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ABSTRACT. The aim of this article is twofold. First we establish sharper lower

bounds for the sums of eigenvalues of (—A)% |p, the Klein-Gordon operator
restricted to a bounded domain D C R, than the bounds obtained in works
by E. Harrell; S. Yildirim Yolcu; and G. Wei, H. Sun, and L. Zeng. Then
we study upper bounds for the sums of negative powers of the eigenvalues of

(-A)2|p.

1. INTRODUCTION

This article focuses on the estimates pertaining to the eigenvalues {; 524 of the
Klein-Gordon operator restricted to D defined by

(-A)?w; = Byw; inD,
(1.1) w; = 0 ondD,

where D ¢ R? is an open bounded domain and d > 2.

Note that from a probabilistic point of view (—A)z restricted to D is consid-
ered to be the generator of the Cauchy stochastic process killed upon exiting 0D
and conveniently defined to be a non-local pseudo-differential operator in terms of
Fourier transform as follows:

(1.2) (—2)%|pw = F[|¢| Flwxn]].

Here, x — xp(x) designates the characteristic function defined to be 1 when x € D
and 0 when x ¢ D and when Flw] and F~![w] denote the Fourier transform and
inverse Fourier transform of a function w : R — R respectively:

Flule) = g [ w0 F i) = i [ exu@

(2m)%
For more details see [7L[I0] and the references therein.
Let us first recall the analogue of Weyl’s asymptotic formula for (—A)z|p [2,3]:

1
d\1a
(1.3) Bk N\/4W%k}l as k — oo,
d
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where | D| represents the volume of D and I'(x) denotes the Gamma function I'(z) =
Jo S t*"te~tdt for x > 0. Moreover, by translating the set D if necessary, we may
also assume that the second moment I(D) is given by

/ Ix|? dx.

In [3], the following Berezin-Li-Yau type bound inspired from [IL[4] was obtained:

d r1+4% .
(14) ZBJ— d+1< (D2)> K

Later, this result was improved in [7] by adding an additional term with k=
Recently, adding another term with kl—a by using a different technique, it has
been shown in [12] that the eigenvalues of Klein-Gordon operator satisfy

d a . 1+3 L
Zﬁj > \/_ F(1+2) kl-i-g + 1 |D| 4 . kl_a
(1.5) f =17 D" kd

C(d)d(d+1)*n% [(pyer (14 4)4

where C'(2) = C(3) = 49152 and C(d) = 36864 for d > 4.

One of our main objectives in this paper is to demonstrate a finer estimate than
the estimate in (LH) by exploiting the idea previously employed in [6l[7LOHIT]. More
precisely, we shall prove the following result:

Theorem 1.1. For d > 2, k > 1, the eigenvalues {ﬁj . of the Klein-Gordon
operator (— A)z restricted to D satisfy

k d 1 141
I'(1 5 1 +a 1
d B > V47Tdd ( (52)> e 1d & pE

4 1 |D|%+% kl*%
P .

While it must be conceded that the estimate in (6] is arguably not the sharpest
in theory, one can make it sharper presumably for higher dimensions by invoking
the same technique employed here. For example, see Remark [£.1]

Let Nk (z) denote the counting function which gives the number of eigenvalues
B; less than or equal to z, namely,

Ni(@)= sl = > 1

j:Bi<z

(1.6)

Our second goal is to establish upper bounds for the sums of negative powers of
eigenvalues and the counting function. Specifically, we shall prove the following
estimates:
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Theorem 1.2. For0 < p < d and d > 2, the sums of negative powers of eigenvalues
of the Klein-Gordon operator (—A)% restricted to D satisfy

"o , d ( ID| )5 ,
1.7 — < (47)" = kld,
(L.7) ;Bf Um) = T(1+9)

Corollary 1.3. The counting function Ng for the Klein-Gordon operator restricted
to D has the following upper bound for z > 0:

(d+1)? 1 1Dl 4
dt 4mET(1+9)"

(1.8) Nk(z) <

See [9] for further results on tiling domains D in R

2. REVIEW OF WELL-KNOWN FACTS

This section contains essential definitions and tools previously developed in [7],
and so it actually provides a springboard for us to establish the estimates in (L))
and (7). Throughout this article, Br(y) := {x € R? : |x —y| < R} represents the
ball of radius R centered at y in R? and w, denotes the volume of a d dimensional
unit ball By (x) in R¢ given by

4
T2

In this setting, the surface area of the unit ball B in R is dwg.
We remark that the eigenvalues {3; 521 including multiplicities can be sorted
as [3]

(2.2) 0<pB1 <P <P <+ =00 as k — oo.

Let us now review some well-known properties of the eigenfunctions of the Klein-
Gordon operator. That the set of eigenfunctions {w;}52, is an orthonormal set in
L?(D) results in the fact that the set of Fourier transforms {w;}52, of {w;}52,
also forms an orthonormal set in L?(R?) by using Plancherel’s theorem. To ease
the notation in what follows we set

k k
(2.3) Wi(€) =Y [P =

Jj=1 Jj=1

(21) Wy =

2
> 0.

1
(2m)

/ e~ fw;(x) dx
D

Notice that the integral is taken over D instead of R¢ because the support of wj is
D.
The following crucial properties of W}, are extracted from Section 2 of [7].

Lemma 2.1 ([7]). The function Wy, defined by [23) satisfies

vl

(24) [ wiente =
(2.5) Wi < gy 6

k
(2.6 [t s =305,
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(2.7) VWL(©)| < mi := 2(2m)~*\/[DII(D).

Let r be the number such that |D| = wgr?. Since

d _2
I0) 2 [ xPx = = S D),
B, (0)

d—+2 d+2
we have
e
(25) mic = 2(20) /[P T(D) > -2
(2m) ]

Moreover, supposing that W) (§) denotes the decreasing radial rearrangement of
Wi (€), by approximating Wy, we may infer that there exists a real valued absolutely
continuous function gy : [0,00) — [0, (27)~¢|D|] such that

(2.9) Wi (§) = en(l€])-
Also, we define the distribution function v by
vi(s) = {Wk(§) > s} = {Wi (§) > s}.
Then, v (or(t)) = wqt?. Indeed,
vi(or(t) = {Wi (€) > o)} = I{€ : [¢] < t}] = |Bi(0)] = wat?.

Invoking the coarea formula in view of (23], we have

/ / (2m) =4 D] 1
———dodt = / / ———do dt,
0} \VWH s (W=t} [ VWi

where o is the (d — 1) dimensional Hausdorff measure. Let us consider ¢ > 0 such
that ¢}, (t) < 0. Then the isoperimetric inequality,

o(0D) > dwi|D|*T", D cRY
results in
dwgtd=1 ,
S = okt
1
= — ———do
/{Wk=9k(t)} |VWk|
1
by 1) < ———o({Wi=0r(t)})
mi
< ———dwjv(ok(t)) o
= ———dwgt®?!
K

This inequality combined with g, < 0 simply means

0 < —gi(t) < mx.
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3. PrROOF oF THEOREM [I.1]

Our method of proof has been previously explored in several articles [6H8]10}1T]
with crucial differences. As we shall see later, the main ingredient in the proof of
the refined lower bound in (@) that we want to prove is the following elementary
inequality:

Lemma 3.1. For an integer d > 2 and positive real numbers s, t we have the
following inequality:

(3.1) At — (d 4 1) t%s + s — (577 4 2572 (¢ — )2 > 0.

Proof. Using induction on d > 2, we first observe that
d—2

(32)  da''—(d+ 12t +1-(1+22)(@ -1 =(2-1)?> (n+2)a"".
n=1

Note that when d = 2, the right-hand side of ([3.2) is 0. Therefore, noticing that
the right-hand side of (B2) is nonnegative, setting x = t/s, and rewriting [B.2]), we

conclude (B.1]).

The following key result, inspired from the observation in [6], is very substantial
because it helps us make a connection between two integrals to be considered in
(BI0). A short proof is given so that the exposition will be self-contained.

Lemma 3.2. Suppose that 7 : [0,00) — [0, 1] such that

(3.3) 0<7<1 and / T(t)dt = 1.
0

Then, there exists § > 0 so that

5+1 oo
(3.4) / tddt = / t47(t) dt.
é 0

Also, we infer that T satisfies

5+1 oo

(3.5) / tHlat < / t4Lr(t) dt.
5 0

Proof. Let us consider ¢4 : [0,00) — (0,00) defined by

(z+ 15111— 21 /z+1 o

Ya(z) =
First notice that
(3.6) (= 1) (7(t) = xp,(t)) >0,  te[0,00).
Integrating (B:6) from 0 to oo gives

e 1
d —
/O thr(t) dt > P = 14(0).

Since 14 is continuous and non-decreasing and 14(z) — oo as z — oo, the Interme-
diate Value Theorem provides us with the existence of § > 0 such that

va®) = [ tir(o)
0
which gives 84). To see (B1), we now consider the polynomial
ba(t) =t — a1t 4 ay = t4(t — ay) + ao,
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where a; > 0 and ay > 0 are chosen so that ¢4(d) = 0 and ¢4(5 + 1) = 0 and ¢4
remains negative on (4,0 4+ 1) and positive on [0,00)\[d,d + 1]. It is immediate to
observe that

(3.7) ¢a(t) (is541)(t) = 7(t) <0 on  [0,00).
Integration of ([B7) on [0, c0) together with (B3) gives

5+1 0o oo 6+1
/ t4Hldt < / tH L (t) dt — ay / tdr(t) dt — / tddt |,
5 0 0 5

which together with ([B:) yields the inequality in (85). This finishes the proof. [

Armed with Lemma Bl and Lemma B.2] we are ready to obtain the following
core estimate, which can be viewed as a precursor to the proof of Theorem [[.11

Lemma 3.3. Assume that [2A)-286]) hold. For d > 2, any real number € € (0,1]
and each integer k > 1, we have the following inequality:

k
d _1 1 1 € o 1 141
20z gyt ) ékH‘”12(d+1)mK2w;9k(0)2+5k1 ‘
j=1
€ _ 2 2 _2
(38) —I—Wmffwj Qk(0)3+§]{jl 3.

Proof. Consider the decreasing, absolutely continuous function gy, : [0, 00) — (0, 00)
defined by (29). We know that 0 < —g.(t) < my for t > 0, where mg > 0 is given
by [23). Since g (0) > 0 due to (Z3)), let us first define

1 Qk(O) )
3.9 Ty (t) = t).
(3.9 (0= o (e
Note that T}, is positive, Tj(0) = 1 and 0 < —T}(t) < 1. To simplify the notation,
we also set 7 (t) :== —T.(t) for t > 0. Hence, 0 < 74,(t) < 1 for ¢t > 0 and

/OOOTk(t) dt = Tk(O) =1.

Now, set
(3.10) ak:/ t T (t)dt  and 'yk:/ t4 Ty (t) dt.
0 0

Assume that v < +o0o. Suppose that t4*1T},(t) — L > 0 as t — co. Then for any
0 < a < L we can find a finite number N > 0 such that

L+a
t

L_
(3.11) 0< Ta <1y (t) <

for any ¢ > N. Therefore, using [BI1]) we arrive at
00 = / 3T, (1) dt < / ATy, (t) dt < oo,
N 0

which is a contradiction, as 0 < 7;, < co. Thus, t4T1 Ty, (t) = 0 ast — oco. Moreover,
it is not difficult to observe that t?Ty(t) — 0 as t — oo as well. Thus, using
integration by parts, we obtain

/ tir(t)dt = apd  and / tH L (t) dt = g, (d + 1).
0 0
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Now Lemma allows us to conclude that there exists § > 0 such that

5+1
(3.12) / thdt = ap d
1)
and
5+1 oo
(3.13) / tHat g/ tH () dt = v, (d + 1).
1) 0

Using Jensen’s inequality we see that

d

6+1 4 6+1 d 1 1
(3.14) akd:/ tdt > / tdt] > </ tdt) = 5
§ 5 0

Notice that (B gives the key inequality in the proof of this lemma. Indeed,
integrating (B) in ¢ from § to § + 1 we obtain

o+1 d+1 o+1 1 1 0+1
/ g > YL tddt — Zstt 4 St / (t—s)2dt
5 d Js d’ d 5

2 5+1
(3.15) +E‘9d_2/ t(t — 5)2 dt.
é

Now, we first note that for any s > 1/2 and 6 > 0, we have

5+1 s+3 1
(3.16) / (t—s)*dt > / (t—s)*dt = —,
p s 12

1
2

5+1 o+1 6+1
/ t(t —s)?dt = s2/ tdt+/ 2(t—2s)d
5 5 5

1

> 2| tdt+ t2(t—2$
0 0
1 1 1
3.17 = Zg2_Z > =
(3.17) 2” 3“L 1736
Since (agpd)d > 1/2 due to BId), setting s = (axd)d and using B12), BIJ),

BI6) and BIT), we deduce that (BIH]) leads to

(3.18) (d+ D)y > (apd)' i + m(akd)l_‘ + mid(akd)

Therefore, simplifying the terms we end up with

1

1 2 3 °
. S S B Ty ——
(3 19) Ve = d+1 (akd) 4+ 12d(d + 1) (akd) ‘Tt 18d(d + 1)

which holds true for any 0 < ¢ < 1. Using ([24) we get

(ard)'™

(3.20) k= | Wi(&)de = /R Wi (€)dé = dwg /OOO 4L op (t)dt.

Ra

Moreover, since the map & — || is radial and increasing, by (2.0)), we obtain that

k [eS)
- * _ d
CEUD Y [ ewitne > [ 1ewi e = dua [ enar
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Substitution of [B.3) into B.I0) yields

o] d oo d k
- #9717, (t) dt = L/ 19 gy (t) dt = — K T
o = [ = o [t d = S
oS d+1 oS d+1 Z’? B
m m =1FJ
= thtdtzL/ top(t) dt < — X ) ,
Vi /0 k?( ) Qk(O)dJrZ o Qk:( ) = Qk(o)d+2 dwg
which combined with (320) and B2I)) turns (I9) into B:8)), as claimed. Note
that if v, = 400, then ([B.8)) is always true; there is nothing to prove. a

4. PROOF OF MAIN RESULTS

This section reports the proofs of our main results.

4.1. Proof of Theorem [I.Tl1 Now we are ready to prove Theorem [[.1] by using
Lemmas B.1], and 3.3

Proof. Our point of departure is to minimize [B.8) over gx(0). To this end, let us

set © = 0x(0) > 0. By (&) we know that 0 < = < (27)~94|D|. Here, the clincher is

to separately consider the monotonicity of two functions, Fy, F» : (0, (2w)~¢|D|] —

(0, 00) defined by

(4.1) Fi(z) = %13_% +epx?ti, Fy(z) = %x‘é 4 ezt

Simply differentiating F; and Fy, we see that Fi(x) is decreasing when 0 < z <
d

d

(m) ** while Fy (z) is decreasing when 0 < z < (m) s Choosing

(d+1)ws 12(d + 1)m% 18(d + 1)m3
we particularly observe that 2 — (Fy + F5)(z) is decreasing on (0, (27r)~%|D|] when
we have
2 s 3 _d
(4.3) D] < min (M) o (M) o
(2m)® = e(2d + 1)w§ 7 e(3d+2) wj

a"l
given in ([Z38) and the definition of wy in (1), we may take o4 (0) = (27)~%¢|D|
when we have

< mi
e < min{O,(d), Ox(d)},

@1(d):2dL‘f1 [F(l—i—g)]%, @(d):% {F(l—i—g)f.

Note that ©1(d) and ©(d), running over integers greater than or equal to 2, assume
their minimum at d = 2 with values ©1(2) = 9.6 and ©5(2) = 18, respectively (see
Figure 1). With this observation at hand, we are allowed to replace g (0) with
|D| (27r)~? in ([B:8) when we set

(4.4) e =min{1,0:(d),05(d)} = 1.

where
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80 400
60} 300
40} 200 |

20 100 |
2 N 10

FIGURE 1. Graphs of O1(d) and ©2(d) versus d > 2 respectively.

Thus, substitution of my = 2(27)~%\/|D| I(D) given in (Z8) together with g (0) =
|D| (27)~? turns ([B.8) into (L6) as claimed. O

Remark 4.1. Rewriting (B2)) as

d—2
(4.5) dzt —(d+ 12t +1=(z—1)2 Z (n+2) 2"
n=—1
and plugging in x = t/s, we get
(4.6) dt™t = ((d+1)t%s — s™1) + (¢t — )2 £(d, s, 1),
where
d—2
S(d,s,t)= > (n42)t" stz
n=-—1

The first terms on the left and the right of (0] with the same setting yield (L4).
The second term on the right of [0 gives an improved estimate of similar kinds,
which seems to be practical for a fixed dimension d > 3 or numerical computations.

4.2. Proof of Theorem and Corollary [I.3l The following proof is inspired
from the proof of the Berezin-Li-Yau inequality in [4[IT]. An analogous proof is
also exploited in [I3] by means of the bathtub principle [5].

Proof. Assuming the properties (Z4))-([26), we first define

(d=pent (T H)\

D
(4.7) Vk(ﬁ)—%xBka)(@’ Rp = dwy | D) ’
so that
Vi () 1
48 =) =
(“8) L e e 2.7

Since |1;(€)|? d€ is a probability measure on R? and x + 277 is convex for z > 0
and p > 0, employing Jensen’s inequality and (Z3]), we obtain that

k k —p
(4.9) > =2 ([ ta@ra) < [ B

J j=1
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Now observe that

(4.10) (Ki - Rik) (Wi(€) — Va(€)) < 0.

Integrating (AI0) on R? and using (&) we arrive at

am g [ -vee> [ TGO

RA Rd 1€

from which it follows that

d§ > 0,

Wi (€)de > / Vi(€) d.

R4 R4

Thus, by (2.4]), we obtain

d
(4.12) k>uédw4@dg—-@fwdwd<€%>.

Substituting wg given by (ZI) and Ry given by ({1) into ([ALI2) and rearranging
the terms, we deduce the inequality in (7). O

Now, we are ready to prove Corollary [[L3

Proof. To see (L8) we consider z € [Bg, Bk+1) so that Ni(z) = k. Now we use
22), take p =1 in (7)) and observe that

=

k
1 1k 1<-1 . d D| 1
- <<= — < (4m)" 2 k~4,
z 7~ kB k;ﬁj d—1<r(1+g)>
which together with k = Nk (z) leads to the following inequality:

a1l
@ @ T+

On the other hand, using (4] we similarly have

(4.13) Nk (2) <

k d %
1 d (T(1+49) !
> >—§ > /4 2 kd
2Pz 2 b2 7Td+1< D] > ’

j=1
and so
d+1)* 1 Dl

A amir(+9)°
Since ([LI3) is a cruder upper bound than [@I4) as (d+1)/d < d/(d—1), we simply
take (@I4) to conclude the proof. O

(4.14) Nie(z) < ¢
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