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OKA PROPERTIES OF SOME HYPERSURFACE

COMPLEMENTS

ALEXANDER HANYSZ

(Communicated by Franc Forstneric)

Abstract. Oka manifolds can be viewed as the “opposite” of Kobayashi hy-
perbolic manifolds. Kobayashi asked whether the complement in projective
space of a generic hypersurface of sufficiently high degree is hyperbolic. There-
fore it is natural to investigate Oka properties of complements of low degree
hypersurfaces. We determine which complements of hyperplane arrangements
in projective space are Oka. A related question is which hypersurfaces in affine
space have Oka complements. We give some results for graphs of meromorphic
functions.

1. Introduction

A complex manifold X is hyperbolic (in the sense of Kobayashi) if, informally
speaking, there are “few” maps C → X, and Oka if there are “many” maps C → X,
in a sense to be made precise in Section 2 below. Hyperbolic manifolds have been
extensively studied since the late 1960s. Oka theory is a more recent development,
motivated by Gromov’s paper [5] of 1989; the definition of an Oka manifold was
only published in 2009, by Forstnerič [2].

Many interesting examples of hyperbolic manifolds arise from complements of
projective hypersurfaces. In particular, Kobayashi asked [8, problem 3 on page 132]
whether the complement in Pn of a generic hypersurface of sufficiently high degree
should be hyperbolic. This has been proved for n = 2 by Siu and Yeung [11],
but is still an open problem in higher dimensions. The degenerate case of the
complement of a finite collection of hyperplanes is well understood. In particular,
the complement in Pn of at least 2n+1 hyperplanes in general position is hyperbolic,
and the complement of a collection of 2n or fewer hyperplanes is never hyperbolic.
For hyperplanes not in general position, some necessary conditions for hyperbolicity
are known. See Kobayashi’s monograph [9, Section 3.10] for details.

Since the Oka property can be viewed as a sort of anti-hyperbolicity, it makes
sense to ask which hypersurfaces have Oka complements. In Section 3 of this paper
we give a complete answer to this question for complements of hyperplane arrange-
ments in projective space. The main result of this section, Theorem 3.1, states
that the complement of N hyperplanes in Pn is Oka if and only if the hyperplanes
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are in general position and N ≤ n + 1. We also investigate the weaker Oka-type
properties of dominability by Cn and C-connectedness: in this context we find that
a non-Oka complement also fails to possess these weaker properties.

In Section 4 we give a sufficient condition for the complement of the graph of a
meromorphic function to be Oka. Our Theorem 4.6 states that ifm : X → P1 can be
written in the form m = f +1/g for holomorphic functions f and g, then the graph
complement is Oka if and only if X is Oka. This is motivated by the open problem
of whether the complement in P2 of a smooth cubic curve is Oka: given a cubic
curve, there is an associated meromorphic function and a branched covering map
from the graph complement of that function to the cubic complement. For details,
see Buzzard and Lu [1, pages 644–645]. We also explore the question of when the
decomposition m = f + 1/g exists (Lemma 4.2). For meromorphic functions that
cannot be written in this form, further work is required to understand the Oka
properties of the graph complements.

2. Oka manifolds and hyperbolic manifolds

In this section we recall the definitions of Oka manifolds and hyperbolic man-
ifolds, and collect some results that will be used later. For background, motiva-
tion and further details of Oka theory, see the survey article [4] of Forstnerič and
Lárusson and the recently published book [3] of Forstnerič. For more on hyperbol-
icity, see the monograph [9] of Kobayashi.

Definition 2.1. A complex manifold X is an Oka manifold if every holomorphic
map K → X from (a neighbourhood of) a convex compact subset K of Cn can be
approximated uniformly on K by holomorphic maps Cn → X.

This defining property is also referred to as the convex approximation property
(CAP).

Definition 2.2. The Kobayashi pseudo-distance on a complex manifold X is the
largest pseudo-distance such that every holomorphic map D → X is distance-
decreasing, where D denotes the complex unit disc with the Poincaré metric. We
say that X is hyperbolic if the Kobayashi pseudo-distance is a distance.

If X is Oka, then the Kobayashi pseudo-distance on X is identically zero; thus
Oka manifolds can be viewed as “anti-hyperbolic”. The most fundamental exam-
ples of Oka manifolds are complex Lie groups and their homogeneous spaces; in
particular, Pn and Cn are Oka. Bounded domains in Cn are always hyperbolic.
If X is a Riemann surface, then X is Oka if and only if it is one of C, C∗ (the
punctured plane), P1 or a torus; otherwise it is hyperbolic.

Every Oka manifold X of dimension n is dominable by Cn, in the sense that
there exists a holomorphic map Cn → X that has rank n at some point of Cn.

Oka manifolds are also C-connected: every pair of points can be joined by an
entire curve; i.e. for any pair of points there exists a holomorphic map from C into
the manifold whose image contains both points. This property is mentioned by
Gromov [5, 3.4(B)], and follows easily from the “basic Oka property” described in
[4, page 16]. (The definition of C-connected is not standardised: the term can also
refer to the weaker property that every pair of points can be joined by a finite chain
of entire curves, by analogy with the case of rational connectedness.)
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In general it is difficult to verify the condition of Definition 2.1 directly. Instead,
sprays (in the sense of Gromov; see below) and fibre bundles are of fundamental
importance. If π : X → Y is a holomorphic fibre bundle with Oka fibres, then X
is Oka if and only if Y is Oka. (In fact there is a far more general notion of an
Oka map which preserves the Oka property, but this will not be needed here.) In
particular, products of Oka manifolds are Oka, and a manifold is Oka if it has a
covering space that is Oka.

Definition 2.3. A spray over a complex manifold X consists of a holomorphic
vector bundle π : E → X and a holomorphic map s : E → X such that s(0x) = x
for all x ∈ X. We say that s is dominating at the point x ∈ X if the differential
ds0x maps the vertical subspace Ex of T0xE surjectively onto TxX. A family of
sprays (Ej , πj , sj), j = 1, . . . ,m, is dominating at x if

(ds1)0x(E1,x) + · · ·+ (dsm)0x(Em,x) = TxX.

The manifold X is elliptic if there exists a spray that is dominating at every point
of X, and weakly subelliptic if for every compact set K ⊂ X there exists a finite
family of sprays over X that is dominating at every point of K.

The concept of a spray can be viewed as a generalisation of the exponential map
for a complex Lie group; for example, see [4, Examples 5.3] or [3, Proposition 5.5.1].

Every elliptic or weakly subelliptic manifold is Oka.
The following property is equivalent to the CAP.

Definition 2.4. A complex manifold X satisfies the convex interpolation prop-
erty (CIP) if whenever T is a contractible subvariety of Cm for some m, every
holomorphic map T → X extends to a holomorphic map Cm → X.

(Equivalently, we could take T to be any subvariety of Cm that is biholomorphic
to a convex domain in Cn; hence the use of the word convex.)

A useful tool for proving hyperbolicity is Borel’s generalisation of Picard’s little
theorem. Kobayashi gives three equivalent formulations (see [9, Theorem 3.10.2 on
page 134]) of which we only need the following.

Theorem 2.5 (Picard–Borel). Let g0, . . . , gN be nowhere vanishing holomorphic
functions on C, and suppose

g0 + · · ·+ gN = 0.

Partition the index set {0, 1, . . . , N} into subsets, putting two indices j and k into
the same subset if and only if gj/gk is constant. Then for each subset J ,∑

j∈J

gj = 0.

Remark 2.6. Since the gj are nowhere vanishing, it follows that each subset must
have size greater than 1. In particular, if N = 2, then the partition has only one
part; hence g0, g1 and g2 are constant multiples of each other.

3. Hyperplane complements

Let F1, . . . , FN be nonzero homogeneous linear forms in n+1 variables. We say
that the hyperplanes in P

n defined by the equations Fj = 0, j = 1, . . . , N , are in
general position if every subset of {F1, . . . , FN} of size at most n + 1 is linearly
independent. If N ≤ n + 1, then a set of N hyperplanes is in general position if
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and only if coordinates can be chosen on Pn so that the given hyperplanes are the
coordinate hyperplanes xj = 0, j = 0, . . . , N − 1.

Theorem 3.1. Let H1, . . . , HN be distinct hyperplanes in Pn. Then the comple-

ment X = Pn \
⋃N

j=1 Hj is Oka if and only if the hyperplanes are in general position
and N ≤ n+ 1. Furthermore, if X is not Oka, then it is not dominable by Cn and
not C-connected.

Before proving this, we state and prove a sharper form of Theorem 3.10.15 of
Kobayashi’s book [9, page 142]. To state the theorem, it is convenient to introduce
the following terminology.

Definition 3.2. Let H1, . . . , Hk be distinct hyperplanes in Pn defined by linear
forms F1, . . . , Fk, and suppose the forms satisfy a minimal linear relation of the
form

c1F1 + · · ·+ ckFk = 0

where cj �= 0 for all j. (By “minimal” we mean that
∑

j∈J cjFj �= 0 for every

proper nonempty subset J of {1, . . . , k}.) Then the diagonal hyperplanes of the
linear relation are the hyperplanes defined by the linear forms

∑
j∈J cjFj where J

is a subset of {1, . . . , k} with 2 ≤ |J | ≤ k − 2. (If k ≤ 3, there are no diagonal
hyperplanes.) The associated subspaces of {H1, . . . , Hk} are the linear subspaces

of Pn which contain
⋂k

j=1 Hj with codimension 1. (If
⋂
Hj = ∅, the associated

subspaces are exactly the points of Pn.)

Remark 3.3. If p ∈ Pn\
⋂
Hj , then p is contained in exactly one associated subspace

for each minimal linear relation.

Example 3.4. On P
2 consider the linear forms

F1 = x1,

F2 = x2,

F3 = x1 − x0,

F4 = x2 − x0.

If we consider x0 = 0 to be the line at infinity, then the lines Fj = 0, j = 1, 2, 3, 4, are
the sides of a “unit square” in the affine plane. The linear relation F1−F2−F3+F4 =
0 has three diagonal lines (noting that J = {1, 2} and J = {3, 4} give the same line,
and so on). They are the two diagonals of the square (x1 = x2 and x1 + x2 = x0)
and the line at infinity (x0 = 0).

Example 3.5. Let P be any point of P2 and let F1, F2 and F3 be linear forms
defining three distinct lines through P . Then there exists a linear relation among
F1, F2 and F3, and the associated subspaces are the lines through P .

Theorem 3.6. Let H1, . . . , HN be distinct hyperplanes in Pn defined by linear
forms F1, . . . , FN , and let f : C → Pn \

⋃
Hj be a holomorphic map. Suppose that

F1, . . . , FN are linearly dependent. Then for each subset of F1, . . . , FN satisfying
a minimal linear relation, there is a diagonal hyperplane or an associated subspace
containing the image of f .

Remark 3.7. In the case where
⋂
Hj = ∅, the associated subspaces are points, so

the conclusion is that either f is constant or the image is contained in a diagonal
hyperplane.
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Proof of Theorem 3.6. First we note that f can be lifted to a holomorphic map
f̃ : C → Cn+1 \ {0}. To see this, observe that the quotient map Cn+1 \ {0} → Pn

can be regarded as the universal line bundle over Pn with the zero section removed.
Thus lifting f is equivalent to finding a nowhere vanishing section of the pullback
by f of the universal bundle. But the vanishing of the cohomology group H1(C,O∗)
guarantees that line bundles over C are trivial, and therefore a nowhere vanishing
section always exists.

By reordering and rescaling the defining forms, we can put a minimal linear
relation in the form

F1 + · · ·+ Fk = 0.

Define entire functions h1, . . . , hk by hj = Fj ◦ f̃ . Then the hj satisfy the
hypotheses of the Picard–Borel theorem (Theorem 2.5): each hj vanishes nowhere
(because the image of f misses all the hyperplanes), and the hj sum to the zero
function (because of the linear relation between the Fj). Theorem 2.5 tells us that
there is a subset J ⊂ {1, . . . , k} with∑

j∈J

hj = 0

and such that all the ratios hμ/hν are constant for μ, ν ∈ J . There are two possi-
bilities.

First, if J is a proper subset of {1, . . . , k}, then J must have size at least 2 and
at most k − 2. (If J either consisted of or omitted only a singleton j, then the
corresponding hj would be identically zero.) In this case the linear form

F =
∑
j∈J

Fj

defines a diagonal hyperplane in Pn. (The minimality of the linear relation implies
that F is nonzero.) The image of f lies in this hyperplane.

The second case is that J = {1, . . . , k}. Then there exist nonzero constants
c1 . . . , ck−1 such that

hj = cjhk

for j = 1, . . . , k − 1. This means that the image of f̃ lies in each of the hyperplanes
Fj = cjFk. Let A and B be the linear subspaces of Cn+1 given by

A =

k−1⋂
j=1

{Fj − cjFk = 0},

B =
k⋂

j=1

{Fj = 0}.

Clearly B ⊂ A. It remains to show that B has codimension at most 1 in A.
Equivalently, we wish to show that given x, y ∈ A \ B, some nontrivial linear
combination of x and y lies in B. The numbers α = Fk(x) and β = Fk(y) are both
nonzero. Then Fk(βx−αy) = 0, so Fj(βx−αy) = 0 for all j, hence βx−αy ∈ B. �

Remark 3.8. In the above proof, the subspaces A and B can never be equal (because
the image of f misses all of the Hj). A naive dimension argument might suggest
that A and B have the same dimension. However, the fact that the hj sum to
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zero implies the relation c1 + · · ·+ ck−1 = −1, so the forms Fj − cjFk are linearly
dependent: their sum is zero.

Remark 3.9. In the case J = {1, . . . , k}, Kobayashi states that f is constant
([9, page 142, proof of Theorem 3.10.15, last paragraph]). In fact there exist non-
constant maps whose images lie in associated subspaces, but this does not invalidate
the conclusion of Kobayashi’s Theorem 3.10.15. For an example of such a map, take
n = 4 with linear forms

F1 = x0 − x2, F2 = x2 − x1, F3 = x1 − x3, F4 = x3 − x0, F5 = x4

so that F1 + F2 + F3 + F4 = 0. Let f : C → X be a function that lifts to

f̃(t) = (t, t+ 1, t+ 2, t+ 3, 1).

Then h1, . . . , h4 are the constant functions −2, 1,−2, 3 respectively, but f is not
constant.

Corollary 3.10. Let H1, . . . , HN be distinct hyperplanes in Pn, not in general
position. Let p be any point of X = P

n \
⋃
Hj. Then there is a finite collection

of proper subspaces of TpX with the property that for every map f : C → X with
f(0) = p, the derivative df(0) lies in one of those subspaces.

Proof. By Theorem 3.6, the image of f is restricted to a proper linear subspace of
X. Thus there is a corresponding subspace of TpX containing df(0). We just need
to verify that there are only finitely many possible subspaces. But each point of
X is contained in exactly one associated subspace for each minimal linear relation
among the Fj , and there are only finitely many diagonal hyperplanes. �

Corollary 3.11. If the distinct hyperplanes H1, . . . , HN in Pn are not in general
position, then Pn \

⋃
Hj is not dominable by Cn.

Proof. Let f be a map from Cn into Pn \
⋃
Hj , with f(0, . . . , 0) = p. The image of

df(0) is spanned by the n vectors

d(t �→ f(tej))|t=0 (j = 1, . . . , n)

where {e1, . . . , en} is a basis for Cn. If df(0) is surjective, those vectors are linearly
independent, so there will be no finite set of proper subspaces containing

d(t �→ f(tv))|t=0

for all v ∈ Cn, contradicting the previous corollary. �

Proof of Theorem 3.1. Write X for the space Pn \
⋃N

j=1 Hj .

Case 1: Hyperplanes in general position and N > n+ 1. In this case, Kobayashi’s
Theorem 3.6.10 [9, page 136] tells us that the image of a nonconstant holomorphic
map C → X must lie in one of a finite collection of hyperplanes. Therefore X is
not dominable by C

n. Also, X is not C-connected: distinct points outside the finite
collection of hyperplanes cannot be joined by an entire curve.

Case 2: Hyperplanes in general position and N ≤ n+ 1. If N = 0, then X = Pn is
Oka. For N > 0, the fact that the hyperplanes are in general position means that
we can choose coordinates so that Hj is the hyperplane xj−1 = 0 for j = 1, . . . , N .
Then we see that X ∼= C

∗ × · · · × C
∗ × C × · · · × C with N − 1 factors C

∗ and
n+ 1−N factors C. This is a product of Oka manifolds, hence Oka.
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Case 3: Hyperplanes not in general position. The fact that X is not dominable, and
therefore not Oka, is just Corollary 3.11 above. To see that X is not C-connected,
choose any point p ∈ X. Then Theorem 3.6 gives a finite collection of hyperplanes
containing every entire curve through p. If q is a point of X outside that finite
collection, then p and q cannot be joined by an entire curve. �

Remark 3.12. In fact if X is not Oka, then it does not satisfy the weaker version
of C-connectedness referred to above: there exist pairs of points that cannot be
connected even by a finite chain of entire curves. In Case 1 of the above proof this
is immediate. For Case 3, some further work is needed, since the finite collection of
hyperplanes referred to can vary with the choice of the point p. The key ingredients
are the fact that there are only finitely many diagonal hyperplanes in total, and
that given an associated subspace A and a diagonal hyperplane D of the same
configuration, either A ⊂ D or A ∩ D ⊂

⋃
Hj . In other words, points inside a

diagonal hyperplane cannot be joined to points outside via associated subspaces.

4. Complements of graphs of meromorphic functions

Buzzard and Lu [1, Proposition 5.1] showed that the complement in P2 of a
smooth cubic curve is dominable by C2. Their method of proof was to construct a
meromorphic function associated with the cubic and a branched covering map from
the complement of the graph of that function to the complement of the cubic, and
then show that the graph complement is dominable. We will show that the graph
complement is in fact Oka; this result can be generalised to meromorphic functions
on Oka manifolds other than C, subject to an additional hypothesis. (Note that
our result is not enough to settle the question of whether the cubic complement is
Oka. We know that the Oka property passes down through unbranched covering
maps, but no similar result is known for branched coverings.)

For a holomorphic map m : X → P
1 on a complex manifold X, that is to say

either a meromorphic function with no indeterminacy or else the constant function
∞, we will write Γm for the affine graph

Γm = {(x,m(x)) ∈ X × C : m(x) �= ∞}.

This is a closed subset of X × C, so the set (X × C) \ Γm is a complex manifold.
(If m is identically ∞, then Γm is the empty set.)

Buzzard and Lu’s result relies on the fact that meromorphic functions on C can
be written in the following form.

Lemma 4.1. For every meromorphic function m : C → P1 there exist holomorphic
functions f, g : C → C such that

m = f +
1

g
.

In other words, the projection map from C2 \Γm onto the first coordinate has a
holomorphic section given by x �→ (x, f(x)).

The result follows from the classical theorems of Mittag-Leffler and Weierstrass;
see [1, page 645] for details.

The analogous result in higher dimensions is not true. We have the following
topological criterion.
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Lemma 4.2. Let m be a holomorphic map from Cn to P1, and write m = h/k for
holomorphic functions h, k : Cn → C with no common zeros. Then the following
statements are equivalent.

(1) There exist holomorphic functions f, g : Cn → C such that

m = f +
1

g
.

(2) The function h has a logarithm on the zero set Z(k) of k.
(3) The function h has a logarithm on a neighbourhood of Z(k).

Proof. (1 ⇒ 2): The function

1

g
= m− f =

h− kf

k

has no zeros. Therefore h− kf is a nowhere vanishing entire function, so

h− kf = eμ

for some holomorphic μ : Cn → C. Then μ|Z(k) is the desired logarithm of h.

(2 ⇒ 3): Suppose there is a holomorphic function λ on Z(k) such that eλ =
h|Z(k). We wish to find a neighbourhood U of Z(k), small enough that h vanishes
nowhere on U , such that the inclusion map Z(k) ↪→ U induces an epimorphism of
fundamental groups. Given such a neighbourhood, we have the following situation:

C

exp

��

Z(k) �
�

��

λ

�������������������������������
U

h ��

λ′

��

C∗

Then the existence of λ, together with the epimorphism π1(Z(k)) → π1(U), tells us
that h|U satisfies the lifting criterion for the covering map exp : C∗ → C. Therefore

there exists a holomorphic function λ′ such that eλ
′
= h on U .

To find a suitable neighbourhood U , we start by realising Cn as a simplicial
complex with Z(k) as a subcomplex. (The existence of such a simplicial complex
is guaranteed by standard results on the topology of subanalytic varieties; see for
example [10, Theorem 1].) Then we can find a basis of neighbourhoods of Z(k)
such that Z(k) is a strong deformation retract of each basis set (this is a general
fact about CW-complexes; see [6, Prop. A.5, p. 523]). Finally, we choose a basis
set U small enough that h does not vanish on U .

(3 ⇒ 1): First consider the situation of hypothesis (2): suppose λ : Z(k) → C

is a logarithm for h. We wish to find a suitable holomorphic function μ : Cn → C

which extends λ. Then we can define

f =
h− eμ

k
and g =

k

eμ
.

In order for such f to be a well defined holomorphic function, we require that h−eμ

should vanish on Z(k) to order at least the order of vanishing of k, in other words
that the divisors should satisfy

(h− eμ) ≥ (k).
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By hypothesis, we in fact have a neighbourhood U of Z(k) and a logarithm
λ′ : U → C for h on U . Then the above condition is equivalent to requiring that μ
agrees with λ′ on Z(k) up to the order of vanishing of k.

We write O for the sheaf of germs of holomorphic functions on Cn. Consider the
exact sequence of sheaves

0 → kO → O → O/kO → 0.

The sheaf kO is coherent, so by Cartan’s Theorem B, we have H1(Cn, kO) = 0,
and therefore the map O(Cn) → (O/kO)(Cn) is surjective. Noting that the stalk
of O/kO at any point outside Z(k) is zero, we see that the function λ′ represents
an element of (O/kO)(Cn). Then we can choose μ to be any preimage of that
element. �
Remark 4.3. When n = 1 in the above lemma, the zero set of k is discrete, and
so a logarithm of h always exists on Z(k). Thus Lemma 4.1 is a special case of
Lemma 4.2.

Remark 4.4. The only properties of Cn used in the above proof are that it is Stein
and simply connected and that all meromorphic functions on Cn can be written
as a quotient. Thus we can generalise the result: if X is a simply connected
Stein manifold, h, k ∈ O(X) have no common zeros, and m = h/k, then the three
statements given in the lemma are equivalent.

Example 4.5. For positive integers ν, the functions mν : C2 → P1 given by

mν(x, y) =
x

xyν − 1

cannot be written in the form f + 1/g. At present it is not known whether any
of the spaces C3 \ Γmν

for ν ≥ 2 are Oka. In the case ν = 1, the Oka property
for C

3 \ Γm1
follows from work of Ivarsson and Kutzschebauch [7, Lemmas 5.2

and 5.3]. Specifically, let p be the polynomial p(x, y, z) = xyz − x − z. Then Γm1

is the level set p−1(0), and the complement is the union of all the other level sets.
The complement is isomorphic to the product of C∗ with the level set p−1(1) via
the map C

∗ × p−1(1) → C
3 \ Γm1

given by

(λ, x, y, z) �→ (λx, λ−1y, λz).

Now p−1(1) is smooth, and by the results of Ivarsson and Kutzschebauch, its tangent
bundle is spanned by finitely many complete holomorphic vector fields. This implies
that the set is Oka (see for example [3, Example 5.5.13(B)]), so C∗×p−1(1) is Oka.

With these considerations in mind, we are ready to state the main result of this
section.

Theorem 4.6. Let X be a complex manifold, and let m : X → P1 be a holomorphic
map. Suppose m can be written in the form m = f +1/g for holomorphic functions
f and g. Then (X × C) \ Γm is Oka if and only if X is Oka.

Remark 4.7. The existence of the decomposition m = f +1/g is a geometric condi-
tion that is of some independent interest: it is equivalent to the condition that the
projection map from (X × C) \ Γm onto the first factor has a holomorphic section.
The projection map is an elliptic submersion in the sense defined in [4, page 24]. (It
is easy to see that it is a stratified elliptic submersion, as defined in [4, page 25]. For
a sketch of why it is an (unstratified) elliptic submersion, see Remark 4.12 below.)
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However, unless either m has no poles or m = ∞, the projection is not an Oka
map, because it is not a topological fibration.

In the case where X is Stein, it follows from [4, Theorem 5.4 (iii)] that the
existence of a continuous section of the elliptic submersion implies the existence
of a holomorphic section. For general X, one might expect that this ellipticity
property could be applied to yield a simpler proof than the one presented below.
So far, such a proof has been elusive.

We will first prove Theorem 4.6 for the special case X = Cn, and then show
how the convex interpolation property (Definition 2.4) for general X reduces to the
special case. The proof for X = Cn involves a variation of Gromov’s technique of lo-
calisation of algebraic subellipticity (see [5, Lemma 3.5B] and [3, Proposition 6.4.2]).
This relies on the following lemma.

Lemma 4.8. Let g : Cn → C be a holomorphic function, not identically zero, and
suppose x0 ∈ Cn satisfies g(x0) = 0. Then for all s ∈ Cn,

lim
x→x0

g(x) �=0

(
1

g(x)
− 1

g(x+ g(x)2s)

)
= g′(x0)(s).

Proof. First, in order for the limit to make sense, we need to verify that x0 has a
neighbourhood on which g(x + g(x)2s) vanishes only when g(x) vanishes. We use
the approximation

(4.1) g(x+ h) = g(x) + g′(x)(h) +O(|h|2).
With h = g(x)2s, this gives

g(x+ g(x)2s) = g(x) + g′(x)(g(x)2s) +O(|g(x)4|).
When x �= x0 and g(x) �= 0, if x is close to x0, then the second and third terms
of the right hand side are much smaller than the first, so g(x + g(x)2s) �= 0, as
required.

Now, using (4.1) again, we obtain

1

g(x)
− 1

g(x+ h)
=

g(x+ h)− g(x)

g(x)g(x+ h)
=

g′(x)(h) +O(|h|2)
g(x)(g(x) + g′(x)(h) +O(|h|2)) .

(In the event that g(x + h) vanishes, we interpret the fractions as meromorphic
functions.) Replacing h with g(x)2s and using the fact that g′(x) is a linear map
gives

1

g(x)
− 1

g(x+ g(x)2s)
=

g′(x)(g(x)2s) +O(|g(x)|4)
g(x)(g(x) + g′(x)(g(x)2s) +O(|g(x)|4))

=
g′(x)(s) +O(|g(x)|2)

1 + g(x)g′(x)(s) +O(|g(x)|3) .

As x → x0 this expression tends to g′(x0)(s). �

Remark 4.9. The exponent 2 in the lemma corresponds to a doubly twisted line
bundle in the proof of Proposition 4.10 below. A single twist would not be sufficient:
for example, if we take n = 1 and g(x) = x, then for s �= 0 the expression

1

g(x)
− 1

g(x+ g(x)s)

does not have a finite limit as x → 0.
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Proposition 4.10. Let m : Cn → P1 be a holomorphic map, and suppose m can
be written in the form m = f + 1/g for holomorphic functions f and g. Then
C

n+1 \ Γm is Oka.

Proof. If g = 0 so that m = ∞, then Γm = ∅, so Cn+1 \ Γm = Cn+1 is Oka. For
the rest of the proof, assume that g �= 0.

We will write points of Cn+1 as (x, y) or (s, t) where x, s ∈ Cn and y, t ∈ C. Let
X denote the complement of the graph of 1/g; i.e.

X = {(x, y) ∈ C
n+1 : g(x)y �= 1}.

The map X → Cn+1 \ Γm given by (x, y) �→ (x, y + f(x)) is a biholomorphism.
Hence it suffices to prove that X is Oka.

We begin by describing a covering space Y of X. Then we shall exhibit sprays
on trivial bundles over certain subsets of the covering space. Finally, these sprays
will be extended to sprays on twisted bundles over Y using the above lemma. (This
is the localisation step referred to above.) This will be sufficient to establish that
Y is weakly subelliptic, hence Oka. Therefore X is Oka.

The covering space Y is constructed as follows. Define an equivalence relation
∼ on Cn+1 × Z by

(4.2) (x, y, k) ∼ (x′, y′, k′) if x = x′, g(x) �= 0 and g(x)(y − y′) = (k − k′)2πi.

Then Y is the quotient space (Cn+1 × Z)/ ∼. From now on we will write [x, y, k]
as shorthand for the equivalence class in Y of (x, y, k), and Yk for the kth “layer”
{[x, y, k] : (x, y) ∈ Cn+1}.

Note that Y can be described in concrete terms as a hypersurface in C
n+2; see

Remark 4.11. The description of Y used here is chosen to emphasise the simple
form of the sprays σk described below.

It is straightforward to verify that Y is a Hausdorff space. We can map each Yk

bijectively to C
n+1 by sending [x, y, k] to (x, y). Thus Y has the structure of an

(n+ 1)-dimensional complex manifold.
By way of motivation for this construction, observe that if x0 ∈ Cn with g(x0) �=

0, then the set {[x, y, k] ∈ Y : x = x0} is a copy of C, whereas if g(x0) = 0, then
{[x, y, k] ∈ Y : x = x0} is a countable union of disjoint copies of C. The covering
map described below looks like an exponential map when g �= 0, but the identity
map when g = 0. The construction involves a holomorphically varying family of
holomorphic maps which include both exponentials and the identity.

We follow Buzzard and Lu [1, page 645] in defining a function φ on C
2 by

φ(x, y) =

{
exy − 1

x
if x �= 0

y if x = 0
(4.3)

= y +
xy2

2
+

x2y3

3!
+ · · · .

From the series expansion we see that φ is holomorphic. Then we define π : Y → X
by

π[x, y, k] = (x,−φ(g(x), y)).

If (x, y) is a point of X with g(x) = 0, then the fibre over (x, y) is the set

π−1(x, y) = {[x,−y, k] : k ∈ Z}.
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If g(x) �= 0, then a set of unique representatives for π−1(x, y) is given by

{[x, log(1− g(x)y)

g(x)
, 0]}

for all possible branches of the logarithm. It follows that all fibres of π are isomor-
phic to Z. It can be verified that every point of X has a neighbourhood that is
evenly covered by π, and so π is a covering map.

For each layer Yk of Y there is a dominating spray σk on the trivial bundle
Yk × Cn+1, given by

σk([x, y, k]; s, t) = [x+ s, y + t, k].

We wish to construct a bundle Ek over Y and a spray σ̃k : Ek → Y such that σ̃k

agrees with σk with respect to a trivialisation of Ek|Yk
. Since every compact subset

of Y is covered by finitely many Yk, this will establish that Y is weakly subelliptic
(Definition 2.3).

To simplify the notation, we will only describe E0 and σ̃0; the construction for
k �= 0 is similar. Define open subsets U1 and U2 of Y by

U1 = {[x, y, k] : k �= 0},
U2 = {[x, y, k] : k = 0} = Y0.

As each [x, y, k] is an equivalence class, these sets are not in fact disjoint. (This is the
only part of the proof where the assumption g �= 0 is required.) The intersection
U1 ∩ U2 is the set of points [x, y, 0] with g(x) �= 0. The bundle E0 is described
by local trivialisations E0|Uα

→ Uα × Cn+1, α = 1, 2, with transition map θ12 :
(U1 ∩ U2)× C

n+1 → (U1 ∩ U2)× C
n+1 given by

(4.4) θ12([x, y, 0]; s, t) = ([x, y, 0]; g(x)2s, t).

Define σ̃0 by

σ̃0|U1
([x, y, k]; s, t) =

{
[x+ g(x)2s, y − k2πi/g(x) + t, 0] if g(x) �= 0,
[x, y − k2πig′(x)(s) + t, k] if g(x) = 0,

σ̃0|U2
([x, y, 0]; s, t) = σ0([x, y, 0]; s, t) = [x+ s, y + t, 0].

The fact that σ̃0|U1
is continuous follows from Lemma 4.8 together with equation

(4.2). It is easy to verify from equations (4.2) and (4.4) that σ̃0|U1
and σ̃0|U2

agree
on U1∩U2. Thus σ̃0 is a well defined holomorphic map from E0 to Y extending σ0.
Finally, σ̃0([x, y, k]; 0, 0) = [x, y, k], so σ̃0 is a spray. This completes the proof. �

Remark 4.11. The covering space Y from the above proof can be embedded into
Cn+2 by the map [x, y, k] �→ (x,−φ(g(x), y), g(x)y+ 2πik). The image of this map
is the set

Z = {(x, y, z) ∈ C
n × C× C : 1− g(x)y = ez},

and a covering map Z → X is given by (x, y, z) �→ (x, y).

Proof of Theorem 4.6. We will write π1 and π2 for the projections of the comple-
ment (X × C) \ Γm onto X and C respectively. The map σ : X → (X × C) \ Γm

given by σ(x) = (x, f(x)) is a holomorphic section of π1.
First suppose (X × C) \ Γm is Oka. The convex interpolation property for X

can easily be verified as follows. Let φ : T → X be a holomorphic map from
a contractible subvariety T of some Cn. Then by the CIP of (X × C) \ Γm, the
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composite map σ ◦ φ : T → (X × C) \ Γm has a holomorphic extension ψ : Cn →
(X × C) \ Γm. The composition π1 ◦ ψ is a map Cn → X extending φ. Therefore
X is Oka.

Conversely, suppose X is an Oka manifold and m : X → P1 is a holomorphic
map with m = f + 1/g as in the statement of the theorem. We will verify the CIP
for (X × C) \ Γm.

Suppose T is a contractible subvariety of C
n for some n, and let φ : T →

(X × C) \ Γm be a holomorphic map. We want to find a holomorphic map μ :
Cn → (X × C) \ Γm which extends φ.

First of all we can use the CIP for X to extend the composite map π1 ◦ φ to a
holomorphic map ψ : Cn → X. This is indicated in the following diagram:

T � �

ι

��

φ
�� (X × C) \ Γm

π1

��

π2 �� C

Cn

μ

��

ψ
�� X

m �� P1

Now we have a holomorphic mapm◦ψ : Cn → P1. In factm◦ψ = f◦ψ+1/(g◦ψ),
so we know by Proposition 4.10 that Cn+1 \ Γm◦ψ is Oka. We want to map T into
Cn+1 \ Γm◦ψ, then use the CIP to extend this map.

Define α : T → Cn+1 by

α(x) = (ι(x), π2(φ(x))).

Since φ(x) is an element of (X × C) \ Γm, it follows that π2(φ(x)) is never equal to
m(π1(φ(x))). By the definition of ψ, this means that π2(φ(x)) �= m(ψ(ι(x))) for all
x ∈ T . Therefore the image of α is contained in Cn+1 \ Γm◦ψ.

The CIP for Cn+1 \ Γm◦ψ tells us that α extends to a map β : Cn → Cn+1 \ Γm◦ψ,
as in the following diagram. (The map π2 : Cn+1 \ Γm◦ψ → C is the restriction to
Cn+1 \ Γm◦ψ of the projection of Cn × C onto the last coordinate. The use of π2

for two different projection maps should not cause any confusion, as the domain is
always clear from the context.)

C Cn+1 \ Γm◦ψ
π2�� T

α�� � �

ι

��

φ
�� (X × C) \ Γm

π1

��

π2 �� C

C
n

β

��

μ

��

ψ
�� X

m �� P
1

Finally, we can define μ : Cn → (X × C) \ Γm by

μ(x) = (ψ(x), π2(β(x))).

Since π2(β(x)) can never equal m(ψ(x)), we see that the image of μ is indeed
contained in (X × C) \ Γm. And from the definitions, the fact that β is an extension
of α implies that μ is an extension of φ. �
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Remark 4.12. If m can be written as f + 1/g, then the projection map from
(X × C) \ Γm onto the first factor is an elliptic submersion, as mentioned in Re-
mark 4.7 above. To prove this, it is necessary to construct a dominating fibre spray
([4, page 24]). This can be done using the function φ defined by equation (4.3) in
the proof of Proposition 4.10 above. As previously, there is no loss of generality in
assuming f = 0. Denoting points of X ×C by (x, y) with x ∈ X and y ∈ C, define
a map s : ((X × C) \ Γm)× C → (X × C) \ Γm by

s(x, y, t) = (x, yetg(x) − φ(g(x), t)).

The verification that the image of s is indeed contained in (X × C) \ Γm and that
s is a dominating fibre spray is routine.
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