Here, x �→ χD(x) designates the characteristic function defined to be 1 when x ∈ D
and 0 when x /∈ D and when F [w] and F−1[w] denote the Fourier transform and
inverse Fourier transform of a function w : Rd → R respectively:

F [w](ξ) =
1

(2π)
d
2

∫
Rd

e−ix·ξw(x) dx, F−1[w](x) =
1

(2π)
d
2

∫
Rd

eix·ξw(ξ) dξ.

For more details see [7, 10] and the references therein.

Let us first recall the analogue of Weyl’s asymptotic formula for (−Δ)
1
2 |D [2, 3]:

(1.3) βk ∼
√
4π

[
Γ
(
1 + d

2

)] 1
d

|D| 1d
k

1
d as k → ∞,
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where |D| represents the volume ofD and Γ(x) denotes the Gamma function Γ(x) =∫∞
0

tx−1e−t dt for x > 0. Moreover, by translating the set D if necessary, we may
also assume that the second moment I(D) is given by

I(D) =

∫
D

|x|2 dx.

In [3], the following Berezin-Li-Yau type bound inspired from [1,4] was obtained:

(1.4)
k∑

j=1

βj ≥
√
4π

d

d+ 1

(
Γ
(
1 + d

2

)
|D|

) 1
d

k1+
1
d .

Later, this result was improved in [7] by adding an additional term with k1−
1
d .

Recently, adding another term with k1−
3
d by using a different technique, it has

been shown in [12] that the eigenvalues of Klein-Gordon operator satisfy

k∑
j=1

βj ≥
√
4π

d

d+ 1

(
Γ
(
1 + d

2

)
|D|

) 1
d

k1+
1
d +

1

96
√
π(d+ 1)

|D|1+ 1
d

I(D) Γ
(
1 + d

2

) 1
d

k1−
1
d

+
(d− 1)2

C(d) d(d+ 1)2π
3
2

|D|2+ 3
d

I(D)2 Γ
(
1 + d

2

) 3
d

k1−
3
d ,(1.5)

where C(2) = C(3) = 49152 and C(d) = 36864 for d ≥ 4.
One of our main objectives in this paper is to demonstrate a finer estimate than

the estimate in (1.5) by exploiting the idea previously employed in [6,7,9–11]. More
precisely, we shall prove the following result:

Theorem 1.1. For d ≥ 2, k ≥ 1, the eigenvalues {βj}∞j=1 of the Klein-Gordon

operator (−Δ)
1
2 restricted to D satisfy

k∑
j=1

βj ≥
√
4π

d

d+ 1

(
Γ
(
1 + d

2

)
|D|

) 1
d

k1+
1
d +

1

96
√
π(d+ 1)

|D|1+ 1
d

I(D) Γ
(
1 + d

2

) 1
d

k1−
1
d

+
1

576π(d+ 1)

|D| 32+ 2
d

I(D)
3
2 Γ

(
1 + d

2

) 2
d

k1−
2
d .(1.6)

While it must be conceded that the estimate in (1.6) is arguably not the sharpest
in theory, one can make it sharper presumably for higher dimensions by invoking
the same technique employed here. For example, see Remark 4.1.

Let NK(z) denote the counting function which gives the number of eigenvalues
βj less than or equal to z, namely,

NK(z) = sup
βj≤z

{j} =
∑

j :βj≤z

1.

Our second goal is to establish upper bounds for the sums of negative powers of
eigenvalues and the counting function. Specifically, we shall prove the following
estimates:



BOUNDS FOR EIGENVALUES OF THE KLEIN-GORDON OPERATOR 4307

Theorem 1.2. For 0 < p < d and d ≥ 2, the sums of negative powers of eigenvalues
of the Klein-Gordon operator (−Δ)

1
2 restricted to D satisfy

(1.7)
k∑

j=1

1

βp
j

≤ (4π)−
p
2

d

d− p

(
|D|

Γ
(
1 + d

2

)
) p

d

k1−
p
d .

Corollary 1.3. The counting function NK for the Klein-Gordon operator restricted
to D has the following upper bound for z ≥ 0:

(1.8) NK(z) ≤ (d+ 1)d

dd
1

(4π)
d
2

|D|
Γ
(
1 + d

2

)zd.
See [9] for further results on tiling domains D in R

d.

2. Review of well-known facts

This section contains essential definitions and tools previously developed in [7],
and so it actually provides a springboard for us to establish the estimates in (1.6)
and (1.7). Throughout this article, BR(y) := {x ∈ R

d : |x−y| ≤ R} represents the
ball of radius R centered at y in R

d and wd denotes the volume of a d dimensional
unit ball B1(x) in R

d given by

(2.1) wd =
π

d
2

Γ
(
1 + d

2

) .
In this setting, the surface area of the unit ball B1 in R

d is dwd.
We remark that the eigenvalues {βj}∞j=1 including multiplicities can be sorted

as [3]

(2.2) 0 < β1 ≤ β2 ≤ · · · ≤ βk ≤ · · · → ∞ as k → ∞.

Let us now review some well-known properties of the eigenfunctions of the Klein-
Gordon operator. That the set of eigenfunctions {wj}∞j=1 is an orthonormal set in

L2(D) results in the fact that the set of Fourier transforms {ŵj}∞j=1 of {wj}∞j=1

also forms an orthonormal set in L2(Rd) by using Plancherel’s theorem. To ease
the notation in what follows we set

(2.3) Wk(ξ) :=
k∑

j=1

|ŵj(ξ)|2 =
k∑

j=1

∣∣∣∣∣ 1

(2π)
d
2

∫
D

e−ix·ξwj(x) dx

∣∣∣∣∣
2

≥ 0.

Notice that the integral is taken over D instead of Rd because the support of wj is
D.

The following crucial properties of Wk are extracted from Section 2 of [7].

Lemma 2.1 ([7]). The function Wk defined by (2.3) satisfies

(2.4)

∫
Rd

Wk(ξ)dξ = k,

(2.5) Wk(ξ) ≤
|D|
(2π)d

, ξ ∈ R
d,

(2.6)

∫
Rd

|ξ|Wk(ξ) dξ =
k∑

j=1

βj ,
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(2.7) |∇Wk(ξ)| ≤ mK := 2(2π)−d
√
|D| I(D).

Let r be the number such that |D| = wdr
d. Since

I(D) ≥
∫
Br(0)

|x|2 dx =
dwd

d+ 2
rd+2 =

d

d+ 2
w

− 2
d

d |D|
d+2
d ,

we have

(2.8) mK = 2(2π)−d
√
|D| I(D) ≥ |D| d+1

d

(2π)dw
1
d

d

.

Moreover, supposing that W ∗
k (ξ) denotes the decreasing radial rearrangement of

Wk(ξ), by approximatingWk, we may infer that there exists a real valued absolutely
continuous function �k : [0,∞) → [0, (2π)−d|D|] such that

(2.9) W ∗
k (ξ) = �k(|ξ|).

Also, we define the distribution function νk by

νk(s) := |{Wk(ξ) > s}| = |{W ∗
k (ξ) > s}|.

Then, νk(�k(t)) = wdt
d. Indeed,

νk(�k(t)) = |{W ∗
k (ξ) > �k(t)}| = |{ξ : |ξ| < t}| = |Bt(0)| = wdt

d.

Invoking the coarea formula in view of (2.5), we have

νk(s) =

∫ ∞

s

∫
{W−1

k (t)}

1

|∇Wk|
dσ dt =

∫ (2π)−d|D|

s

∫
{Wk=t}

1

|∇Wk|
dσ dt,

where σ is the (d− 1) dimensional Hausdorff measure. Let us consider t ≥ 0 such
that �′k(t) < 0. Then the isoperimetric inequality,

σ(∂D) ≥ dw
1
d

d |D̄|
d−1
d , D ⊂ R

d,

results in

dwdt
d−1

�′k(t)
= ν′k(�k(t))

= −
∫
{Wk=�k(t)}

1

|∇Wk|
dσ

by (2.7) ≤ − 1

mK
σ({Wk = �k(t)})

≤ − 1

mK
dw

1
d

d νk(�k(t))
d−1
d

= − 1

mK
dwdt

d−1.

This inequality combined with �′k ≤ 0 simply means

0 ≤ −�′k(t) ≤ mK .
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3. Proof of Theorem 1.1

Our method of proof has been previously explored in several articles [6–8,10,11]
with crucial differences. As we shall see later, the main ingredient in the proof of
the refined lower bound in (1.6) that we want to prove is the following elementary
inequality:

Lemma 3.1. For an integer d ≥ 2 and positive real numbers s, t we have the
following inequality:

(3.1) dtd+1 − (d+ 1) tds+ sd+1 − (sd−1 + 2tsd−2)(t− s)2 ≥ 0.

Proof. Using induction on d ≥ 2, we first observe that

(3.2) dxd+1 − (d+ 1)xd + 1− (1 + 2x)(x− 1)2 = (x− 1)2
d−2∑
n=1

(n+ 2) xn+1.

Note that when d = 2, the right-hand side of (3.2) is 0. Therefore, noticing that
the right-hand side of (3.2) is nonnegative, setting x = t/s, and rewriting (3.2), we
conclude (3.1).

The following key result, inspired from the observation in [6], is very substantial
because it helps us make a connection between two integrals to be considered in
(3.10). A short proof is given so that the exposition will be self-contained.

Lemma 3.2. Suppose that τ : [0,∞) → [0, 1] such that

(3.3) 0 ≤ τ ≤ 1 and

∫ ∞

0

τ (t) dt = 1.

Then, there exists δ ≥ 0 so that

(3.4)

∫ δ+1

δ

td dt =

∫ ∞

0

td τ (t) dt.

Also, we infer that τ satisfies

(3.5)

∫ δ+1

δ

td+1 dt ≤
∫ ∞

0

td+1 τ (t) dt.

Proof. Let us consider ψd : [0,∞) → (0,∞) defined by

ψd(z) =
(z + 1)d+1 − zd+1

d+ 1
=

∫ z+1

z

td dt.

First notice that

(3.6)
(
td − 1

)(
τ (t)− χ[0,1](t)

)
≥ 0, t ∈ [0,∞).

Integrating (3.6) from 0 to ∞ gives∫ ∞

0

tdτ (t) dt ≥ 1

d+ 1
= ψd(0).

Since ψd is continuous and non-decreasing and ψd(z) → ∞ as z → ∞, the Interme-
diate Value Theorem provides us with the existence of δ ≥ 0 such that

ψd(δ) =

∫ ∞

0

tdτ (t) dt,

which gives (3.4). To see (3.5), we now consider the polynomial

φd(t) = td+1 − a1t
d + a2 = td(t− a1) + a2,
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where a1 ≥ 0 and a2 ≥ 0 are chosen so that φd(δ) = 0 and φd(δ + 1) = 0 and φd

remains negative on (δ, δ + 1) and positive on [0,∞)\[δ, δ + 1]. It is immediate to
observe that

(3.7) φd(t)
(
χ[δ,δ+1](t)− τ (t)

)
≤ 0 on [0,∞).

Integration of (3.7) on [0,∞) together with (3.3) gives∫ δ+1

δ

td+1 dt ≤
∫ ∞

0

td+1 τ (t) dt− a1

(∫ ∞

0

td τ (t) dt−
∫ δ+1

δ

td dt

)
,

which together with (3.4) yields the inequality in (3.5). This finishes the proof. �

Armed with Lemma 3.1 and Lemma 3.2, we are ready to obtain the following
core estimate, which can be viewed as a precursor to the proof of Theorem 1.1.

Lemma 3.3. Assume that (2.4)-(2.6) hold. For d ≥ 2, any real number ε ∈ (0, 1]
and each integer k ≥ 1, we have the following inequality:

k∑
j=1

βj ≥ d

d+ 1
w

− 1
d

d �k(0)
− 1

d k1+
1
d +

ε

12(d+ 1)
m−2

K w
1
d

d �k(0)
2+ 1

d k1−
1
d

+
ε

18(d+ 1)
m−3

K w
2
d

d �k(0)
3+ 2

d k1−
2
d .(3.8)

Proof. Consider the decreasing, absolutely continuous function �k : [0,∞) → (0,∞)
defined by (2.9). We know that 0 ≤ −�′k(t) ≤ mK for t ≥ 0, where mK > 0 is given
by (2.8). Since �k(0) > 0 due to (2.3), let us first define

(3.9) Tk(t) :=
1

�k(0)
�k

(
�k(0)

mK
t

)
.

Note that Tk is positive, Tk(0) = 1 and 0 ≤ −T ′
k(t) ≤ 1. To simplify the notation,

we also set τk(t) := −T ′
k(t) for t ≥ 0. Hence, 0 ≤ τk(t) ≤ 1 for t ≥ 0 and∫ ∞

0

τk(t) dt = Tk(0) = 1.

Now, set

(3.10) αk =

∫ ∞

0

td−1 Tk(t) dt and γk =

∫ ∞

0

td Tk(t) dt.

Assume that γk < +∞. Suppose that td+1Tk(t) → L > 0 as t → ∞. Then for any
0 < a < L we can find a finite number N > 0 such that

(3.11) 0 <
L− a

t
< tdTk(t) <

L+ a

t

for any t > N. Therefore, using (3.11) we arrive at

∞ =

∫ ∞

N

tdTk(t) dt ≤
∫ ∞

0

tdTk(t) dt < ∞,

which is a contradiction, as 0 ≤ γk < ∞. Thus, td+1 Tk(t) → 0 as t → ∞. Moreover,

it is not difficult to observe that td Tk(t) → 0 as t → ∞ as well. Thus, using
integration by parts, we obtain∫ ∞

0

tdτk(t) dt = αk d and

∫ ∞

0

td+1τk(t) dt = γk (d+ 1).
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Now Lemma 3.2 allows us to conclude that there exists δ ≥ 0 such that

(3.12)

∫ δ+1

δ

td dt = αk d

and

(3.13)

∫ δ+1

δ

td+1dt ≤
∫ ∞

0

td+1τk(t) dt = γk (d+ 1).

Using Jensen’s inequality we see that

(3.14) αk d =

∫ δ+1

δ

td dt ≥
(∫ δ+1

δ

t dt

)d

≥
(∫ 1

0

t dt

)d

=
1

2d
.

Notice that (3.1) gives the key inequality in the proof of this lemma. Indeed,
integrating (3.1) in t from δ to δ + 1 we obtain∫ δ+1

δ

td+1 dt ≥ d+ 1

d
s

∫ δ+1

δ

td dt− 1

d
sd+1 +

1

d
sd−1

∫ δ+1

δ

(t− s)2 dt

+
2

d
sd−2

∫ δ+1

δ

t(t− s)2 dt.(3.15)

Now, we first note that for any s ≥ 1/2 and δ ≥ 0, we have

(3.16)

∫ δ+1

δ

(t− s)2 dt ≥
∫ s+ 1

2

s− 1
2

(t− s)2 dt =
1

12
,

∫ δ+1

δ

t(t− s)2 dt = s2
∫ δ+1

δ

t dt+

∫ δ+1

δ

t2(t− 2s) dt

≥ s2
∫ 1

0

t dt+

∫ 1

0

t2(t− 2s) dt

=
1

2
s2 − 2

3
s+

1

4
≥ 1

36
.(3.17)

Since (αkd)
1
d ≥ 1/2 due to (3.14), setting s = (αkd)

1
d and using (3.12), (3.13),

(3.16) and (3.17), we deduce that (3.15) leads to

(3.18) (d+ 1)γk ≥ (αkd)
1+ 1

d +
1

12d
(αkd)

1− 1
d +

1

18d
(αkd)

1− 1
d .

Therefore, simplifying the terms we end up with

(3.19) γk ≥ 1

d+ 1
(αkd)

1+ 1
d +

ε

12d(d+ 1)
(αkd)

1− 1
d +

ε

18d(d+ 1)
(αkd)

1− 1
d ,

which holds true for any 0 < ε ≤ 1. Using (2.4) we get

(3.20) k =

∫
Rd

Wk(ξ)dξ =

∫
Rd

W ∗
k (ξ)dξ = dwd

∫ ∞

0

td−1�k(t)dt.

Moreover, since the map ξ �→ |ξ| is radial and increasing, by (2.6), we obtain that

(3.21)
k∑

j=1

βj =

∫
Rd

|ξ|Wk(ξ)dξ ≥
∫
Rd

|ξ|W ∗
k (ξ)dξ = dwd

∫ ∞

0

td�k(t)dt.
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Substitution of (3.9) into (3.10) yields

αk =

∫ ∞

0

td−1Tk(t) dt =
md

K

�k(0)d+1

∫ ∞

0

td−1�k(t) dt =
md

K

�k(0)d+1

k

dwd
,

γk =

∫ ∞

0

tdTk(t) dt =
md+1

K

�k(0)d+2

∫ ∞

0

td�k(t) dt ≤
md+1

K

�k(0)d+2

∑k
j=1 βj

dwd
,

which combined with (3.20) and (3.21) turns (3.19) into (3.8), as claimed. Note
that if γk = +∞, then (3.8) is always true; there is nothing to prove. �

4. Proof of main results

This section reports the proofs of our main results.

4.1. Proof of Theorem 1.1. Now we are ready to prove Theorem 1.1 by using
Lemmas 3.1, 3.2 and 3.3.

Proof. Our point of departure is to minimize (3.8) over �k(0). To this end, let us
set x = �k(0) > 0. By (2.5) we know that 0 < x ≤ (2π)−d|D|. Here, the clincher is
to separately consider the monotonicity of two functions, F1, F2 : (0, (2π)−d|D|] →
(0,∞) defined by

(4.1) F1(x) =
c1
2
x− 1

d + c2 x
2+ 1

d , F2(x) =
c1
2
x− 1

d + c3 x
3+ 2

d .

Simply differentiating F1 and F2, we see that F1(x) is decreasing when 0 < x ≤(
c1

(4d+2)c2

) d
2d+2

, while F2(x) is decreasing when 0 < x ≤
(

c1
(6d+4)c3

) d
3d+3

. Choosing

(4.2) c1 =
d k1+

1
d

(d+ 1)w
1
d

d

, c2 =
εw

1
d

d k1−
1
d

12(d+ 1)m2
K

, c3 =
εw

2
d

d k1−
2
d

18(d+ 1)m3
K

,

we particularly observe that x �→ (F1+F2)(x) is decreasing on (0, (2π)−d|D|] when
we have

(4.3)
|D|
(2π)d

≤ min

⎧⎨
⎩
(

6m2
K d k

2
d

ε(2d+ 1)w
2
d

d

) d
2d+2

,

(
9m3

Kd k
3
d

ε(3d+ 2)w
3
d

d

) d
3d+3

⎫⎬
⎭

for any k ≥ 1. In other words, in view of the lower bound mK ≥ (2π)−dw
− 1

d

d |D| d+1
d

given in (2.8) and the definition of wd in (2.1), we may take �k(0) = (2π)−d |D|
when we have

ε ≤ min
d≥2

{Θ1(d),Θ2(d)},

where

Θ1(d) =
24d

2d+ 1

[
Γ

(
1 +

d

2

)] 4
d

, Θ2(d) =
72d

3d+ 2

[
Γ

(
1 +

d

2

)] 6
d

.

Note that Θ1(d) and Θ2(d), running over integers greater than or equal to 2, assume
their minimum at d = 2 with values Θ1(2) = 9.6 and Θ2(2) = 18, respectively (see
Figure 1). With this observation at hand, we are allowed to replace �k(0) with
|D| (2π)−d in (3.8) when we set

(4.4) ε = min {1,Θ1(d),Θ2(d)} = 1.
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Figure 1. Graphs of Θ1(d) and Θ2(d) versus d ≥ 2 respectively.

Thus, substitution ofmK = 2(2π)−d
√
|D| I(D) given in (2.8) together with �k(0) =

|D| (2π)−d turns (3.8) into (1.6) as claimed. �

Remark 4.1. Rewriting (3.2) as

(4.5) dxd+1 − (d+ 1)xd + 1 = (x− 1)2
d−2∑
n=−1

(n+ 2) xn+1

and plugging in x = t/s, we get

(4.6) d td+1 =
(
(d+ 1) tds− sd+1

)
+ (t− s)2Σ(d, s, t),

where

Σ(d, s, t) =
d−2∑
n=−1

(n+ 2) tn+1 sd−n−2.

The first terms on the left and the right of (4.6) with the same setting yield (1.4).
The second term on the right of (4.6) gives an improved estimate of similar kinds,
which seems to be practical for a fixed dimension d ≥ 3 or numerical computations.

4.2. Proof of Theorem 1.2 and Corollary 1.3. The following proof is inspired
from the proof of the Berezin-Li-Yau inequality in [4, 11]. An analogous proof is
also exploited in [13] by means of the bathtub principle [5].

Proof. Assuming the properties (2.4)-(2.6), we first define

(4.7) Vk(ξ) =
|D|
(2π)d

χBRk
(0)(ξ), Rk =

⎛
⎝ (d− p)(2π)d

(∑k
j=1

1
βp
j

)
dwd |D|

⎞
⎠

1
d−p

,

so that

(4.8)

∫
Rd

Vk(ξ)

|ξ|p dξ =

k∑
j=1

1

βp
j

.

Since |ŵj(ξ)|2 dξ is a probability measure on R
d and x �→ x−p is convex for x > 0

and p > 0, employing Jensen’s inequality and (2.3), we obtain that

(4.9)
k∑

j=1

1

βp
j

=
k∑

j=1

(∫
Rd

|ξ| |ŵj(ξ)|2 dξ
)−p

≤
∫
Rd

Wk(ξ)

|ξ|p dξ.
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Now observe that

(4.10)

(
1

|ξ|p − 1

Rp
k

)
(Wk(ξ)− Vk(ξ)) ≤ 0.

Integrating (4.10) on R
d and using (4.8) we arrive at

(4.11)
1

Rp
k

∫
Rd

(Wk(ξ)− Vk(ξ)) dξ ≥
∫
Rd

(Wk(ξ)− Vk(ξ))

|ξ|p dξ ≥ 0,

from which it follows that ∫
Rd

Wk(ξ)dξ ≥
∫
Rd

Vk(ξ) dξ.

Thus, by (2.4), we obtain

(4.12) k ≥
∫
Rd

Vk(ξ) dξ =
|D|
(2π)d

dwd

(
Rd

k

d

)
.

Substituting wd given by (2.1) and Rk given by (4.7) into (4.12) and rearranging
the terms, we deduce the inequality in (1.7). �

Now, we are ready to prove Corollary 1.3.

Proof. To see (1.8) we consider z ∈ [βk, βk+1) so that NK(z) = k. Now we use
(2.2), take p = 1 in (1.7) and observe that

1

z
≤ 1

k

k

βk
≤ 1

k

k∑
j=1

1

βj
≤ (4π)−

1
2

d

d− 1

(
|D|

Γ
(
1 + d

2

)
) 1

d

k−
1
d ,

which together with k = NK(z) leads to the following inequality:

(4.13) NK(z) ≤ dd

(d− 1)d
1

(4π)
d
2

|D|
Γ
(
1 + d

2

)zd.
On the other hand, using (1.4) we similarly have

z ≥ βk ≥ 1

k

k∑
j=1

βj ≥
√
4π

d

d+ 1

(
Γ
(
1 + d

2

)
|D|

) 1
d

k
1
d ,

and so

(4.14) NK(z) ≤ (d+ 1)d

dd
1

(4π)
d
2

|D|
Γ
(
1 + d

2

)zd.
Since (4.13) is a cruder upper bound than (4.14) as (d+1)/d ≤ d/(d−1), we simply
take (4.14) to conclude the proof. �
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