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LINEAR RECURRENCE SEQUENCES SATISFYING

CONGRUENCE CONDITIONS

GREGORY T. MINTON

(Communicated by Ken Ono)

Abstract. It is well-known that there exist integer linear recurrence sequences
{xn} such that xp ≡ x1 (mod p) for all primes p. It is less well-known, but
still classical, that there exist such sequences satisfying the stronger condition
xpn ≡ xpn−1 (mod pn) for all primes p and n ≥ 1, or even m |

∑
d|m μ(m/d)xd

for all m ≥ 1. These congruence conditions generalize Fermat’s little theorem,
Euler’s theorem, and Gauss’s congruence, respectively. In this paper we clas-
sify sequences of these three types. Our classification for the first type is in
terms of linear dependencies of the characteristic zeros; for the second, it in-
volves recurrence sequences vanishing on arithmetic progressions; and for the
last type we give an explicit classification in terms of traces of powers.

1. Introduction

In a recent elementary note [16] we surveyed three proofs of the following fact:
the Perrin sequence {Pn}, defined by P1 = 0, P2 = 2, P3 = 3, and Pn = Pn−2+Pn−3

for n ≥ 4 (OEIS A001608 [17]), satisfies p | Pp for all primes p. This sequence and
close relatives (e.g., OEIS A050443 and A001634) have repeatedly appeared in the
literature: in problems [5–7, 21]; as sources for pseudoprimality tests [1, 13]; and
even in a popular comic strip [2]!

The Perrin sequence is an example of a trace sequence, i.e., a sequence {xn} of
the form xn = TrQ(θ)/Q(θ

n) for an algebraic integer θ. All such sequences satisfy
the congruence

(1.1) xp ≡ x1 (mod p)

for all primes p. In fact, they satisfy the stronger congruence condition

(1.2) xpn ≡ xpn−1 (mod pn)

for all primes p and integers n ≥ 1, and even the still-stronger congruence condition

(1.3)
∑
d|m

μ(md )xd ≡ 0 (mod m)

for all positive integers m, where μ is the Möbius function.
These properties have been well-studied; Zarelua gives a discussion of their his-

tory and many more references in a survey article [23]. In particular, congruence
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(1.3) has an illustrious pedigree, having been studied in the contexts of combina-
torics [20], number theory [22], and dynamical systems [4].

Following Gillespie [10], we call a sequence satisfying congruence (1.1) a Fermat
sequence. It is so named because Fermat’s little theorem is the assertion that, for
any a ∈ Z, {an} is a Fermat sequence. Continuing in this spirit, we call a sequence
satisfying congruence (1.2) an Euler sequence, after Euler’s theorem, and we call a
sequence satisfying congruence (1.3) a Gauss sequence, after Gauss’s congruence.

We are not aware of any linear recurrence sequences other than trace sequences
which have previously been identified as being Gauss, Euler, or even Fermat. In the
present paper we address this by classifying all linear recurrence sequences of these
three types. More precisely, we generalize the conditions to rational sequences
and then answer the following question: given a characteristic polynomial f(t),
what is the space of Fermat (or Euler, or Gauss) linear recurrence sequences with
characteristic polynomial f(t)?

Our classifications are explicit to varying degrees. For Fermat sequences, we
translate the problem into a Galois-theoretic question of linear relations amongst
the zeros of f(t). For Euler sequences, we give a description in terms of sequences
vanishing on arithmetic progressions. The classification for Gauss sequences, by
contrast, is completely explicit: only (linear combinations of) trace sequences are
Gauss. Summarizing these results colloquially,

“There are novel Fermat sequences, and some extra Euler sequences,
but there are no new Gauss sequences.”

2. Statement of results

In the study of Fermat, Euler, and Gauss sequences, it is convenient to allow
nonintegrality and divisibility exceptions at finitely many primes; that makes the set
of all such sequences form a Q-vector space. This remark motivates the following.

Definition 2.1. A rational linear recurrence sequence {xn}∞n=1 is a Fermat se-
quence, Euler sequence, or Gauss sequence if congruence (1.1), (1.2), or (1.3), re-
spectively, holds in all but finitely many completions Zp.

Our classification will treat separately the “separable” part of a linear recurrence
sequence, as defined below.

Definition-Lemma 2.2. Given a linear recurrence sequence {xn}∞n=1, we can
uniquely write xn = yn + nzn + wn such that {yn}, {zn}, and {wn} are linear
recurrence sequences with the following properties: the characteristic polynomial
of {yn} is separable; 0 is not a zero of the characteristic polynomial of either {yn}
or {zn}; and wn = 0 for all sufficiently large n. We call xn = yn + nzn + wn the
separable decomposition of {xn}.
Proof. Follows from the expansion of {xn} in terms of its characteristic zeros. �

In §5 we study Fermat sequences. The following are our main results.

Proposition 2.3. Let {xn} be a rational linear recurrence sequence with separable
decomposition xn = yn + nzn + wn. Then {xn} is a Fermat sequence iff {yn} is a
Fermat sequence and z1 + w1 = 0.

Theorem 2.4. Let f(t) ∈ Q[t] be a separable polynomial with f(0) �= 0. Let
{ri}si=1 be the zeros of f in its splitting field K. Let e = dimQ spanQ{ri}si=1, and let
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ε ∈ {0, 1} equal 1 iff TrK/Q(ri) �= 0 for some i ∈ {1, . . . , s}. Then the dimension of
the vector space of Fermat sequences with characteristic polynomial f(t) is exactly
s− e+ ε.

Remark 2.5. In addition to computing the dimension, our forthcoming argument
implicitly gives an algorithm for computing the space of Fermat sequences in terms
of the space of vanishing Q-linear combinations of {ri}.
Corollary 2.6. Let f(t) ∈ Q[t] be a polynomial of degree d, with s distinct nonzero
zeros {ri}si=1 in its splitting field. Let e, ε be as in Theorem 2.4, and let u =
max{0, d − s − 1}. Then the vector space of Fermat sequences with characteristic
polynomial f(t) has dimension exactly (s− e+ ε) + u.

Proof. This follows from the combination of Proposition 2.3 and Theorem 2.4. �
In certain cases we can simplify the classification, for instance, as follows.

Corollary 2.7. Let f(t) ∈ Q[t] be an irreducible polynomial. Suppose that either
(i) deg f(t) is prime or (ii) the Galois group of f acts doubly-transitively on its
zeros. Then, letting θ be a zero of f , the only Fermat sequences with characteristic
polynomial f(t) are multiples of {TrQ(θ)/Q(θ

n)}.
When the conditions of Corollary 2.7 do not hold, we can sometimes find many

more Fermat sequences. We discuss some examples of this in §5.
In §6 we move on to Euler sequences, obtaining the following results.

Proposition 2.8. Let {xn} be a rational linear recurrence sequence with separable
decomposition xn = yn+nzn+wn. Let zn = z′n+nz′′n be the separable decomposition
of {zn}. Then {xn} is an Euler sequence iff {yn} is an Euler sequence, {z′n} is a
Fermat sequence, z′1 = 0, and z′′1 + w1 = 0.

Definition 2.9. A trace sequence is a sequence {xn} of the form

xn =
r∑

i=1

ai TrK/Q(θ
n
i ),

where K is an algebraic number field, a1, . . . , ar ∈ Q, and θ1, . . . , θr ∈ K.

Definition 2.10. A vanishing sequence is a rational linear recurrence sequence
{xn} such that, for some integer m ≥ 1, xn = 0 for all n relatively prime to m.

Theorem 2.11. Let {yn} be a rational linear recurrence sequence with separable
characteristic polynomial. Then {yn} is an Euler sequence iff it is the sum of a
trace sequence and a vanishing sequence.

As with Fermat sequences, in certain special cases the classification simplifies.

Definition 2.12 ([8, §1.1.9]). A linear recurrence sequence is degenerate if its
characteristic polynomial has two distinct zeros whose quotient is a root of unity.

Corollary 2.13. Let {yn} be a rational linear recurrence sequence with separable
characteristic polynomial. If {yn} is nondegenerate, then it is an Euler sequence iff
it is a trace sequence.

Corollary 2.14. Suppose f(t) ∈ Q[t] is a separable polynomial such that the quo-
tient of every pair of zeros is a root of unity. Then a sequence with characteristic
polynomial f(t) is Euler iff it is Fermat.
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After proving these results, we end §6 with some examples.
In §7 we solve the classification problem for Gauss sequences.

Theorem 2.15. A sequence is Gauss iff it is a trace sequence.

As mentioned in the introduction, it was already known that trace sequences
are Gauss. The novelty in our result is that there are no others. In the context
of dynamical systems, the literature contains some special cases of Theorem 2.15
[18, Theorem 1], [8, Theorem 11.9]. In particular, our Theorem 2.15 supplies the
missing proof for Theorem 11.9 in Everest et al. [8].

Remark 2.16. Call a Fermat, Euler, or Gauss sequence strict if it is integral and
satisfies the corresponding congruence condition at every prime. Classifying strict
sequences adds additional complication. First, to have integer sequences, the char-
acteristic polynomial must be monic. Assuming this, in the case of Fermat or Gauss
sequences, the set of strict sequences is a full-rank free abelian subgroup of the cor-
responding space of rational sequences. This is clear from the definition in the case
of Fermat sequences, and it follows easily from Theorem 2.15 in the case of Gauss
sequences. For Euler sequences the full-rank condition may or may not hold. We
give an example of each type in Example 6.13.

Remark 2.17. The definitions of Fermat, Euler, and Gauss sequences generalize
naturally to number fields, and our results extend almost verbatim to this setting.
For instance, the following is the generalization of Theorem 2.15. Let F be a number
field with ring of integers OF . Let μ be the Möbius function of the lattice of ideals
in OF , and let the norm of an ideal a ⊂ OF be N(a) = |OF /a|. Define a sequence
{xn} in F to be “F -Gauss” if ∑

d|a
μ(d, a)xN(d) ∈ â

for all ideals a ⊂ OF and almost every completion of OF . Then the space of
F -Gauss sequences is just the space of trace sequences, i.e., spanF {TrF (θ)/F (θ

n)}.

3. Results from number theory

Throughout we will assume familiarity with basic algebraic number theory. In
addition, we will require the following results concerning the behavior of primes in
number fields. Theorems 3.1 and 3.2 are immediate corollaries of Theorem 3.3, but
we state all three separately in order to highlight how strong a result is actually
required in our various applications.

Theorem 3.1. In any number field there exist infinitely many primes which split
completely.

Proof. This has a short and elementary proof [9, Corollary to Theorem 5]. �
Theorem 3.2. Let K be a number field and fix α ∈ K. Suppose that, at almost
every prime of K, the residue of α lies in the prime subfield of the residue field.
Then α ∈ Q.

Proof. This is the Q(α)/Q case of the theorem that, in any nontrivial extension of
number fields, there are infinitely many primes which are not completely split. The
more general statement is an easy consequence of the first inequality of class field
theory, which has an algebraic proof [14, p. 19]. �



SEQUENCES SATISFYING CONGRUENCES 2341

Theorem 3.3. Let K be a Galois number field. For any σ ∈ Gal(K/Q), there exist
infinitely many primes p of K such that Frobp = σ.

Proof. This is a weakened form of the Chebotarëv density theorem [15, p. 35], the
proof of which requires analytic techniques. (In exchange one obtains the density
of the set of primes with a given Frobenius, but we will not need this.) �

4. Notation

In the sequel we adopt the following notation.
We will always use f(t) ∈ Q[t] to refer to a characteristic polynomial. Given

f(t), let {r1, . . . , rs} be its distinct nonzero zeros, let K = Q(r1, . . . , rs) be the
splitting field, let G = Gal(K/Q) be the Galois group, and let O be the ring of
integers in K. We extend the definitions of Fermat, Euler, and Gauss sequences to
K-sequences by imposing the appropriate congruences at almost every completion
of O. (This is not the same concept as in Remark 2.17.)

The permutation action of G on {r1, . . . , rs} induces a permutation action on
the indices {1, . . . , s} by setting rg(i) = g(ri).

Given a linear recurrence {xn}, we always denote its separable decomposition
by xn = yn + nzn + wn, as in Definition-Lemma 2.2. The set {n ∈ N : wn �= 0} is
the support of {wn}. If the characteristic polynomial of {xn} is f(t), then we write

yn =

s∑
i=1

αir
n
i

for some coefficients αi ∈ K.
For convenience we shall say that a rational prime p is of good reduction if (1) p

is unramified in K, (2) {zn} and {wn} are integral at p, (3) the coefficients αi are
all integral at p, and (4) the zeros ri are all units at p. Given a prime p of K,

κ = O/p = Ôp/p̂

denotes the residue field. We use α �→ ᾱ to denote reduction to κ. Whenever we
write ᾱ, we assume implicitly that α is integral at p.

The conditions of good reduction imply in particular that the sequences {xn},
{yn}, {zn}, and {wn} are all integral at p and that r̄1, . . . , r̄s ∈ κ are distinct
and nonzero. Almost every (a.e.) prime is of good reduction. Given a prime p
of good reduction, we say that {xn} is Fermat (resp., Euler or Gauss) at p if the
corresponding congruence condition holds modulo p (resp., powers of p).

5. Classification of Fermat sequences

Proof of Proposition 2.3. If {yn} is Fermat and z1 + w1 = 0, then it is clear that
{xn} is Fermat. The converse follows from the following slight generalization in the
case c = x1. �

Lemma 5.1. Let {xn} be a rational linear recurrence sequence with separable de-
composition xn = yn + nzn + wn. Suppose that, for some c ∈ Q, xp ≡ c (mod p)
for a.e. prime p. Then {yn} is a Fermat sequence with y1 = c.

Proof. Let p be a prime of good reduction, larger than the support of {wn}, at
which xp ≡ c. Then yp ≡ xp ≡ c (mod p), so to finish we just need to show that
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y1 = c. Towards this end, suppose additionally that p is completely split in K. At
any prime over p we have κ = Fp, so

ȳp =
s∑

i=1

ᾱir̄
p
i =

s∑
i=1

ᾱir̄i = ȳ1 ∈ κ.

Thus yp ≡ y1 (mod p), and so y1 ≡ c (mod p). By Theorem 3.1 this holds at
infinitely many primes, so y1 = c, as desired. �

Suppose f(t) is separable and f(0) �= 0. Let W be the K-space of all recurrence
sequences with characteristic polynomial f(t). There are two particularly natural
identifications of W with Ks: we may map a sequence {yn =

∑
αir

n
i } either to

(y1, . . . , ys) or to (α1, . . . , αs). We refer to these as the value basis and the coefficient
basis, respectively. We say that a K-subspace V ⊂ W is rational in the value (resp.,
coefficient) basis if the corresponding subspace of Ks is generated in Qs.

Consider the following two actions of the Galois group G on W : G acts on
values by ρv(g)({yn}) = {g(yn)}, and G acts by permutation by ρp(g)({

∑
αir

n
i }) =

{
∑

αir
n
g(i)}. For convenience we write ygn for the nth term of ρp(g)({yn}).

Lemma 5.2. Let V ⊂ W be a K-subspace. If V is invariant with respect to both
G actions, then V is rational in the value and coefficient bases.

Proof. Consider first the value basis. Identify V with a subspace of Ks and take a
basis for V , thought of as a d×smatrix. Row-reduce this matrix so that it has a d×d
identity submatrix and then replace each row v by its average 1

|G|
∑

g∈G ρv(g)(v).

The resulting rows are still in V , by invariance under the action on values, and
they are linearly independent as there is an identity submatrix. Hence we have a
new basis for V which is defined over Qs. To handle the coefficient basis, consider
the following third action of G on W : ρ(g)({

∑
αir

n
i }) = {

∑
g(αi)r

n
i }. Then

ρ(g) = ρv(g) ◦ ρp(g
−1), so V is also invariant with respect to the ρ action. Now

rationality in the coefficient basis follows similarly. �

Proposition 5.3. Suppose f(t) is separable and f(0) �= 0. Let V ⊂ W be the space
of Fermat K-sequences with characteristic polynomial f(t). Then V is exactly the
space of sequences {yn} such that yg1 = yh1 for all g, h ∈ G.

Proof. Let {yn =
∑

αir
n
i } ∈ V be an arbitrary Fermat K-sequence and choose

g ∈ G. Choose a prime p of K, lying over a prime p of good reduction at which
{yn} is Fermat, such that Frobp = g. There exist infinitely many such primes p by
Theorem 3.3. Working in the residue field κ at p,

(5.1) ȳp =

s∑
i=1

ᾱir̄
p
i =

s∑
i=1

ᾱiFrobp(ri) =

s∑
i=1

ᾱir̄g(i) = ȳg1 .

But ȳp = ȳ1, so ȳ1 = ȳg1 . This holds for infinitely many primes, so in fact y1 = yg1 .
It remains to show that a sequence satisfying yg1 = yh1 for all g, h ∈ G is Fermat.

Let p be any prime of good reduction and let p be any prime of K lying over p.
Letting g = Frobp, we have ȳp = ȳg1 by equation (5.1). By assumption the right
side is ȳ1. This holds for all primes over p, so yp ≡ y1 (mod p). �

Proof of Theorem 2.4. Let V be the space of Fermat K-sequences as in Proposi-
tion 5.3. Evidently V is invariant under ρv, and Proposition 5.3 shows that V is
invariant under ρp. Applying Lemma 5.2, the following two Q-subspaces of V have
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the same dimension: (1) Fermat sequences with rational values, and (2) Fermat
sequences with rational coefficients. Consider the second space. If {yn} is a se-
quence with rational coefficients, then g(y1) = yg1 . This reduces the condition of
Proposition 5.3 to g(y1) = y1 for all g ∈ G, or equivalently y1 ∈ Q. Thus we are
looking for the dimension of A = {(a1, . . . , as) ∈ Qs :

∑
airi ∈ Q}. If we require

the sum to be 0, then we get a space A′ ⊆ A of dimension s− e. The codimension
of A′ in A is either 0 or 1, with the latter holding iff Q ⊆ spanQ{ri}. But that
happens iff some ri has nonzero trace, as desired. �

Theorem 2.4 reduces the classification of Fermat sequences to the problem of
classifying linear dependencies amongst the zeros of f(t). This problem has been
studied in the literature: for our purposes, the results of Girstmair [11, 12] and of
Berry et al. [3] are particularly relevant. We now briefly survey the implications of
this theory in the context of Fermat sequences.

If f(t) has k irreducible factors over Q, then it always has at least a k-dimensional
space of Fermat sequences: namely, the trace sequences. One source of additional
Fermat sequences is interaction between distinct irreducible factors. The polyno-
mial f(t) = (x2+1)(x2−2x+2) provides an example: its space of Fermat sequences
has dimension 3, but there is only a 2-dimensional space of trace sequences.

If we limit our attention to irreducible characteristic polynomials, there can still
be more Fermat sequences than trace sequences. Let θ, θ′ be algebraic numbers such
that Q(θ) and Q(θ′) are linearly disjoint. If {θi}si=1 and {θ′j}s

′

j=1 are the conjugates
of θ and θ′, respectively, then the conjugates of θ + θ′ are {θi + θ′j}i≤s,j≤s′ . The
space A in the proof of Theorem 2.4 includes any set of coefficients {aij} such that

both j �→
∑s

i=1 aij and i �→
∑s′

j=1 aij are constant. Thus, taking f(t) to be the

minimal polynomial of θ + θ′, the corresponding space of Fermat sequences has
dimension ≥ (s − 1)(s′ − 1) + 1. This corresponds to the fact that both ȳ1 and
ȳp are additive in the zeros {r1, . . . , rs}. In such examples the Galois group is an
imprimitive permutation group.

Even if we further limit our attention to irreducible characteristic polynomials
such that the Galois group is primitive, there may still be Fermat sequences other
than the trace sequences. Girstmair gives a procedure to determine exactly what
spaces A can arise for an irreducible polynomial f(t) with given Galois group G [11].
He also gives an application of this theory [11, Theorem 1] which, after translating
into the language of Fermat sequences, yields the following.

Example 5.4. There exist Fermat sequences of recurrence length 9, with irre-
ducible characteristic polynomial and primitive Galois group, which do not arise
from trace sequences. In these cases the Galois group is necessarily isomorphic to
either (Z/3)2 � Z/4 or S3 � S2. There are no such examples of smaller recurrence
length.

Girstmair expands upon this framework in a later article [12], where he also
produces more examples: for instance, there are irreducible polynomials f(t) of
degree 55, with primitive Galois group, admitting a 5-dimensional space of Fermat
sequences [12, p. 71].

More spectacular examples are provided by Berry et al., who answer the follow-
ing question: for fixed e = dimQ spanQ{ri}si=1, what is the largest possible value
of s [3, Theorem 1]? (Note that there is no primitivity assumption here.) For
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e �∈ {2, 4, 6, 7, 8, 9, 10}, the answer is 2ee!. In the exceptional dimensions, s may be
larger. For instance, we have the following.

Example 5.5. There exists an irreducible, monic polynomial f(t) ∈ Z[t] of degree
1152 such that the space of Fermat sequences with characteristic polynomial f(t)
has dimension 1148.

Despite all of this, there are cases in which we can be assured of only getting
trace sequences. We close this section with the

Proof of Corollary 2.7. By Theorem 2.4, the desired conclusion is equivalent to the
following: if

∑s
i=1 airi ∈ Q with ai ∈ Q, then a1 = · · · = as. In this formulation,

both cases are in the literature [11, Propositions 4(3) and 6]. We repeat here an
abbreviated proof of (i). Let M ⊂ Qs be the space of vectors (a1, . . . , as) with∑

ai = 0 and let N ⊂ M be the subspace of vectors with
∑

airi ∈ Q. Letting
G act by permutation of coordinates, N and M are G-invariant. By Cauchy’s
theorem, G contains an element σ of order s, i.e., a cycle of {r1, . . . , rs}. The
characteristic polynomial of σ|M is ts−1 + · · ·+ t+ 1, which is Q-irreducible, so M
is already 〈σ〉-irreducible. Thus N = 0 or N = M , and the latter is impossible. �

6. Classification of Euler sequences

In this section we prove Proposition 2.8, Theorem 2.11, and Corollaries 2.13
and 2.14. The plan for this is as follows. First, we relax the definition of Euler
sequences and establish some properties of these generalized sequences. Then we
use these to show that the relaxed definition actually coincides with the original
definition, obtaining at the same time an equivalent Galois-theoretic formulation.
This reformulation is the heart of the argument; once we have it, the main results
follow easily.

Definition 6.1. A rational (resp., K-valued) linear recurrence sequence {xn} is
weakly Euler if, for almost every prime p, the sequence {xpn} converges in Zp (resp.,
in every completion of O at a prime over p).

Definition-Lemma 6.2. Let D be a complete discrete valuation ring with finite
residue field κ. Any element of κ× has a unique lift to a root of unity in D of
order prime to |κ|, its Teichmüller lift. The resulting map ω : κ× → D× is a group
homomorphism, the Teichmüller character of D.

Proof. This is standard; apply Hensel’s lemma to the polynomials t|κ|
e − t. �

Let c1, . . . , cs ∈ K be coefficients and consider the linear equation
∑s

i=1 ciζi = 0,

where each ζi is required to be a root of unity (in Kab, say). We say that
two solutions (ζ1, . . . , ζs) and (ζ ′1, . . . , ζ

′
s) are equivalent if there is a partition

{1, . . . , s} = I1 � · · · � It of the indices such that, for each k ∈ {1, . . . , t}, (i)∑
i∈Ik

ciζi = 0 and (ii) there exists a root of unity ζ such that ζ ′i = ζζi for all
i ∈ Ik.

Theorem 6.3. Up to equivalence, any linear equation has finitely many solutions
in roots of unity.

Proof. By passing to subsets, we may assume without loss of generality that no
proper subsum vanishes; by scaling, we may assume ζ1 = 1. But then a theorem of
Schinzel [19, Theorem 1] bounds the order of the remaining ζi’s. �
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Corollary 6.4. For each prime p of K, let ωp : κ× → Ô×
p be the Teichmüller

character. Let ci ∈ K and ri ∈ K×, i ∈ {1, . . . , s}, be elements such that

(6.1)
s∑

i=1

ci · ωp(r̄i) = 0 ∈ Ôp

for infinitely many primes p. Then there exists a partition {1, . . . , s} = I1 � · · · � It
of the indices such that, for all k ∈ {1, . . . , t}, (i)

∑
i∈Ik

ciri = 0 and (ii) ri/rj is a
root of unity for all i, j ∈ Ik.

Proof. Each Teichmüller lift ωp(r̄i) is a root of unity, so we may think of equation
(6.1) as a linear equation with solutions in roots of unity. There are finitely many
equivalence classes of solutions by Theorem 6.3, so some equivalence class occurs
infinitely often. That is, we can find a partition {1, . . . , s} = I1 � · · · � It and
vectors {(ζi : i ∈ Ik)}tk=1 of roots of unity such that, for each k ∈ {1, . . . , t}, (1)∑

i∈Ik
ciζi = 0 and (2) for infinitely many primes p the vector (ωp(r̄i) : i ∈ Ik) is a

multiple of (ζi : i ∈ Ik).
Fix k ∈ {1, . . . , t} and let p be a prime of K such that (ωp(r̄i) : i ∈ Ik) is

a multiple of (ζi : i ∈ Ik). Let i, j ∈ Ik be arbitrary; then reducing at p gives
r̄i/r̄j = ζ̄i/ζ̄j . This holds at infinitely many primes, so in fact ri/rj = ζi/ζj . This
gives (ii). It also implies that (ri : i ∈ Ik) is a multiple of (ζi : i ∈ Ik), which
together with property (1) proves (i). �
Observation 6.5. If α ≡ β (mod p), then αpn ≡ βpn

(mod pn+1) for all n ≥ 0.

Proposition 6.6. Suppose f(t) is separable and f(0) �= 0. Let {ri}si=1 = R1 �
· · ·�Rt be the partition of the zeros of f(t) with respect to the following equivalence
relation: ri ∼ rj iff ri/rj is a root of unity. Let {yn =

∑s
i=1 αir

n
i } be a linear

recurrence sequence over K with characteristic polynomial f(t). For g ∈ G and
k ∈ {1, . . . , t}, define the partial sum

βg
k =

∑
i:ri∈Rk

αg−1(i)ri.

If {yn} is weakly Euler, then βg
k = βh

k for all g, h ∈ G and all k ∈ {1, . . . , t}.
Proof. Choose an automorphism g ∈ G and let p be a prime of K, lying over a
prime of good reduction at which {yn} is weakly Euler, with Frobp = g. There
exist infinitely many such primes by Theorem 3.3. For each i ∈ {1, . . . , s}, let

r̂i = ωp(r̄i) ∈ Ôp, the Teichmüller lift of the residue of ri at p. Then ri ≡ r̂i
(mod p), so rp

n

i ≡ r̂p
n

i (mod pn+1) for all n ≥ 0 by Observation 6.5. In particular,

the p-adic convergence of {
∑

αir
pn

i } implies the p-adic convergence of {
∑

αir̂
pn

i }.
Let e be the residual degree of K/Q at p, i.e., e = [κ : Fp]. Then r̂p

e−1
i = 1 for

each i, which implies that {
∑

αir̂
pn

i } is periodic. Convergent periodic sequences are
constant, so in particular

∑
αir̂

p
i =

∑
αir̂i. Now r̂pi is a (pe−1)th root of unity with

residue r̄pi = Frobp(ri) = r̄g(i). Hence r̂pi = r̂g(i) by the uniqueness of Teichmüller
lifts. Substituting this into the equation

∑
αir̂

p
i =

∑
αir̂i and reindexing, we have

(6.2)

s∑
i=1

(αg−1(i) − αi)r̂i = 0.

This holds for infinitely many primes p, so we can apply Corollary 6.4. That implies∑
i:ri∈Rk

(αg−1(i) − αi)ri = 0 for each k ∈ {1, . . . , t}, as desired. �
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Proposition 6.7. With notation as in Proposition 6.6, suppose {yn} satisfies βg
k =

βh
k for all g, h ∈ G and all k ∈ {1, . . . , t}. Then {yn} is an Euler sequence.

Proof. Let p be any prime of good reduction and let p be any prime of K over
p. Let k ∈ {1, . . . , t} be arbitrary. For any ri, rj ∈ Rk, ri/rj ∈ K is a root
of unity, and its order must be prime to p because p is unramified in K. Thus
r̂i/r̂j = ωp(ri/rj) = ri/rj by the uniqueness of Teichmüller lifts. As this holds for
all i, j, the vector (r̂i : ri ∈ Rk) is a multiple of (ri : ri ∈ Rk).

Let g, h ∈ G be arbitrary. By assumption βg
k = βh

k , i.e.,
∑

i:ri∈Rk
(αg−1(i) −

αh−1(i))ri = 0. Because they are related by a scalar multiple, the same relation
holds with each ri replaced with r̂i. Summing over k and reindexing,

(6.3)
s∑

i=1

αir̂g(i) =
s∑

i=1

αir̂h(i).

Choose n ≥ 1 and let g = (Frobp)
n and h = (Frobp)

n−1. Then, arguing as in

Proposition 6.6, r̂g(i) = r̂p
n

i and r̂h(i) = r̂p
n−1

i . Applying Observation 6.5, these are

congruent modulo pn to rp
n

i and rp
n−1

i , respectively. Substituting this back into

equation (6.3), we get the congruence ypn ≡ ypn−1 (mod pn) in Ôp. This holds for
a.e. p, so {yn} is Euler. �

Corollary 6.8. Suppose f(t) is separable and f(0) �= 0. A linear recurrence se-
quence with characteristic polynomial f(t) is weakly Euler iff it is Euler. Moreover,
the condition βg

k = βh
k in Propositions 6.6 and 6.7 exactly characterizes Euler se-

quences.

Proof. Proposition 6.6 is the implication (weakly Euler) ⇒ (βg
k = βh

k ), Proposition

6.7 states that (βg
k = βh

k ) ⇒ (Euler), and (Euler) ⇒ (weakly Euler) a fortiori. �

We can now proceed directly to the

Proof of Proposition 2.8. The (⇐) implication is straightforward, so we show (⇒).
Suppose {xn} is Euler. Let p be any prime of good reduction, larger than the
support of {wn}, at which {xn} is Euler. Then xpn ≡ xpn−1 (mod pn). Taking
n ≥ 2 and looking modulo pn−1 instead of pn, this implies ypn ≡ ypn−1 (mod pn−1).
Hence {yn} is weakly Euler, and so Euler by Corollary 6.8.

With p as above, xp2 ≡ xp (mod p2) and yp2 ≡ yp (mod p2), so we have zp ≡
0 (mod p). Thus Lemma 5.1 yields that {z′n} is Fermat with z′1 = 0. Finally,
Proposition 2.3 applied to {xn} (which is Fermat a fortiori) yields z1+w1 = 0. �

Lemma 6.9. With notation as in Proposition 6.6, {yn} is a vanishing sequence iff
βg
k = 0 for all k ∈ {1, . . . , t} and g ∈ G.

Proof. We first prove (⇐). For k ∈ {1, . . . , t}, let Rk = {θk, ωk,1θk, . . . , ωk,fkθk},
where each ωk,j is a root of unity. Let m be the least common multiple of the orders
of all of the roots of unity ωk,j . Then K contains Q(ζm), where ζm is a primitive
mth root of unity. Let n be relatively prime to m and let σ be any extension of
the automorphism ζm �→ ζnm from Q(ζm)/Q to K/Q. For convenience, set ωk,0 = 1
and let αk,j be the coefficient αi for the index i such that ri = ωk,jθk. Let G act
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on indices k ∈ {1, . . . , t} by Rg·k = g(Rk). Then

(6.4) yn =
t∑

k=1

fk∑
j=0

αk,jω
n
k,jθ

n
k =

t∑
k=1

θnk
σ(θk)

fk∑
j=0

αk,jσ(ωk,jθk) =
t∑

k=1

θnk
σ(θk)

βσ
σ·k.

Each βg
k vanishes, so yn = 0 as desired.

We now prove (⇒), keeping the same notation as above. Suppose yn = 0 for
all n relatively prime to m′ ≥ 1. After possibly replacing m′ by a multiple, we
may assume that m | m′. Let g ∈ G be arbitrary. Then g(ζm) = ζem for some e
relatively prime to m. The exponent e is only defined modulo m, so in particular
we may assume that e is relatively prime to m′. Now for any n ≡ e (mod m′), we
get equation (6.4) with σ = g. Writing this out, for any integer d we have

t∑
k=1

(θm
′

k )d · θek
g(θk)

βg
g·k = 0.

Note that θm
′

k �= θm
′

k′ for k �= k′, as θk and θk′ are in different ∼-equivalence classes.
Taking the above equation for d ∈ {0, . . . , t − 1} and using nonvanishing of the
corresponding Vandermonde determinant, we see that βg

g·k = 0 for all k. �

Remark 6.10. One can compute the dimension of the space of vanishing sequences
by using Lemma 6.9 and applying Lemma 5.2 as in the proof of Theorem 2.4. By
the same methods one can compute the dimension of the intersection of this space
with the space of trace sequences, and (invoking Theorem 2.11) thereby compute
the dimension of the space of Euler sequences.

Proof of Theorem 2.11. If {yn} is a trace sequence, then αg(i) = αi for all i ∈
{1, . . . , s} and g ∈ G. Hence we certainly have βg

k = βh
k for all k ∈ {1, . . . , t} and

g, h ∈ G. If {yn} is a vanishing sequence, then βg
k = 0 for all k and g by Lemma 6.9,

so again βg
k = βh

k for all k and g, h. By Corollary 6.8, in either case {yn} is an
Euler sequence. This implies (⇐).

We now prove (⇒). Suppose {yn} is an Euler sequence with separable character-
istic polynomial f(t). Proposition 2.8 implies w1 = 0, so we may assume f(0) �= 0.
With this, Corollary 6.8 tells us that βg

k = βh
k for all k ∈ {1, . . . , t} and g, h ∈ G.

The sequence {yn} is rational valued, and so Galois-invariant. It follows that
αg(i) = g(αi) for all i ∈ {1, . . . , s} and g ∈ G. Define a sequence {ytrn } by

ytrn =

s∑
i=1

⎛
⎝ 1

|G|
∑
g∈G

αg(i)

⎞
⎠ rni =

s∑
i=1

⎛
⎝ 1

|G|
∑
g∈G

g(αi)

⎞
⎠ rni .

Consider the coefficients of this sequence. From the middle expression it is clear
that Galois-conjugate zeros have the same coefficient, and from the last expression
it is clear that these coefficients are rational. Thus {ytrn } is a rational trace sequence.

Let {yvann } be the sequence yvann = yn − ytrn . For k ∈ {1, . . . , t} and g ∈ G let γg
k

be the partial sum for {yvann } analogous to βg
k for {yn}. Then

γg
k =

∑
i:ri∈Rk

(
αg−1(i) −

1

|G|
∑
h∈G

αhg−1(i)

)
ri = βg

k − 1

|G|
∑
h∈G

βgh−1

k = 0.

Thus {yvann } is a vanishing sequence by Lemma 6.9. This completes the proof. �
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Remark 6.11. This proof actually yields slightly more than was claimed: given
an Euler sequence with separable characteristic polynomial f(t), we may find con-
stituent trace and vanishing sequences both having characteristic polynomial f(t).

Proof of Corollary 2.13. Lemma 6.9 implies that a nondegenerate vanishing se-
quence is zero. Degeneracy is a property of the characteristic polynomial, so there
are no nonzero vanishing sequences with the same characteristic polynomial as {yn}.
Now the corollary follows from Theorem 2.11 and Remark 6.11. �
Proof of Corollary 2.14. With such a characteristic polynomial f(t), the partition
in Proposition 6.6 consists of a single equivalence class. Thus, by Corollary 6.8,
a sequence {yn} with characteristic polynomial f(t) is Euler iff

∑s
i=1 αg−1(i)ri =∑s

i=1 αh−1(i)ri for all g, h ∈ G. In the notation of §5 this is the condition yg1 = yh1 ,
which by Proposition 5.3 is the same condition characterizing Fermat sequences. �

The corollaries just proven show that in many cases Euler sequences are the
same as Gauss sequences (Corollary 2.13; cf. Theorem 2.15) and in some cases
Euler sequences are the same as Fermat sequences (Corollary 2.14). It is also
possible for the space of Euler sequences to lie strictly between the spaces of Gauss
and Fermat sequences, as the following example demonstrates.

Example 6.12. Choose relatively prime n,m ≥ 2, n composite, and distinct primes
p �= q not dividing nm. Let f(t) be the minimal polynomial of p1/m(1− q1/n). The
zeros of f(t) are {rij := ζimp1/m(1 − ζjnq

1/n)}i≤m,j≤n. In the decomposition of
Proposition 6.6, there are n equivalence classes, one for each choice of j. Following
the procedure sketched in Remark 6.10, one computes that all trace sequences
with characteristic polynomial f(t) are also vanishing sequences, and the space of
vanishing sequences has dimension (m−φ(m))n. This comes from the (m−φ(m))-
dimensional spaces, for each j, of Q-relations of {rij}i≤m. Using Theorems 2.4 and
2.15, the spaces of Fermat and Gauss sequences with characteristic polynomial f(t)
have dimension mn− φ(m)(φ(n) + 1) and 1, respectively. Thus the space of Euler
sequences lies strictly between the spaces of Fermat and Gauss sequences.

Finally, we consider the integrality issue raised in Remark 2.16. As mentioned
there, for Euler sequences it may not be the case that the subgroup of strict se-
quences is of full rank. To determine the rank, one needs to consider additional
local equations like equation (6.2) at the ramified primes — or, more precisely, at
the primes dividing the orders of the roots of unity that arise as quotients of charac-
teristic zeros. Sometimes these equations can only be satisfied by trace sequences,
and sometimes they admit more solutions.

Example 6.13. Consider the sequence {Qn} defined by Q1 = 0, Q2 = 1, Q3 = 0,
Q4 = −2, and Qn = −Qn−2 − Qn−4 for n ≥ 5. This is a vanishing sequence,
and so an Euler sequence. However, the subsequence {Q2n} alternates between 1
and −2, so in particular it does not converge 2-adically. Thus no multiple of {Qn}
is a strict Euler sequence. One can compute that the space of Euler sequences
with characteristic polynomial t4 + t2 + 1 is 2-dimensional, but the subgroup of
strict sequences only has rank 1 because of the deficiency of {Qn}. The polynomial
t6 − 3t3 − 1 provides a different sort of example. Again one can compute that the
space of Euler sequences with this characteristic polynomial is 2-dimensional. To
test for strictness one has to look at a local equation at p = 3, which turns out to
be always satisfied. Hence the subgroup of strict Euler sequences is of full rank.



SEQUENCES SATISFYING CONGRUENCES 2349

7. Classification of Gauss sequences

Proof of necessity in Theorem 2.15. Let p be any prime of good reduction, larger
than s and larger than the support of {wn}, at which {xn} is Gauss. Fix k ∈
{1, . . . , s} and consider the Gauss congruence in Zp for m = p2k. This simplifies to
the condition ∑

d|k
μ(kd )(xp2d − xpd) ≡ 0 (mod p2).

Letting k vary, we get a unimodular triangular system; hence xp2d − xpd ≡ 0 (mod
p2) for each d ∈ {1, . . . , s}. Let p be any prime of K above p and consider this
congruence modulo p instead of p2. We see that

ȳp2d = x̄p2d = x̄pd = ȳpd ∈ κ.

Let σ ∈ Gal(κ/Fp) be the Frobenius automorphism. Both ȳp2d and ȳpd lie in Fp,
so they are σ-invariant. Thus σ−2(ȳp2d) = ȳp2d = ȳpd = σ−1(ȳpd). Expanding this,

s∑
i=1

(σ−2(ᾱi)− σ−1(ᾱi))r̄
d
i = 0.

This holds for all d ∈ {1, . . . , s}, and {r̄i} is a set of s distinct elements in the
field κ, all of which are nonzero. Thus, by the nonvanishing of the Vandermonde
determinant, we must have σ−2(ᾱi)−σ−1(ᾱi) = 0, i.e., σ(ᾱi) = ᾱi, for each i. This
implies that ᾱi ∈ Fp. We have this for a.e. prime p of K, so αi ∈ Q by Theorem 3.2.
Now Galois invariance of {yn} shows that αi = αj when ri and rj are conjugate,
so {yn} has the desired form.

It remains only to show that zn = wn = 0. Let 
 be the recurrence length of
{zn} and let 
′ ≥ 0 be larger than the support of {wn}. Let p be as above, with the
additional condition that p > 
+ 
′. Considering the Gauss congruence for m = pk
instead of m = p2k, the same argument shows that xpd ≡ xd (mod p) for each
d ∈ {1, . . . , 
 + 
′}. Using the form just proven for {yn}, it is easy to verify that
ypd ≡ yd (mod p). (Alternately, one may use Theorem 3.1 and limit to completely
split primes p, whence ypd ≡ yd (mod p) automatically holds.) Thus the congruence
xpd ≡ xd (mod p) reduces to p | dzd + wd. Taking d ∈ {
′ + 1, . . . , 
′ + 
}, we have
p | dzd. This is true for infinitely many p, so zd = 0; but that holds for a full set of
initial conditions for {zn}, so in fact zn = 0 for all n ≥ 1. Substituting back into
p | dzd + wd, d ∈ {1, . . . , 
′}, the same argument now yields wd = 0. �

Remark 7.1. One can easily check that a sequence {xn}∞n=1 is Gauss iff every
subsequence {xdn}∞n=1, d ≥ 1, is Euler. Using this, Theorem 2.15 can be obtained
as a corollary of Proposition 2.8 and Theorem 2.11. However, the proof just given
is simpler and more elementary than the proof of Theorem 2.11.

The remaining part of Theorem 2.15 is the assertion that trace sequences are
Gauss. This fact was previously known, but for completeness we also give a proof
here. Our proof proceeds by analyzing the zeta function of the sequence and using
the following proposition. It is not new [4, Theorems 1.3 and 1.8], but we give a
slightly different, more direct combinatorial argument.
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��
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•
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��
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· · ·

⎛
⎜⎜⎜⎜⎝
w1 w2 w3 . . .
1 0

1 0
1

. . .

. . .

⎞
⎟⎟⎟⎟⎠

Γ A

Figure 1. A weighted, directed, infinite graph Γ and its adjacency
matrix A

Proposition 7.2. Let R be a domain of characteristic 0, let {xn} be an R-valued
sequence, and define the associated zeta function

ζx(t) = exp

⎛
⎝∑

n≥1

xn
tn

n

⎞
⎠ ∈ Frac(R)[[t]].

Then {xn} satisfies the Gauss congruence (1.3) in R, for all m ≥ 1, iff ζx(t) has
coefficients in R.

Proof. Given weights {wn}n≥1 to be specified later, consider the weighted graph Γ
in Figure 1. For each n ≥ 1, let x′

n be the total weight of the cycles in Γ of length
n, with distinct cyclic shifts counted separately, and let bn be the total weight of
the cycles of period exactly n, with cyclic shifts not counted separately. We make
the following observations:

• The number of distinct cyclic shifts of any cycle is equal to its period. Thus
x′
n =

∑
m|n mbm for all n ≥ 1.

• For each n, x′
n equals nwn plus a polynomial in {wi}i<n. Thus, inductively,

we may uniquely choose weights {wn} in Frac(R) such that x′
n = xn for all

n ≥ 1. We henceforth make this choice.
• For any n ≥ 1, bn equals wn plus an integer-coefficient polynomial in
{wi}i<n. Thus, inductively, {bn} is a sequence in R iff {wn} is.

Using the first two observations and applying Möbius inversion,

bm =
1

m

∑
d|m

μ(md )xd

for all m ≥ 1. Hence {xn} satisfies the Gauss congruence in R iff {bm} is an R-
valued sequence. Using the third observation, it remains only to show that the
sequence {wn} is R-valued iff ζx(t) has coefficients in R.

Let A be the (infinite) adjacency matrix of Γ as in Figure 1. Applying the
identity det(expM) = exp(trM) to M = − log(I − tA) yields

det(I − tA)−1 = exp

⎛
⎝∑

n≥1

tr(An)
tn

n

⎞
⎠ .

We have trAn = x′
n = xn for all n ≥ 1, so the right side is just ζx(t). The left side

is

(1− w1t+ w2t
2 − w3t

3 + · · · )−1.

This has R-coefficients iff each wn is in R, as desired. �
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Proof of sufficiency in Theorem 2.15. It suffices to show that {xn := TrQ(θ)/θ(θ
n)}

is a Gauss sequence for any algebraic element θ �= 0. Let f(t) ∈ Q[t] be the minimal
polynomial of 1/θ, normalized so that f(0) = 1. Then the ordinary generating
function of {xn} is Fx(t) =

∑∞
n=1 xnt

n = −tf ′(t)/f(t), so the zeta function is the
formal power series ζx(t) = exp(

∫
dt Fx(t)/t) = f(t)−1. This has coefficients in

Zp for any p such that the coefficients of f(t) are p-adically integral. Applying
Proposition 7.2 to these p-adic rings completes the proof. �
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