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LOWER VOLUME GROWTH ESTIMATES

FOR SELF-SHRINKERS OF MEAN CURVATURE FLOW

HAIZHONG LI AND YONG WEI

(Communicated by Lei Ni)

Abstract. We obtain a Calabi-Yau type volume growth estimate for com-
plete noncompact self-shrinkers of the mean curvature flow. More precisely,
every complete noncompact properly immersed self-shrinker has at least linear
volume growth.

1. Introduction

On a complete noncompact Riemannian manifold Mn with nonnegative Ricci
curvature, there are two well-known theorems on volume growth estimates of geo-
desic balls. One is the classic Bishop volume comparison theorem (see [12], [16]),
which says the geodesic balls have at most Euclidean growth; i.e., there exists some
positive constant C such that

Vol(Bx0
(r)) ≤ Crn(1.1)

holds for r > 0 sufficiently large. The other is a theorem proved by Calabi [1] and
Yau [18] independently, which says the geodesic balls of such manifolds have at
least linear volume growth; that is,

Vol(Bx0
(r)) ≥ Cr(1.2)

holds for some positive constant C.
In this paper, we consider the volume growth estimates on self-shrinkers. Note

that there are many similarities between self-shrinkers and gradient shrinking soli-
tons. Self-shrinkers give homothetically self-shrinking solutions to mean curvature
flow and describe possible blow ups at a given singularity of the mean curvature
flow. While gradient shrinking Ricci solitons also correspond to the self-similar
solutions of Hamilton’s Ricci flow, they often arise as Type I singularity models.

Before we state our main theorem, we would like to give a rough brief review
about the already known results on volume growth of gradient shrinking Ricci
solitons and self-shrinkers.

For an n-dimensional complete noncompact gradient shrinking Ricci soliton
(M, g, f) satisfying

Rij + fij =
1

2
gij ,(1.3)
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H.-D. Cao and D. Zhou [4] proved that it has at most Euclidean volume growth
(see also [7], [19]). On the lower volume growth estimate, H.-D. Cao and X. P. Zhu
[2] proved that any complete noncompact gradient shrinking Ricci soliton must
have infinite volume. In fact, they showed that there is some positive constant C
such that Vol(Bx0

(r)) ≥ C ln ln r for r sufficiently large. If the Ricci curvature is
bounded, Carillo and Ni [6] showed that the volume grows at least linearly. If the
average scalar curvature satisfies

1

Vol(B(r))

∫
B(r)

Rdv ≤ δ

for δ < n/2 and r sufficiently large, then Cao and Zhou [4] showed that there exists
some positive constant C such that Vol(Bx0

(r)) ≥ Crn−2δ. In [14] O. Munteanu and
J. Wang proved the sharp result that every complete noncompact gradient shrinking
Ricci soliton has at least linear volume growth, which answered the question asked
by Cao and Zhou ([4], [2]) and Lei Ni whether a Calabi-Yau type lower volume
growth estimate holds complete noncompact gradient shrinking Ricci solitons.

Theorem A (Munteanu and Wang [14]). Let (M, g, f) be a complete noncompact
gradient shrinking Ricci soliton. Then for any x0 ∈ M there exists a constant C > 0
such that

V ol(Bx0
(r)) ≥ Cr, for all r > 0,

where Bx0
(r) is the geodesic ball of M of radius r centered at x0 ∈ M .

For an n-dimensional complete noncompact self-shrinker X : Mn → R
n+m sat-

isfying

H = −1

2
XN ,(1.4)

Lu Wang [17] proved that every entire graphical self-shrinker has polynomial vol-
ume growth. Then Q. Ding and Y. L. Xin [9] generalized it and showed that
if the immersion is proper, then the self-shrinker has at most Euclidean volume
growth. After that, Cheng and Zhou [7] improved Ding and Xin’s result and gave
a sharp volume growth estimate: they showed that Vol(Bx0

(r)) ≤ Crn−2β, with
β ≤ inf |H|2, where the ball Bx0

(r) is defined by

(1.5) Bx0
(r) = {x ∈ M : ρx0

(x) < r}, x0 ∈ M,

with ρx0
(x) = |X(x)−X(x0)| is the extrinsic distance function.

In this paper, we consider the lower volume growth estimates for complete non-
compact self-shrinkers, and an analogue of Munteanu-Wang’s result will be proved.

Theorem 1.1. Let X : Mn → Rn+m be a complete noncompact properly immersed
self-shrinker. Then for any x0 ∈ M there exists a constant C > 0 such that

Vol(Bx0
(r)) ≥ Cr, for all r > 0,(1.6)

where the ball Bx0
(r) is defined as in (1.5).

Remark 1.2. Note that this is sharp because the volume of the cylinder self-shrinker
X : Sn−1(

√
2(n− 1))× R → Rn+1 grows linearly.
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2. Preliminaries

For a complete immersed self-shrinker X : Mn → Rn+m which satisfies (1.4), we
have

|H|2 + 1

4
Δ|X|2 =

n

2
,(2.1)

∇|X|2 = 2XT .(2.2)

Note that for a gradient shrinking Ricci soliton which satisfies (1.3), we take the
trace in (1.3) and get

R+Δf =
n

2
.(2.3)

The main idea of this paper is to compare the two equations (2.1) and (2.3). In
fact, we can correspond |H|2 to R and 1

4 |X|2 to f , and then explore the similarities
between the self-shrinker and the gradient shrinking Ricci soliton.

Denote ρ(x) = |X|; we have

(2.4) ∇ρ =
XT

|X| and |∇ρ| = |XT |
|X| ≤ 1, for ρ ≥ 1.

Denote

B(r) = {x ∈ M : ρ(x) < r} ,(2.5)

V (r) = Vol(B(r)) =

∫
B(r)

dv, η(r) =

∫
B(r)

|H|2dv.(2.6)

Recall that for a compact Riemannian manifold (Ω, g) with boundary and a function
f ∈ H1(Ω), we have the co-area formula (see [16, section 3.1])

∫
Ω

h dvg =

∫ ∞

−∞
ds

∫
{f=s}

h

|∇f |dσ(s),

which holds for any nonnegative function h on Ω. Here dσ(s) is the area form on
the set {f = s} with respect to the induced metric from (Ω, g). Denote the set
∂B(r) = {x ∈ M : ρ(x) = r}. Since in the ball B(r) the function ρ(x) = |X(x)| ∈
H1(B(r)) and 0 ≤ ρ(x) ≤ r, from the above co-area formula we have

V (r) =

∫ r

0

ds

∫
{ρ=s}

1

|∇ρ|dσ =

∫ r

0

ds

∫
∂B(s)

1

|∇ρ|dσ,(2.7)

V ′(r) =

∫
∂B(r)

1

|∇ρ|dσ = r

∫
∂B(r)

1

|XT |dσ,(2.8)

η(r) =

∫ r

0

ds

∫
∂B(s)

|H|2
|∇ρ|dσ =

∫ r

0

sds

∫
∂B(s)

|H|2
|XT |dσ,(2.9)

η′(r) = r

∫
∂B(r)

|H|2
|XT |dσ.(2.10)

In the above equations, for brevity we denote by dσ the area form on the set ∂B(s)
which may depend on s.
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Now we state the following lemma:

Lemma 2.1. Let X : Mn → Rn+m be a complete noncompact properly immersed
self-shrinker. Then

nV (r)− rV ′(r) = 2η(r)− 4

r
η′(r).(2.11)

Proof. Integrating (2.1) over B(r), we have by using (1.4), (2.2), (2.4)-(2.10)

nV (r)− 2

∫
B(r)

|H|2 =
1

2

∫
B(r)

Δ|X|2dv

=
1

2

∫
∂B(r)

∇|X|2 · νdσ

=
1

2

∫
∂B(r)

∇|X|2 · ∇ρ

|∇ρ|dσ

=

∫
∂B(r)

|XT |dσ

=

∫
∂B(r)

|X|2 − 4|H|2
|XT | dσ

= rV ′(r)− 4

∫
∂B(r)

|H|2
|XT |dσ. �

Remark 2.1. From the fourth equality in the above proof, we can get

1

V (r)

∫
B(r)

|H|2 ≤ n

2
;(2.12)

that is, the average of |H|2 is bounded by n/2.

Lemma 2.2. Let X : Mn → Rn+m be a complete noncompact properly immersed
self-shrinker. Then

(2.13)
V (r1)

rn1
− V (r2)

rn2
≤ 2n

V (r1)

rn+2
1

, for r1 > r2 ≥ r0 =
√
2(n+ 2).

Proof. Lemma 2.1 implies that

(r−nV (r))′ = r−n−1(rV ′(r)− nV (r))

= 4r−n−2η′(r)− 2r−n−1η(r).

Integrating the above equation from r2 to r1, we get

r−n
1 V (r1)− r−n

2 V (r2) =

∫ r1

r2

4s−n−2η′(s)ds−
∫ r1

r2

2s−n−1η(s)ds

= 4r−n−2
1 η(r1)− 4r−n−2

2 η(r2)

+2

∫ r1

r2

(2(n+ 2)− s2)s−n−3η(s)ds.

Choose r0 =
√
2(n+ 2) and let r1 > r2 ≥ r0. Since η(r) is nonnegative and

nondecreasing in r, we have∫ r1

r2

(2(n+ 2)− s2)s−n−3η(s)ds ≤ η(r2)

∫ r1

r2

(2(n+ 2)− s2)s−n−3ds

≤ η(r2)
(
−2r−n−2

1 + 2r−n−2
2

)
.
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Thus

r−n
1 V (r1)− r−n

2 V (r2) ≤ 4r−n−2
1 (η(r1)− η(r2))

≤ 4r−n−2
1 η(r1)

≤ 2nr−n−2
1 V (r1),

where we used (2.12) in the last inequality. This completes the proof of Lemma 2.2.
�

Remark 2.2. Let r2 = r0 and r = r1 be sufficiently large in Lemma 2.2; we can
obtain that

V (r) ≤ 2r−n
0 V (r0)r

n.

Since Bx0
(r) ⊂ B(r + |X0|), we have

V ol(Bx0
(r)) ≤ V (r + |X0|) ≤ C(r + |X0|)n ≤ 2nCrn

for r ≥ |X0|. This recovers Ding and Xin’s result [9], which states that every com-
plete noncompact properly immersed self-shrinker has at most Euclidean volume
growth.

In the last part of this section, we recall the Logarithmic Sobolev inequality for
submanifolds in Euclidean space; this was shown by K. Ecker in [10].

Proposition 2.1 (LSI). Let X : Mn → Rn+m be an n-dimensional submanifold
with measure dv. Then the inequality∫

M

f2(ln f2)e−
|X|2

4 dv −
∫
M

f2 ln

(∫
M

f2e−
|X|2

4

)
e−

|X|2
4 dv

≤ 2

∫
M

|∇f |2e−
|X|2

4 dv +
1

2

∫
M

|H +
1

2
XN |2f2e−

|X|2
4 dv(2.14)

+C(n)

∫
M

f2e−
|X|2

4

holds for any nonnegative function f for which all integrals are well defined and
finite, where C(n) is a positive constant depending on n.

On the self-shrinker which satisfies (1.4), the Logarithmic Sobolev inequality
(2.14) implies the following two inequalities:

(1) For any nonnegative function f which satisfies the normalization∫
M

f2e−
|X|2

4 dv = 1,

the inequality∫
M

f2(ln f)e−
|X|2

4 dv ≤
∫
M

|∇f |2e−
|X|2

4 dv +
1

2
C(n)(2.15)

holds.

(2) By substituting f = ue
|X|2

8 into (2.14), the inequality

(2.16)

∫
M

u2 lnu2 −
(∫

M

u2

)(
ln

∫
M

u2

)
≤ 4

∫
M

|∇u|2 + C(n)

∫
M

u2

holds for any nonnegative function u for which all the integrals are well
defined and finite.
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3. Proof of Theorem 1.1

In order to prove Theorem 1.1, we need the following lemma, which holds for
any complete properly immersed submanifold in Euclidean space.

Lemma 3.1. Let X : Mn → Rn+m be a complete properly immersed submanifold.
For any x0 ∈ M , r ≤ 1, if |H| ≤ C

r in Bx0
(r) for some positive constant C > 0,

where the ball Bx0
(r) is defined as in (1.5), then the following inequality holds:

Vx0
(r) = Vol(Bx0

(r)) ≥ κrn;(3.1)

here κ = ωne
−C .

Proof. In Bx0
(r) we have

Δρ2x0
(x) = 2n+ 2〈X −X0, H〉

≥ 2n− 2|H|ρx0
(x).

If |H| ≤ C
r in Bx0

(r), then in Bx0
(r) we have

2n− 2
C

r
ρx0

(x) ≤ Δρ2x0
(x).(3.2)

Integrating the above equation over Bx0
(s) for s ≤ r,

(2n− 2
C

r
s)Vx0

(s) ≤
∫
Bx0

(s)

Δρ2x0
(x)

=

∫
∂Bx0

(s)

∇ρ2x0
(x) · ν

=

∫
∂Bx0

(s)

∇ρ2x0
(x) · ∇ρx0

(x)

|∇ρx0
(x)|

=

∫
∂Bx0

(s)

2
|(X −X0)

T |2
|(X −X0)T |

≤ 2s

∫
∂Bx0

(s)

|X −X0|
|(X −X0)T |

= 2s

∫
∂Bx0

(s)

1

|∇ρx0
|

= 2sV ′
x0
(s),

where ∂Bx0
(s) = {x ∈ M : ρx0

(x) = s} is the boundary of Bx0
(s) and the last

equality is due to the co-area formula. This implies

V ′
x0
(s)

Vx0
(s)

≥ n

s
− C

r
.(3.3)

Integrating from ε > 0 to r, we have

Vx0
(r) ≥ Vx0

(ε)

εn
rne−

C
r (r−ε).

Let ε → 0; by lim
ε→0+

Vx0
(ε)

εn = ωn, we have

Vx0
(r) ≥ κrn (κ = ωne

−C).(3.4)

�
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Remark 3.1. As pointed out to us by Ovidiu Munteanu, Lemma 3.1 also follows
from the Michael-Simon Sobolev inequality; see page 377 in [13].

Next we will prove that every complete noncompact properly immersed self-
shrinker has infinite volume. The argument in the following proof is an adoption
of Cao and Zhu’s [2] proof that complete noncompact shrinking Ricci solitons have
infinite volume, following an idea in Perelman’s proof on the uniform diameter
estimate for the normalized Kähler-Ricci flow on Fano manifolds. See also the
proof of no local collapsing in Theorem 3.3.3 in [5].

Lemma 3.2. Every complete noncompact properly immersed self-shrinker X :
Mn → Rn+m has infinite volume.

Proof. We are going to show that if M has finite volume, then we shall obtain a
contradiction to the Logarithmic Sobolev inequality (2.15). We denote the annulus
region

A(k1, k2) =
{
x ∈ M : 2k1 ≤ ρ(x) ≤ 2k2

}
, V (k1, k2) = Vol(A(k1, k2));

here ρ(x) = |X|. Since X : Mn → R
n+m is complete noncompact properly im-

mersed, X(M) cannot be contained in a compact Euclidean ball B̄(R) with radius
R < +∞. Then for k large enough, A(k, k+1) contains at least 22k−1 disjoint balls

Bxi
(r) = {x ∈ M,ρxi

(x) < r}, xi ∈ M, r = 2−k,

where ρxi
(x) = |X(x)−X(xi)| is the extrinsic distance function. Note that on the

self-shrinker

|H| = 1

2
|XN | ≤ 1

2
|X| ≤ 2k =

1

r
, in A(k, k + 1).(3.5)

Thus by Lemma 3.1, each ball Bxi
(r) has at least volume κ2−kn. Here κ = ωne

−1.
So we have

V (k, k + 1) ≥ κ22k−12−kn.(3.6)

Suppose that Vol(M) < +∞. Then for every ε > 0, there exists a large constant
k0 > 0 such that if k2 > k1 > k0, we have

V (k1, k2) ≤ ε(3.7)

and we can also choose k1, k2 in such a way that

V (k1, k2) ≤ 24nV (k1 + 2, k2 − 2).(3.8)

Indeed, we may first choose K > 0 sufficiently large, and let k1 ≈ K/2, k2 ≈
3K/2. Suppose (3.8) does not hold, i.e.,

V (k1, k2) ≥ 24nV (k1 + 2, k2 − 2).

If

V (k1 + 2, k2 − 2) ≤ 24nV (k1 + 4, k2 − 4),

then we are done; otherwise we can repeat this process. After j steps we get

V (k1, k2) ≥ 24njV (k1 + 2j, k2 − 2j).

When j ≈ K/4, (3.6) implies that

Vol(M) ≥ V (k1, k2) ≥ 2nKV (K,K + 1) ≥ κ22K−1.
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But we have already assumed Vol(M) is finite, so after finitely many steps (3.8)
must hold for some k2 > k1. Thus for any ε > 0 we can choose k1 and k2 ≈ 3k1
such that both (3.7) and (3.8) are valid.

Now we are going to derive a contradiction to the Logarithmic Sobolev inequality
(2.15). We define a smooth cut-off function ψ(t) by

ψ(t) =

{
1, 2k1+2 ≤ t ≤ 2k2−2,
0, outside [2k1 , 2k2 ],

0 ≤ ψ(t) ≤ 1, |ψ′(t)| ≤ 1.

Then let

f(x) = eL+ |X|2
8 ψ(ρ(x));

we can choose L such that

(3.9) 1 =

∫
M

f2e−
|X|2

4 = e2L
∫
A(k1,k2)

ψ2(ρ(x)).

By the Logarithmic Sobolev inequality (2.15) we have

1

2
C(n) ≥

∫
A(k1,k2)

e2Lψ2(L+
|X|2
8

+ lnψ)

−
∫
A(k1,k2)

e2L
∣∣∣∣ψ′∇ρ+ ψ

XT

4

∣∣∣∣
2

≥
∫
A(k1,k2)

e2Lψ2(L+
|X|2
8

+ lnψ)

−2

∫
A(k1,k2)

e2L|ψ′|2 − 1

8

∫
A(k1,k2)

e2Lψ2|X|2

= L+

∫
A(k1,k2)

e2Lψ2 lnψ − 2

∫
A(k1,k2)

e2L|ψ′|2

≥ L− (
1

2e
+ 2)e2LV (k1, k2),

where we have used |∇ρ(x)| ≤ 1 and the elementary inequality t ln t ≥ − 1
e for

0 ≤ t ≤ 1. Then (3.8) implies

1

2
C(n) ≥ L− (

1

2e
+ 2)e2L24nV (k1 + 2, k2 − 2)

≥ L− (
1

2e
+ 2)24ne2L

∫
A(k1,k2)

ψ2(ρ(x))

= L− (
1

2e
+ 2)24n,(3.10)

where the last equality is due to (3.9). On the other hand, by (3.7), (3.9) and
0 ≤ ψ ≤ 1, we have

1 ≤ e2Lε.(3.11)

So we can make L arbitrarily large by letting ε > 0 be sufficiently small. This
contradicts (3.10) because C(n) is just a universal positive constant depending on
n. Therefore M must have infinite volume. �

Remark 3.2. In [7], Xu Cheng and Detang Zhou proved that if the self-shrinker is
not properly immersed, then it must also have infinite volume.
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Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. We use the similar arguments of Munteanu and Wang in
their proof of Theorem A. First we can choose c > 0 such that V (r) > 0 for
r ≥ c. To prove Theorem 1.1, it suffices to show that there exists a constant C > 0
depending only on n such that

(3.12) V (r) ≥ Cr

holds for all r ≥ c. Indeed, if (3.12) holds, then ∀x0 ∈ M , since for r sufficiently
large,

Bx0
(r) ⊃ B(r − |X0|),

this implies

(3.13) Vx0
(r) ≥ V (r − |X0|) ≥ C(r − |X0|) ≥

C

2
r

for r ≥ 2|X0|.
Now we are going to prove (3.12) by contradiction. Assume that for any ε > 0,

there exists r ≥ c such that

V (r) ≤ εr.(3.14)

Without loss of generality, we can assume r ∈ N and consider the following set:

D := {k ∈ N : V (t) ≤ 2εt for all integers r ≤ t ≤ k} .(3.15)

Obviously D is nonempty because r ∈ D; we want to prove that any integer k ≥ r
is in D.

For t ≥ c, we define a function u by

u(x) =

⎧⎪⎪⎨
⎪⎪⎩

1 in B(t+ 1) \B(t),
t+ 2− ρ(x) in B(t+ 2) \B(t+ 1),
ρ(x)− (t− 1) in B(t) \B(t− 1),

0 otherwise.

Substituting u(x) into the Logarithmic Sobolev inequality (2.16), we obtain

(3.16) −
(∫

M

u2

)
ln (V (t+ 2)− V (t− 1)) ≤ C0 (V (t+ 2)− V (t− 1))

with C0 = C(n) + 4 + 1
e . Here we have used |∇ρ(x)| ≤ 1 and the elementary

inequality t ln t ≥ − 1
e for 0 ≤ t ≤ 1.

From Lemma 2.2, we have

(3.17)
V (t+ 1)

(t+ 1)n
− V (t)

tn
≤ 2n

V (t+ 1)

(t+ 1)n+2
, for t ≥

√
2(n+ 2) .

Then

V (t+ 1) ≤ V (t)
(t+ 1)n

tn

(
1− 2n

(t+ 1)2

)−1

.
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This implies for t sufficiently large,

V (t+ 1)− V (t) ≤ V (t)

(
(t+ 1)n

tn

(
1 +

2n

(t+ 1)2
+O(

1

(t+ 1)4
)

)
− 1

)

≤ V (t)

(
(1 +

1

t
)n − 1 +

C

t2
(1 +

1

t
)n−2

)

≤ V (t)
C

t
.

So there exists some constant C1(n) such that for all t ≥ C1(n),

V (t+ 1)− V (t) ≤ C̃1
V (t)

t
and(3.18)

V (t+ 1) ≤ 2V (t),(3.19)

where C̃1 depends only on n. Combining (3.18) and (3.19) gives that for all t ≥
C1(n) + 1,

V (t+ 2)− V (t− 1) ≤ C̃1

(
V (t+ 1)

t+ 1
+

V (t)

t
+

V (t− 1)

t− 1

)

≤ C̃1

(
2

t+ 1
+

1

t
+

1

t
(1 +

1

C1(n)
)

)
V (t)

≤ C2
V (t)

t
,(3.20)

where C2 depends only on n. Note that we can assume r ≥ C1(n) + 1 for the r
satisfying (3.14). In fact, if for any given ε > 0, all the r which satisfy (3.14) are
bounded above by C1(n) + 1, then V (r) ≥ εr holds for any r > C1(n) + 1. This
implies that M has at least linear volume growth.

Then for all integers r ≤ t ≤ k, we have t ∈ D, and (3.20) implies

V (t+ 2)− V (t− 1) ≤ 2C2ε.(3.21)

If we choose ε such that 2C2ε < 1, and noting that∫
M

u2 ≥ V (t+ 1)− V (t),(3.22)

(3.16) then implies

(3.23) (V (t+ 1)− V (t)) ln(2C2ε)
−1 ≤ C0 (V (t+ 2)− V (t− 1)) .

Iterating from t = r to t = k and summing up give that

(3.24) (V (k + 1)− V (r)) ln(2C2ε)
−1 ≤ 3C0V (k + 2) ≤ 6C0V (k + 1),

where we used (3.19) in the last inequality. Therefore

V (k + 1) ≤ V (r)
ln(2C2ε)

−1

ln(2C2ε)−1 − 6C0

≤ εr
ln(2C2ε)

−1

ln(2C2ε)−1 − 6C0
.(3.25)

We can choose ε small enough such that

ln(2C2ε)
−1

ln(2C2ε)−1 − 6C0
≤ 2.(3.26)
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So (3.25) implies

V (k + 1) ≤ 2εr, for any k ∈ D.(3.27)

Noting that r ≤ k + 1, (3.27) implies k + 1 ∈ D. Then by induction we conclude
that D contains all the integers k ≥ r. However, (3.27) implies

V (k) ≤ 2εr, for any integer k ≥ r.

This implies that M has finite volume, which contradicts Lemma 3.2. So there
exists no such r > c such that V (r) ≤ εr with ε > 0 chosen in (3.26). That is,
V (r) ≥ εr for r > c, and this completes the proof of Theorem 1.1. �

By assuming some condition on |H|2, we can further prove the following result.

Proposition 3.1. Let X : Mn → Rn+m be a complete properly immersed self-
shrinker. Suppose the average norm square of the mean curvature satisfies the
upper bound

(3.28)
1

Vol(B(r))

∫
B(r)

|H|2 ≤ δ

for some δ < n
2 and r sufficiently large. Then for any x0 ∈ M , there exists some

positive constant C such that

Vol(Bx0
(r)) ≥ Crn−2δ.(3.29)

Proof. Combining the assumption (3.28) with Lemma 2.1 gives that

(3.30) (n− 2δ)V (r) ≤ rV ′(r);

then

V ′(r)

V (r)
≥ n− 2δ

r
.

Integrating from 1 to r gives

V (r) ≥ V (1)rn−2δ.

Since Vol(Bx0
(r)) ≥ V (r − |X0|) for r > |X0|, we have

(3.31) Vol(Bx0
(r)) ≥ V (1)(r − |X0|)n−2δ ≥ (

1

2
)n−2δV (1)rn−2δ

for r > 2|X0|. �
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