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ABSTRACT. Let X be a set of analytic functions on the open unit disk D, and
let  be an analytic function on D such that p(D) C D and f — f o takes X
into itself. We present conditions on X ensuring that if f — f o is invertible
on X, then ¢ is an automorphism of D, and we derive a similar result for
mappings of the form f +— 9 - (f o ), where 1 is some analytic function on
D. We obtain as corollaries of this purely function-theoretic work new results
concerning invertibility of composition operators and weighted composition
operators on Banach spaces of analytic functions such as SP and the weighted
Hardy spaces H2(B).

1. INTRODUCTION

Motivation for this paper derived from two sources: Theorems 1.6 and 2.15 of
[3], which provide a condition ensuring that if a composition operator on a weighted
Hardy space of the unit disk D is invertible, then its symbol is an automorphism
of D, and Theorem 2.0.1 of [7], which characterizes invertible weighted composi-
tion operators on the classical Hardy space of the disk (and, by the same method,
additional weighted Hardy spaces [7), p. 860]). These invertibility theorems are pro-
duced with the aid of reproducing kernels for the spaces in question. We obtain
here more general results as corollaries of theorems on invertibility of composition
operators and weighted composition operators on sets of analytic functions without
linear or norm structure and hence without reproducing kernels. Our work permits
us to completely characterize invertibility of composition operators and weighted
composition operators on automorphism-invariant functional Banach spaces such as
SP which consists of analytic functions on D having derivatives in the Hardy space
HP(D). We also show that if a composition operator f — f o ¢ or weighted com-
position operator f + 1 - (f o) on any weighted Hardy space H?(j3) is invertible,
then ¢ must be an automorphism of D.

Throughout this paper ¥ and ¢ represent analytic functions on D, with ¢ having
the additional property ¢(ID) C D. Thus, ¢ denotes an analytic selfmap of D. Let
X be a set of analytic functions on . We emphasize that X is not assumed to
have linear or norm structure. For example, X might be the set X,,. of analytic
functions on D that vanish at no point of D. We say that the selfmap ¢ of D induces
a composition operator C, on X provided C,f := f o ¢ belongs to X whenever
f € X. If ¢ and 1 are such that Wy, ,,f := 1 (foyp) belongs to X whenever f € X,
then we say v and ¢ induce a weighted composition operator W, , on X. Observe
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that any analytic selfmap ¢ on D induces a composition operator on X,,,, and if ¢
is nonzero on I, then Wy, , will be a weighted composition operator on X,..

If X is a vector space, then any composition operator or weighted composition
operator defined on X will be linear. Composition operators on normed linear
spaces X have been studied extensively (see, e.g., the texts [3] and [I4]), with
issues such as boundedness, compactness, cyclicity, and spectral behavior receiving
considerable attention. Similar studies of weighted composition operators have
been undertaken (see, e.g., [1], [2], @], [B], [6], [7], and [11]). In these studies of
composition and weighted composition operators, the space X in question is most
often a weighted Hardy space.

A Hilbert space comprising functions analytic on D in which the polynomials
are dense and the monomials 1, z, 22,... constitute an orthogonal set of nonzero
vectors is a weighted Hardy space. Each weighted Hardy space is characterized by
its weight sequence (3 defined by B(j) = ||2%|| for j > 0. The weighted Hardy space
H?(B) consists of those functions f analytic on DD whose Maclaurin coefficients

(f(4)) satisfy
S IFGIPBG)? < o
§=0
The inner product of H?(3) is given by
(f9) = F(a()BG)*.
§=0

If 3(j) = 1 for all j, then H?(p) is the classical Hardy space H? of the disk. The
choices B(j) = (j + 1)~*/? and B(j) = (j + 1)*/? yield, respectively, the classical
Bergman and Dirichlet spaces of the disk. As is customary, we make the normalizing
assumption that 8(0) = 1. It’s not difficult to show that requiring functions in
H?(B) to be analytic on D is equivalent to requiring that lim inf 3(j)'/7 > 1 (see,
e.g., exercise 2.1.10 of [3]).

Theorems 1.6 and 2.15 of [3] combine to show that if C, is a bounded invertible
operator on H?(3) and

=1
(1.1) ;W)Q = o0,

then ¢ must be an automorphism of D. This condition is generalized in [I0, The-
orem 2], where Y 7 n?*/B(n)? = oo for some k > 0 is shown to be sufficient
to imply that any Fredholm composition operator C', must have its symbol ¢ be
an automorphism. Here we show that for every weighted Hardy space H?(3), if
C, : H*(B) — H?(B) is invertible, then ¢ must be an automorphism of D; see
Theorem below.

The methods used to prove Theorem 2.0.1 of [7] show ¢ to be an automorphism
if Wy, is bounded and invertible on a range of weighted Hardy spaces including the
classical Hardy space H?(D) and the standard-weight Bergman spaces L2 (D, (1 —
|2|2)% dA/m), 6 > —1. Here, we obtain the same result for all weighted Hardy
spaces (Theorem [B5]). These applications of our work to weighted Hardy spaces
are presented in Section 3. Also in Section 3, we discuss how, for automorphism-
invariant spaces like SP, our work completely characterizes invertible composition
operators and weighted composition operators.
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2. INVERTIBILITY OF C, AND Wy,
ON SETS OF ANALYTIC FUNCTIONS

The goal of this section is to prove the following theorem as well as a similar
one for weighted composition operators. Recall that ¢ is an analytic selfmap of the
open unit disk D.

Theorem 2.1. Suppose that X is a set of analytic functions on D such that (i) X
is invariant under composition with ¢, (i) X contains a univalent function, (i)
X contains a nonconstant function analytic on a neighborhood of the closed disk,
and (iv) there is a dense subset S of the unit circle such that for each point in S
there is function in X that does not extend analytically to a neighborhood of that
point. If Cy, is invertible on X, then ¢ is an automorphism of the disk D.

Note that any set X containing f(z) = z, such as any weighted Hardy space,
immediately satisfies hypotheses (i) and (iii) of the preceding theorem. Before
proving Theorem [Z.I] we point out that some additional hypotheses on X such as
those provided in its statement are needed to ensure that if C,, is invertible on X,
then ¢ is an automorphism of D. Assuming simply that X contains a nonconstant
function is not sufficient. For instance, if X is the set of entire functions, then the
nonautomorphism ¢(z) = z/2 will induce an invertible composition operator on X.

To show that a hypothesis like (ii) is needed, we rely on eigenfunctions for com-
position operators. Whenever ¢ fixes a point w on the unit circle and ¢'(w) < 1,
C,, will have nonconstant eigenfunctions (see, e.g., Lemma 7.24 of [3]). Also, if ¢
is a nonautomorphic selfmap of D satisfying ¢(0) = 0 and ¢’(0) # 0, then ¢ has a
Koenigs eigenfunction o (see, e.g., [14l, §6.1]), which is a holomorphic function on
D satisfying

Coo = ¢'(0)o.
Let {(fa,Aa) : @ € A} be an indexed collection of eigenfunction-eigenvalue pairs
for C,,. Assume that ¢ is not constant so that no eigenvalue ), is zero. Define

(2.1) X=|J{Motfa:kez}

acA
and observe that C, is invertible on X. Note that choosing ¢ to be nonunivalent
makes any of its eigenfunctions nonunivalent.

Proof of Theorem 2] Suppose that C, is invertible on X. Because X contains
a univalent function g and C,, is invertible, there is a function ¢ € X such that
qo ¢ = g. Thus g would identify any two points identified by ¢, and thus ¢ must
be univalent.

Because X contains a nonconstant function h that is analytic on the closed disk
and C, is invertible, there is a function f € X such that f oy = h. Suppose,
in order to obtain a contradiction, that ¢ has radial limit of modulus less than 1
on a subset E of 0D having positive Lebesgue measure. Because E has positive
measure, there is a positive number ¢ less than 1 such that measure of the set
T :={¢ € ID : |p(¢)| < t} is also positive. Note that the set ¢(T) cannot be
finite, for then ¢ would map a subset of T having positive measure to a single
point, making ¢ constant (contradicting its univalence). Because f o ¢ equals h,
a nonconstant function, f must also be nonconstant. Thus its derivative must be
nonzero at a point ¢({y) of ¢(7T'). Thus there is a disk D; centered at ¢((p) and
contained in I on which f is invertible with inverse f~'. Recalling that h is analytic
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on the closed disk and that foy = h, we must have f(©(o)) = h(¢p). Thus, f(D1)
is a neighborhood of h((p), and it follows that f~! o h is analytic on an open disk
Dy centered at ¢y. However for r € [0, 1) sufficiently close to 1, ¢ will be in Dy and
©(r¢) will be in Dy; thus, for such r, ¢(r¢) = (f~* o h)(r¢). It follows that f~1oh
is an analytic extension of ¢ to Dy. Thus, ¢ extends analytically to a function ¢
analytic on DU Dy. Because $(D3) = f~1(h(Dz)) is contained in the range of f~1,
which is, in turn, contained in D; C D, we see that ¢ maps D, into D. Hence ¢
maps D U Dy into D.

Let f € X be arbitrary. Then f o ¢ has analytic extension f o @ to D U Ds.
Because C,, is invertible on X, we conclude that every function in X has analytic
extension to DU Dy, contrary to hypothesis (iv). This contradiction tells us that ¢
must have radial limit of modulus 1 a.e. on dD; that is, ¢ is an inner function. Since
univalent inner functions must be automorphisms (see, e.g., [3, Corollary 3.28]), our
proof is complete. O

With somewhat stronger hypotheses on the set X, we obtain a version of Theo-
rem [Z.1] applying to weighted composition operators.

Theorem 2.2. Suppose that X is a set of functions analytic on D such that (i)
Wy, maps X to X, (i) X contains a nonzero constant function, (iii) X contains
a function of the form z — z+c for some constant ¢, (iv) there is a dense subset S
of the unit circle such that for each point in S there is function in X that does not
extend analytically to a neighborhood of that point. If Wy , : X — X is invertible,
then ¢ is an automorphism of D.

Proof. Let Wy, , : X — X be invertible. Let ¢ be constant such that g(z) = 2+ ¢
belongs to X and let ¢; # 0 be a constant such that h(z) = ¢; belongs to X. Because
Wy, is invertible and h € X, there is a function f; € X such that Wy, ,f1 = h,
from which it follows that ¢(z) = c¢1/f1(¢(z)) for each z € D. Also, there is a
function fo € X such that Wy, , fo = g so that ¢(z) f2(¢(2)) = 2+ ¢ for all z € D
or

q%«a(z)) —e=z

for each z € D. It follows that ¢ must be univalent on ID. Moreover, ! has a
meromorphic extension ¢ := 01% — ¢ from ¢(D) to D.

Suppose, in order to obtain a contradiction, that ¢ has radial limit of modulus
less than 1 on a subset E of 0D having positive measure. Because E has positive
measure, there is a positive number ¢ less than 1 such that measure of the set
T:={( €ID:|p(C)| <t} is also positive. Because ¢ is nonconstant, the set (T
cannot be finite. Because q(p(r¢)) = r( for each r € [0,1), we see that ¢({) cannot
be a pole of ¢ for any ¢ € T. In fact, |¢(¢(¢))| = 1 for ( € T assures us that no
cluster point of ¢(T') is a pole of q. Because ¢ is not constant, there is a point
©(Co) of ¢(T') at which ¢ has nonzero derivative. Thus there is an open disk Dy
centered at ¢((p) and contained in D such that ¢ is invertible on Dy; that is, there
is an analytic function ¢~ on ¢(Dy) such that ¢~ o ¢ is the identity on Dg. Since
q(p(Co)) = (o, we see that ¢ maps Dy to an open set containing an open disk D
containing (y. Since ¢~!(r¢y) = ¢(r¢y) for every r such that r(y € D1, we see that
q Y p, is an analytic extension of ¢ from DN Dy to Dy. Thus ¢ has an analytic
extension ¢ from D to DU D;.
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Recall that (z) = Flocyy for each z € D. Note that @(D1) € D because
@(D1) = ¢ Y(D1) € Dy C D. Thus, the function f; o ¢ is analytic on DU D; and
thus 1, which is analytic on D, has meromorphic extension to D U D;. We choose
a point (; € Dy N ID at which this meromorphic extension of 4 is analytic and
a disk D5 centered at (; and contained in D; such that v has analytic extension
¢ defined on D U Dy. Now observe that since @ maps Dy into D, for any f € X,
f oy extends to be analytic on DU D5, agreeing with f o @. Hence for any f € X,
the product v - (f o ¢) has analytic extension 1Ef o to DU Dy. However, since
Wy, is invertible on X, this yields that every function in X extends analytically
to DU Da, contrary to our hypothesis (iv). From this contradiction, it follows that
© must have radial limit of modulus 1 almost everywhere on 0D. That is, ¢ is inner
and hence must be an automorphism because it is univalent. O

If the set X of analytic functions on D is automorphism invariant, that is, fop €
X whenever f € X and ¢ is an automorphism of D, then Theorems 2.I] and
characterize invertibility:

Corollary 2.3. If X and ¢ satisfy the hypotheses of Theorem Bl and X is auto-
morphism invariant, then C, is invertible on X iff ¢ is an automorphism of D. If
X, ¥, and ¢ satisfy the hypotheses of Theorem and X s automorphism invari-
ant, then Wy, , is invertible on X iff ¢ is an automorphism of D and v as well as
1/v are multipliers of X .

Recall that a function g is a multiplier of a set X provided that ¢gf € X whenever
f € X. Note that if ¢ is an automorphism and X is an automorphism-invariant
set, then 1/1 is a multiplier of X iff 1/¢) o ¢~ ! is a multiplier. It is easy to see
that if Wy, is invertible on X and the hypotheses of Theorem hold, then

-1
Wio = Wijgop—1,0-1-

3. APPLICATIONS

Theorems 2] and of the previous section are widely applicable, yielding
both old and new results. For example, for 0 < p < oo, they may be applied
to composition operators and weighted composition operators on the Hardy and
Bergman spaces HP(D) and AP(D), where, at least for composition operators, the
characterization of invertibility is well known (see, e.g., [3, Exercise 2.1.15 and
Theorem 1.6]). However, our theorems also may be applied to many other spaces
for which invertibility results are not in the literature: for instance, the space
SP. the Bloch space B, the disk algebra, as well as the Lipschitz spaces Lip, (D)
(0 < a < 1). (Definitions of all these function spaces may be found, e.g., in
[3, Chapter 4].) Theorems 2] and also yield, with no restrictions on the weight
sequence 3, that invertibility of C,, or Wy, , on H?(3) implies ¢ is an automorphism
of D; see Theorem below. Before turning to this weighted Hardy space result,
we record explicitly the consequences of our work for the spaces S? (on which
composition operators are studied, in, e.g., [§], [12], and [13]).

Let H(D) be the collection of all analytic functions of D, and for 0 < p < oo, let
HP?(D) be the Hardy-p space of D, which consists of all f € H (D) satisfying

1 ,
3.1 P= gup — re®)|P dt < oo.
(3.1) I £115 S0P o BDIf( )l
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Recall that S? = {f € H(D) : f' € H?(D)}. Note that for every p, the space
SP contains z — z as well as the constant function z — 1; moreover, SP contains
antiderivatives of bounded analytic functions on ID. Thus, there are functions in
SP that don’t extend analytically across any point of the unit circle (consider an
antiderivative of a Blaschke product whose zero sequence accumulates at each point
of 9D). Thus, Theorems 2] and may be applied to SP. In fact, because
SP is easily seen to be automorphism invariant, we obtain the following complete
characterization of invertibility.

Theorem 3.1. The composition operator C, is invertible on SP if and only if ¢
is an automorphism of . Moreover, the weighted composition operator Wy, , s
invertible on Sy if and only if ¢ is an automorphism of D and both ¢ and 1/v¢ are
multipliers of SP.

We turn now to weighted Hardy spaces. Because any weighted Hardy space
H?(B) contains the function z — 2 as well as the constant function z ~ 1, the only
issue to consider in attempting to apply either of the theorems of the preceding
section is that of the existence of functions in H?(f3) that don’t extend analytically
to neighborhoods of points on the unit circle. Because H?(f) is rotation invariant,
if there is a function that does not extend analytically to a neighborhood of some
point ¢ on the unit circle, the same will be true of every point on the unit circle.
Consider

2) = el

6= 2 550y

which belongs to H?(3). Suppose that for each point ¢ € 9D, this function f

analytically extends to a neighborhood of (. Then f would be analytic on a

disk having radius larger than 1, making limsup(j5(j))~"/7 < 1, which implies

liminf(8(5))'/7 > 1. Thus if liminf 8(j)'/7 = 1, then f must fail to extend an-

alytically to a neighborhood of some point on dD. Keeping in mind that H?(f3)

is rotation invariant, we see that if liminf 3(j)'/7 = 1, then X = H?(j3) satisfies
condition (iv) of Theorems 2] and

Thus we have

Corollary 3.2. Suppose that H*(j) is a weighted Hardy space such that
(3.2) liminf 8(j)Y7 =1

and that Wy, , takes H?(j) into itself. If Wy, is invertible on H?(j3), then ¢ must
be an automorphism of D.

Choosing ¢ = 1 in the preceding corollary, we see that only automorphisms
can induce invertible composition operators on weighted Hardy spaces for which
liminf 3(5)/7 = 1 holds. Previously obtained conditions on H?(f), such as [3|
Theorems 1.6 and 2.15], [10, Theorem 2], and [7, Theorem 2.0.1], have required
conditions like that of [I0, Theorem 2]:

o 2k
Z—ono for some k > 0,
2 B(w)

which implies liminf 3(5)'/7 = 1 (in view of the fact that liminf 3(5)'/7 > 1 for
any weighted Hardy space).
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If the weighted Hardy space H?(3) of Corollary is automorphism invariant,
then Corollary immediately yields a characterization of invertibility of com-
position operators and weighted composition operators, which is stated below as
Theorem [3.3] Conditions assuring that H?(3) is automorphism invariant may be
found in, e.g., [9, Theorem 3.3]. For instance, 8(j) = (j+1)® for some real number
a is sufficient to ensure that H?(j3) is automorphism invariant.

Theorem 3.3. Suppose that H?(3) is an automorphism invariant weighted Hardy
space such that liminf B(5)/7 = 1. Then C, : H*(B) — H*(B) is invertible iff
¢ is an automorphism of D and Wy, ,, : H*(8) — H?*(B) is invertible iff ¢ is an
automorphism and both ¢ and 1/v are multipliers of H?(3).

Multipliers of weighted Hardy spaces are necessarily bounded analytic functions
on D. It’s easy to check that for w € D, the function K, (2) = 37 (w02)’ /8(5)*
belongs to H?(3) and is the reproducing kernel at w for H?(f3):

(f,Kyu) = f(w) for each f € H*(B).

Thus (norm) convergence of a sequence of functions in H?(3) yields pointwise
convergence on . Applying the closed graph theorem, we see that if h is a multiplier
of H?(3), then the multiplication operator M}, on H?(3), defined by M, f = hf, is
bounded on H?(3). Now observe that for each w € D, h(w) is an eigenvalue with
corresponding eigenfunction K,, for M} : H*(8) — H?(3). Hence, the image of D
under A is in the spectrum of Mj,, and hence if h is a multiplier of H2(3), then h
is a bounded analytic function on D with sup{|h(z)| : z € D} < ||M}]||. Conversely,
integral representations of norms for some of the weighted Hardy spaces make it
clear that every bounded analytic function must be a multiplier of the space in
question. Consider the spaces H%(8,) of D, a > —1, where B, (j)* = (j + 1)~
for all j > 0. H?(B_) is the classical Hardy space H?(D) whose norm is given by
(1) with p = 2. The spaces H?(83,) with a > —1 are standard-weight Bergman
spaces having equivalent norm

1 27 1 i o
W =5 [ [ e =2y arag

(see [15]). The integral forms for the norms on the spaces H?(3,), a > —1, make
it clear that any bounded analytic function on D is a multiplier of the spaces. Thus
we obtain the following (cf. [7, Theorem 2.0.1]) as a corollary of our work.

Theorem 3.4. The weighted composition operator Wy, , is invertible on H?(B4a)
for some a > —1 iff ¢ is an automorphism of D and 1) is both bounded and bounded
away from 0 on D.

What happens if liminf §(j)'/7 > 1? Here, again, it turns out that invertibility
of Wy, implies ¢ is an automorphism—in fact a rotation z — (z for some ¢ € JD.

Theorem 3.5. Suppose that Wy, , is a bounded, invertible operator on the weighted
Hardy space H?(B); then o must be an automorphism of D.  Moreover, if
lim inf B(j)l/j > 1, then ¢ must be a rotation automorphism.

Proof. We have already shown that the result is valid when liminf 5(j)*/7 = 1
(Corollary B:Z). We now consider the case where liminf 3(5)'/7 = ¢ > 1. In this
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case, it’s easy to see that every function in H?(3) extends to be analytic on the
disk ¢t and that

2) = e

&)= 2 555
belongs to H?(3) but does not extend to be analytic on a disk of radius larger
than ¢. Thus, there is a point p in {z : |z| = ¢} such that f fails to have analytic
extension to a neighborhood of u. Let X = H?(f) and note that because z — z
as well as z — 1 are in X and X is rotation invariant, hypotheses (ii)—(iv) of
Theorem are satisfied with ¢tD replacing D and we can take S = {z : |z| = t}.
We will show hypothesis (i) is also valid for appropriate extensions of ¢ and ¢ to
tD. Specifically, we will show that ¢ has an analytic extension 1[) to tD and ¢ has
an analytic extension ¢ to tID that is a selfmap of tD. Because Wy, is an invertible
operator on H?(3), it follows that Wu;) P is an invertible mapping on the set X.

By hypothesis, ¢ is a selfmap of D and v is an analytic function on D such that
Wy, is invertible on H?(f). Since z — 1 is in H?(3) and H?($) is invariant under
W, then ¢ = Wy, ,1is in H?(), which means 1) must extend analytically to ¢D.
We use 9 to denote this extension. Because Wy, is invertible on H?(f3), there is
a function g € H?(B) such that 1) - go ¢ = 1 on D, which means 1 is nonzero on
D so that z/? is certainly not the zero function on tD. Because z — z is in H?(B),
we see that ¥y is in H?(3) and extends to a function ¢ analytic on tD, and thus
@ extends to a meromorphic function cj/i/; on tD. However, we claim ¢/ z/? cannot
have any poles, so that ¢ has analytic extension ¢ to tD. If cj/i[) had poles in tD,
then for sufficiently large positive integers n, the function 1 - (q/ 7]1)" would have
poles. But ¢ - (§/¢)" agrees with " = Wy, 02" on D, and because z — 2" is in
H?(j3), we see that 1¢™ has analytic extension to tI. This extension must agree
with 1) - (G/1)™ except at any singularities of ¢ - (§/¢))", and thus those singularities
must be removable. We have proved our claim: ¢ has analytic extension ¢ to tD.

Suppose, in order to obtain a contradiction, that at some point wqy of tD,
|o(wg)| > t. For each x € R, consider an uncountable collection of curves {v;}zer
such that

(i) 4z : [0,1] — ¢D has endpoints 0 and wy and

(ii) v2([0,1]) N7, ([0,1]) = {0, wo} when x # y.
For each x € R, let r, = inf{r € [0,1] : |@(7.(r))] > t}, and note that because
@ o7, is continuous on [0,1], |p(vz(rs))] = t. For each z € R, let v,(ry) = 2a,
a point in tD. Thus we have an uncountable collection {z, : * € R} C ¢D such
that the image of each under ¢ has modulus ¢. Because on tD, 1; is not the zero
function and ¢ is not constant (it agrees with the selfmap ¢ of D and takes values
outside D), there must be a real number * such that z, is a point at which ¢ has
nonzero derivative and 7,/; is nonzero. Because ¢ has nonzero derivative at z,, it is
invertible on a neighborhood of z, with inverse ¢—!. Thus, there is an open disk
D, about @(z,) such that 4,5_1 is defined on D7 and maps D7 to a neighborhood of
z, contained in ¢I) on which ¢ is nonzero. Let g be a function in H?(3) that fails to
have analytic extension to any neighborhood of the point @(z.), which is on 9(tD).
Of course g has analytic extension g to tD, so that g fails to extend analytically to
a neighborhood of ¢(z.). We know that 1 - go ¢ = h, where h is in H?(3). Thus h

has an analytic extension h to ¢t that must agree with ¢ - § o ¢ on 7,[0,7.). Note
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1 - 1 -
that § = ~—~1h op !t on Dy N@(74[0,7,)) and thus that iho ¢ tis an
op~ oY~
analytic extension of § to Dj, a contradiction. We conclude that ¢ maps tD into
tD; that is, ¢ is an analytic selfmap of tD.
All the hypotheses of Theorem are satisfied for the operator W @ with D

replaced by tD and X = H?(j3). Because the proof of Theorem 2.2]is not dependent
on the radius of the disk in question, we see that ¢ must be an automorphism of
tD. However, ¢, which agrees with ¢ on D, must also be a selfmap of . No
nonrotational automorphism of ¢D can be a selfmap of D: An automorphism of tD
must take the form

A(z) = ¢ 2=

t—pz
for some p € D and ¢ € dD. If A is a selfmap of D, then |[A(—p/|p|)| = (¢t +
t2p])/(t + |p|]) < 1, making p = 0 and A a rotation. Thus (, and hence ¢, takes
the form z — (z for some ¢ € OD. Hence, in particular, ¢ is a automorphism of D,
as desired.
To complete the proof of the theorem, we must consider the case where

liminf B(5)'/7 = cc.

Here all functions in H?(f3) extend to be entire functions. For this argument, we
will not introduce new notation for extensions. Since z — 1 belongs to H?(3),
Y = Wy 1 is in H?(), and hence 1) represents an entire function. Also, because
z + 2" belongs to H?(j) for every positive integer n, 9" is entire for every n
and it follows that ¢ must be entire. Because Wy, is invertible, there must be a
g € H?(B) such that ¢- gop =1 on D and hence on C. Thus 1) is nonzero on C.
Also, there must be a function ¢ € H?() such that z = -qop = (¢/g) o ¢ on C.
It follows that ¢ is univalent on C. Because ¢ is univalent and entire, ¢(z) = az+b
for some constants a and b with a # 0. Because ¢ is a selfmap of D, |a| + |b] < 1.
We show that b =0 and |a| = 1 to complete the proof.

Suppose in order to obtain a contradiction that b # 0. Then |a| < 1. Because
Wy, is bounded and invertible, its inverse is bounded. It’s easy to see that

1
-1 _ -1
W¢,¢f = wo—(p_lfOSO )

where ¢~!(z) = z/a — b/a. We obtain the contradiction that de}p is unbounded
on H?(B) (assuming |a| < 1). Suppose that v := 1/1 0 ¢~ ! is not constant. Then
by Liouville’s Theorem, there is a sequence (c,) in C such that |¢,| — oo and
[v(cn)| — oo, Let k(2) = X272, 2/ /B(j)* be the generating function for H?*(8),
which is entire for our situation. For any w € C, K, (2) := k(wz) belongs to H?(j3)
and the square of its norm is k(|w|?). Also for all w € C and g € H?(B), we have
(g9, Ky) = g(w). Note that because ¢~*(c,)/c, approaches 1/a as n — oo, we have
|~ (cn)| > |cn| for n sufficiently large. This means, because k is increasing along
the positive real axis, that ||[K,-1(.,)| > ||Ke,| for n sufficiently large; let’s say
for n > J. Consider the unit vector ky, := K, /||Ky||. Since WJ}D is a bounded
operator on H?(f3), its adjoint is also bounded, so there is a constant M such that

M= (W)
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for all w. Choosing w = ¢,, and considering that (WJ;) kw=v(w) K1)/ | Kwll,
the preceding inequality yields, for n > J,

1K =1 (el k(| (cn)|?
”viK( e (lp~"(cn)l?)

k(|0n|2) Z |V(Cn)|a

M = [v(cn)|

"
contradicting lim \V(cn)| = 00.

It follows that if W,  is to be bounded, then v = 1/% o ¢~ must be constant.
Thus v is constant and thus Wy, is simply a constant multiple of a composition
operator. Let ¥ = a, a constant. We are assuming that aC, is bounded and
invertible on H?(3), where p(2) = az + b, |a] + |b] < 1, and b # 0 so that |a| < 1.
Because aC,, is bounded and invertible, its inverse (1/a)C,,-1 is as well. We apply
this inverse to the unit vector h(z) := z™/8(n) and note that the n-th Maclaurin
coefficient of (1/a)ho¢~tis (1/a)(1/a)"(1/B(n)). Thus

1 1
| 2 |a‘2n’

1(1/a)C1hl* =

and the quantity on the right of the preceding inequality goes to infinity as n — oo.
Thus our assumption that b # 0 has led to a contradiction, and we see that ¢(z) =
az for some a such that |a| < 1. If |a|] < 1, then the argument just completed again
shows that Wy, , cannot have a bounded inverse. Thus |a| = 1 and ¢ is a rotation
automorphism, completing the proof of the theorem. |

Because rotations always induce bounded composition operators on H?(j3), we
conclude that if H?(f) is a weighted Hardy space for which liminf 8(5)/7 > 1 and
@ is a selfmap of D, then C,, is invertible iff p(z) = ¢z for some ¢ € OD. Similarly,
we obtain that Wy, , is invertible iff ¢(2) = (2 for some ¢ € OD and 1 as well as
1/ are multipliers of H?().
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