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ON GENERALIZED HYPERGEOMETRIC EQUATIONS

AND MIRROR MAPS

JULIEN ROQUES

(Communicated by Matthew A. Papanikolas)

Abstract. This paper deals with generalized hypergeometric differential
equations of order n ≥ 3 having maximal unipotent monodromy at 0. We
show that among these equations those leading to mirror maps with inte-
gral Taylor coefficients at 0 (up to simple rescaling) have special parameters,
namely R-partitioned parameters. This result yields the classification of all
generalized hypergeometric differential equations of order n ≥ 3 having max-
imal unipotent monodromy at 0 such that the associated mirror map has the
above integrality property.

1. Introduction

Let α = (α1, . . . , αn) be an element of (Q∩]0, 1[)n for some integer n ≥ 3. We
consider the generalized hypergeometric differential operator given by

Lα = δn − z
n∏

k=1

(δ + αk),

where δ = z d
dz . It has maximal unipotent monodromy at 0. Frobenius’ method

yields a basis of solutions yα;1(z), . . . , yα;n(z) of Lαy(z) = 0 such that

yα;1(z) ∈ C({z})×,(1)

yα;2(z) ∈ C({z}) + C({z})× log(z),(2)

...
...

...

yα;n(z) ∈
n−2∑
k=0

C({z}) log(z)k + C({z})× log(z)n−1,(3)

where C({z}) denotes the field of germs of meromorphic functions at 0 ∈ C. One
can assume that yα;1 is the generalized hypergeometric series

yα;1(z) := Fα(z) :=
+∞∑
k=0

(α)k
k!n

zk ∈ C({z}),

where the Pochhammer symbols (α)k := (α1)k · · · (αn)k are defined by (αi)0 = 1
and, for k ∈ N∗, (αi)k = αi(αi + 1) · · · (αi + k − 1). One can also assume that

yα;2(z) = Gα(z) + log(z)Fα(z),
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where

Gα(z) =

+∞∑
k=1

(α)k
k!n

(
nHk(1)−

n∑
i=1

Hk(αi)

)
zk ∈ C({z}),

with Hk(x) =
∑n−1

k=0
1

x+k .
For details on the generalized hypergeometric equations, we refer to Beukers and

Heckman [2] and to the subsequent work of Katz [8].
Let us consider

Qα(z) = exp

(
yα;2(z)

yα;1(z)

)
= z exp

(
Gα(z)

Fα(z)

)
.

This paper is concerned with the following problem: describe the parameters α such
that, for some κ ∈ N∗,

κ−1Qα(κz) = z exp

(
Gα(κz)

Fα(κz)

)
has integral Taylor coefficients at 0. This kind of problem appears in mirror sym-
metry theory. In this context, the map Qα(z) is usually called the canonical co-
ordinate. In what follows, we will identify Qα(z) with its Taylor expansion at 0
(which belongs to z + z2C[[z]]).

We shall first describe known results.

Definition 1. We say that α is R-partitioned if, up to permutation,1 it is the
concatenation of uples of the form

(
b
m

)
b∈[[1,m]],gcd(b,m)=1

for m ∈ N∗.

For instance, the 3-uple α = (1/2, 1/6, 5/6) is R-partitioned, but not the 4-uple
α = (1/2, 1/6, 1/6, 5/6).

We shall now make a short digression in order to recall the link between the fact
that α is R-partitioned and the fact that, up to rescaling, the Taylor coefficients of
Fα(z) are quotients of products of factorials of linear forms with integral coefficients.
For details on what follows, see for instance [5, §7.1, Proposition 2].

The following properties are equivalent:

(i) There exist κ ∈ N∗ and e1, . . . , er, f1, . . . , fs ∈ N∗ such that

Fα(κz) =

+∞∑
k=0

(e1k)! · · · (erk)!
(f1k)! · · · (fsk)!

zk;

(ii) α is R-partitioned.

Moreover, assume that α is R-partitioned and let N = (N1, . . . , N�) ∈ (N∗)�

be such that α is, up to permutation, the concatenation of the uples(
b
m

)
b∈[[1,Ni]],gcd(b,Ni)=1

for i varying in [[1, �]]. Consider

CN := CN1
· · ·CN�

∈ N∗,

where

CNi
= N

ϕ(Ni)
i

∏
p prime
p|Ni

pϕ(Ni)/(p−1)

1We say that “up to permutation” α = β if there exists a permutation σ of [[1, n]] such that,
for all i ∈ [[1, n]], αi = βσ(i).
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(ϕ denotes Euler’s totient function). Then there exist e1, . . . , er, f1, . . . , fs ∈ N∗

such that

Fα(CNz) =

+∞∑
k=0

(e1k)! · · · (erk)!
(f1k)! · · · (fsk)!

zk.

This concludes the digression. We now state a result proved by Krattenthaler
and Rivoal [10, §1.2, Theorem 1].

Theorem 2. Assume that α is R-partitioned and let N = (N1, . . . , N�) ∈ (N∗)�

be such that α is, up to permutation, the concatenation of the uples(
b
m

)
b∈[[1,Ni]],gcd(b,Ni)=1

for i varying in [[1, �]]. Then

C−1
N Qα(CNz) = z exp

(
Gα(CNz)

Fα(CNz)

)
∈ Z[[z]].

Actually, special cases of this theorem were considered by Lian and Yau [11–13],
and Zudilin formulated a general conjecture, which he proved in some cases in [16].
Zudilin’s conjecture was proved by Krattenthaler and Rivoal in [9, 10], and these
results were generalized by Delaygue [3–5]. The pioneering work is due to Dwork
[7].

What about non-R-partitioned parameters α? The following theorem, which is
our main result, answers this question.

Notation 3. Consider α = (α1, . . . , αn) ∈ Qn. Let d be the least denominator in N∗

of α (i.e. d is the least common denominator in N∗ of α1, . . . , αn). Let k1 < · · · <
kϕ(d) be the integers in [[1, d− 1]] coprime to d. For any j ∈ [[1, ϕ(d)]], we denote
by Pj(α) the set of primes congruent to kj mod d. Note that

⋃
j∈[[1,ϕ(d)]] Pj(α)

coincides with the set of primes p coprime to d.

Theorem 4. Consider α ∈ (Q∩]0, 1[)n with n ≥ 3. Let d be the least denominator
in N∗ of α. Assume that, for all j ∈ [[1, ϕ(d)]], for infinitely many primes p in
Pj(α), we have

Qα(z) = z exp

(
Gα(z)

Fα(z)

)
∈ Zp[[z]]

(where Zp is the ring of p-adic integers). Then, α is R-partitioned.

In particular, the following converse of Theorem 2 holds:

Corollary 5. If α ∈ (Q∩]0, 1[)n with n ≥ 3 is such that there exists κ ∈ N∗ with
the property that

κ−1Qα(κz) = z exp

(
Gα(κz)

Fα(κz)

)
∈ Z[[z]],

then α is R-partitioned.

This result is false for n = 2; the detailed study of this case will appear elsewhere.

Remark 6. Let Zα(q) ∈ q + q2C[[q]] be the compositional inverse of Qα(z) ∈
z + z2C[[z]]. This is a mirror map. For all κ ∈ N∗, we have (κz)−1Qα(κz) ∈ Z[[z]]
if and only if (κq)−1Zα(κq) ∈ Z[[q]]. Therefore, we can reformulate our results in
terms of mirror maps.
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The main ingredients of the proof of Theorem 4 are:

A) Dieudonné-Dwork’s Lemma (translates p-adic integrality properties of the
Taylor coefficients of Qα(z) in terms of p-adic congruences which do not
involve the exponential function);

B) Dwork’s congruences for generalized hypergeometric series (allow us to re-
duce the problem to solve the equation

(4)
Gα(z)

Fα(z)
=

Gβ(z)

Fβ(z)

with respect to the unknown parameters α and β in (Q∩]0, 1[)n);
C) differential Galois theory, and especially the detailed study of the general-

ized hypergeometric equations by Beukers and Heckman [2] and Katz [8]
(basic tool for solving (4)).

We also give a result relating the auto-duality of the generalized hypergeometric
equations to integrality properties of the Taylor coefficients of mirror maps.

Theorem 7. Let us consider α ∈ (Q∩]0, 1[)n with n ≥ 3. Let d be the least
denominator of α in N∗. The following assertions are equivalent:

i) for all prime p congruent to −1 modulo d, we have Qα(z) ∈ Zp[[z]];
ii) for infinitely many primes p congruent to −1 modulo d, we have Qα(z) ∈

Zp[[z]];
iii) Lα is self-dual.

This paper is organized as follows. In section 2, we solve equation (4). In
section 3, we give basic properties of an operator introduced by Dwork. Section 4
is devoted to the proof of Theorem 4. In section 5, we prove Theorem 7.

2. The equation
Gα(z)
Fα(z) =

Gβ(z)
Fβ(z)

Proposition 8. Let us consider α and β in (Q∩]0, 1[)n with n ≥ 3. The following
assertions are equivalent:

i) Gα(z)
Fα(z) =

Gβ(z)
Fβ(z)

;

ii) up to permutation, α = β.

In other words, i) holds if and only if yα;1(z) = yβ;1(z).

Before proceeding to the proof, we shall recall basic facts concerning differential
Galois theory.

2.1. Differential Galois theory: A short introduction. For details on the
content of this section, we refer to van der Put and Singer’s book [15, §1.1-§1.4].
For an introduction to the subject, we also refer to the articles of Beukers [1, §2.1
and §2.2] and Singer [14, §1.1-§1.3].

The proof of Proposition 8 will use the formalism of differential modules. Nev-
ertheless, for the convenience of the reader, we first introduce differential Galois
groups in the framework of differential equations.

The following table summarizes some analogies between classical Galois theory
and differential Galois theory (the concepts in the right hand column will be intro-
duced in the next sections).
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Galois theory Differential Galois theory
Polynomial equations Differential equations or differential modules
Fields Differential fields
Splitting fields Picard-Vessiot fields
Galois groups Differential Galois groups
Finite groups Linear algebraic groups

2.1.1. Differential fields. A differential field (k, d) is a field k endowed with a map
d : k → k such that, for all f, g ∈ k, d(f + g) = df + dg and d(fg) = (df)g + f(dg).

The field of constants of the differential field (k, d) is the field defined by
{f ∈ k | df = 0}.

Two differential fields (k, d) and (k̃, d̃) are isomorphic if there exists a field iso-

morphism ϕ : k → k̃ such that ϕ ◦ d = d̃ ◦ ϕ.
A differential field (k̃, d̃) is a differential field extension of a differential field (k, d)

if k̃ is a field extension of k and d̃|k = d; in this case, we denote d̃ by d.

Let (k̃, d) be a differential field extension of a differential field (k, d) and consider

E ⊂ k̃. We say that (k̃, d̃) is the differential field generated by E over (k, d) if k̃ is
the field generated by {dif | f ∈ E, i ∈ N} over k.

Until the end of §2.1, we let (k, d) be a differential field. We assume that its field
of constants C is algebraically closed and that the characteristic of k is 0.

2.1.2. Picard-Vessiot fields and differential Galois groups for differential operators.
Consider a differential operator L =

∑n
i=0 aid

i of order n with coefficients a0,. . . ,an
in k. There exists a differential field extension (K, d) of (k, d) such that

1) the field of constants of (K, d) is C;
2) the C-vector space of solutions of L in K given by

Sol(L) = {y ∈ K | Ly = 0}
has dimension n;

3) (K, d) is the differential field generated by Sol(L) over (k, d).

Such a differential field (K, d) is called a Picard-Vessiot field for L over (k, d) and
is unique up to isomorphism.

Remark 9. We can replace 2) by “Sol(L) has at least dimension n”; this a conse-
quence of [15, Lemma 1.10].

We can replace 3) by “K is the field generated over k by {diyj | j ∈ [[1, n]],
i ∈ [[0, n− 1]]} for some (or, equivalently, for any) C-basis y1, . . . , yn of Sol(L,K)”.

The corresponding differential Galois group G of L over (k, d) is the group made
of the k-linear field automorphisms of K commuting with d:

G = {σ ∈ Aut(K/k) | dσ = σd}.
It follows from the definition2 that any σ ∈ G induces a C-linear automorphism
of Sol(L), namely σ| Sol(L). Thus one can identify G with an algebraic subgroup of
GL(Sol(L)) via the faithful representation

(5) σ ∈ G �→ σ| Sol(L) ∈ GL(Sol(L)).

2Indeed, for any σ ∈ G, for any y ∈ Sol(L), we have 0 = σ(Ly) = σ(
∑n

i=0 aid
iy) =∑n

i=0 σ(ai)σ(d
iy) =

∑n
i=0 aid

iσ(y) = L(σ(y)), so σ(Sol(L)) ⊂ Sol(L). It follows that the

restriction σ| Sol(L) of any element σ of G to Sol(L) is a C-linear automorphism of Sol(L).
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If we choose a C-basis y1, . . . , yn of Sol(L), then (5) becomes

(6) σ ∈ G �→ (mi,j(σ))1≤i,j≤n ∈ GLn(C),

where (mi,j(σ))1≤i,j≤n ∈ GLn(C) is such that, for all j ∈ [[1, n]],

σ(yj) =
n∑

i=1

mi,j(σ)yi.

2.1.3. Picard-Vessiot fields and differential Galois groups for differential modules.
A differential module (M,∂) over (k, d) is a finite dimensional k-vector space M
endowed with a map ∂ : M → M such that, for all f ∈ k, for all m,n ∈ M ,
∂(m+ n) = ∂m+ ∂n and ∂(fm) = (df)m+ f(∂m).

Let (M,∂) be a differential module over (k, d) of dimension dimk M = n. We
let (ei)1≤i≤n be a k-basis of M . There exists a differential field extension (K, d) of

(k, d) such that:

1) the field of constants of (K, d) is C;
2) the C-vector space of solutions of (M,∂) in K given by3

ω(M,∂) = Ker(d⊗ ∂ : K ⊗k M → K ⊗k M)

has dimension n;
3) K is the field generated over k by the entries of some (or any) matrix

(yi,j)1≤i,j≤n ∈ Mn(K) such that (
∑n

i=1 yi,j ⊗ ei)1≤j≤n
is a C-basis of

ω(M,∂).

Remark 10. One can reformulate what precedes in terms of differential systems.
Let A = (ai,j)1≤i≤j≤n ∈ Mn(k) be the opposite of the matrix representing the
action of ∂ on M with respect to the basis (ei)1≤i≤n i.e., for all j ∈ [[1, n]], ∂ej =

−
∑n

i=1 ai,jei. Then, an element
∑m

k=1 fk ⊗ ek of K ⊗k M belongs to ω(M,∂) if
and only if

(d⊗ ∂)

(
m∑

k=1

fk ⊗ ek

)
=

m∑
k=1

((dfk)⊗ ek + fk ⊗ ∂ek)

=
m∑

k=1

(
(dfk)⊗ ek + fk ⊗

(
−

n∑
i=1

ai,kei

))

=

m∑
k=1

(dfk)⊗ ek −
n∑

i=1

(
m∑

k=1

ai,kfk

)
⊗ ei = 0,

and this equality holds if only if, for all k ∈ [[1, n]], dfk =
∑m

j=1 ak,jfj , i.e.

d

⎛⎜⎝ f1
...
fn

⎞⎟⎠ = A

⎛⎜⎝ f1
...
fn

⎞⎟⎠ .

3The action of d⊗ ∂ on K ⊗k M is given by

(d⊗ ∂)(
m∑

k=1

fk ⊗mk) :=
m∑

k=1

((dfk)⊗mk + fk ⊗ ∂mk) .
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It follows that 2) and 3) can be restated as “there exists Y ∈ GLn(K) such that
dY = AY and K is the field generated over k by the entries of Y ”.

Such a differential field (K, d) is called a Picard-Vessiot field for (M,∂) over
(k, d) and is unique up to isomorphism. The differential Galois group G of (M,∂)
over (k, d) is then defined by

G = {σ ∈ Aut(K/k) | dσ = σd}.
It follows from the definition4 that any σ ∈ G induces a C-linear automorphism of
ω(M,∂), namely (σ⊗ IdM )|ω(M,∂). One can identify G with an algebraic subgroup
of GL(ω(M,∂)) via the faithful representation

(7) σ ∈ G �→ (σ ⊗ IdM )|ω(M,∂).

One can reformulate §2.1.2 in terms of differential modules. We consider L as
in §2.1.2. We denote by (ML, ∂L) the differential module over (k, d) associated to
L characterized by:

i) ML = kn.
ii) The opposite of the matrix representing the action of ∂L on M with respect

to the canonical k-basis (ei)1≤i≤n of ML = kn is given by⎛⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0

0 0 1
. . .

...
...

...
. . .

. . . 0
0 0 · · · 0 1

− a0

an
− a1

an
· · · · · · −an−1

an

⎞⎟⎟⎟⎟⎟⎟⎠ .

Then a differential field (K, d) is a Picard-Vessiot field for L if and only if it is
a Picard-Vessiot field for (ML, ∂L). Once such a Picard-Vessiot field (K, d) is
fixed, the corresponding Galois groups of L and (ML, ∂L) are the same. More-
over, if (yj)1≤j≤n is a C-basis of Sol(L), then a C-basis of ω(ML, ∂L) is given by(∑n−1

i=0 diyj ⊗ ei

)
1≤j≤n

; with respect to this basis, the representation (7) becomes

the representation (6).

4Indeed, for any σ ∈ G, for any
∑m

k=1 fk ⊗mk ∈ ω(M,∂), we have

0 = (σ ⊗ IdM )

(
(d⊗ ∂)

m∑
k=1

fk ⊗mk

)

= (σ ⊗ IdM )

(
m∑

k=1

(dfk)⊗mk + fk ⊗ ∂mk

)

=
m∑

k=1

σ(dfk)⊗mk + σ(fk)⊗ ∂mk

=
m∑

k=1

d(σ(fk))⊗mk + σ(fk)⊗ ∂mk

= (d⊗ ∂)

(
(σ ⊗ IdM )

m∑
k=1

fk ⊗mk

)

so σ ⊗ IdM leaves ω(M,∂) globally invariant. It follows that the restriction (σ ⊗ IdM )|ω(M,∂) of

any element σ of G to ω(M,∂) is a C-linear automorphism of ω(M,∂).
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2.1.4. Tannakian duality. For what follows, we refer to [15, §2.4] (we refer the
reader interested in tannakian categories to Deligne and Milne’s work [6]). We let
〈(M,d)〉 be the smallest full subcategory of the category of differential modules over
(k, d) containing (M,∂) and closed under all constructions of linear algebra (direct
sums, tensor products, duals, subquotients; see [15, §2.2 and §2.4]). We let (K, d)
be a Picard-Vessiot field for (M,∂) over (k, d) and we let G be the corresponding
differential Galois group over (k, d). There is a C-linear equivalence of categories
between 〈(M,d)〉 and the category of rational C-linear representations of the linear
algebraic group G which is compatible with all constructions of linear algebra. Such
an equivalence is given by a functor sending an object (N, ∂N ) of 〈(M,∂)〉 to the
representation

ρ(N,∂N ) : G → GL(ω(N, ∂N ))

σ �→ (σ ⊗ IdN )|ω(N,∂N )
,

where
ω(N, ∂N ) = Ker(d⊗ ∂N : K ⊗k N → K ⊗k N).

The differential Galois group of (N, ∂N ) over (k, d) can be identified with the image
of ρ(N,∂N ).

In what follows, the base differential field (k, d) will be (C(z), d/dz). In order to
simplify the notation, we will drop the derivatives ((k, d) = k, (M,∂) = M , etc.).

2.2. Proof of Proposition 8. Of course the only nontrivial implication is i)⇒ ii).
We consider the differential modules Mα := MLα

and Mβ := MLβ
associated to

Lα and Lβ respectively (see the end of §2.1.3). A Picard-Vessiot field over C(z) of
the differential module M = Mα ⊕Mβ is given by

K = C(z)
(
y
(i)
α;j(z), y

(i)
β;j(z) | (i, j) ∈ [[0, n− 1]]× [[1, n]]

)
.

We let G be the corresponding differential Galois group and we use the notation
(ω(N), ρN , etc.) of §2.1.4. If we choose the basis of ω (M) which is the concate-
nation of the bases of ω (Mα) and ω (Mβ) described at the end of §2.1.3, then the
representation ρM = ρMα

⊕ ρMβ
of G is identified with

σ ∈ G �→
(
(mα;i,j(σ))1≤i,j≤n 0

0 (mβ;i,j(σ))1≤i,j≤n

)
∈ GL2n(C),

where, for all σ ∈ G, {
σ(yα;j(z)) =

∑n
i=1 mα;i,j(σ)yα;i(z);

σ(yβ;j(z)) =
∑n

i=1 mβ;i,j(σ)yβ;i(z).

Strategy of the proof. We are going to prove that there exists a character χ of
G such that either the representation ρMα

or its dual ρ∗Mα
is conjugate to χ⊗ ρMβ

(see Lemma 13 below). Then a detailed study of both cases will lead to the fact
that, up to permutation, α = β, which is the desired result.

In order to achieve these goals, we first establish a bound for ρM (G) (Lemma 11)
and we describe ρMα

(G) and ρMβ
(G) (Lemma 12).

Lemma 11. We have

(8) ρM (G) ⊂
{(

A 0
0 B

)
| A,B ∈ GLn(C), Bn,1An,2 = An,1Bn,2

}
.
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Proof. Hypothesis i) implies that

yα;1(z)

yα;2(z)
=

yβ;1(z)

yβ;2(z)
,

so, for any σ ∈ G,

σ(yβ;1(z))σ(yα;2(z)) = σ(yα;1(z))σ(yβ;2(z)),

i.e.(
n∑

i=1

mβ;i,1(σ)yβ;i(z)

)(
n∑

i=1

mα;i,2(σ)yα;i(z)

)

=

(
n∑

i=1

mα;i,1(σ)yα;i(z)

)(
n∑

i=1

mβ;i,2(σ)yβ;i(z)

)
.

Therefore, using (1)–(3) from section 1, we get

(mβ;n,1(σ)mα;n,2(σ)−mα;n,1(σ)mβ;n,2(σ)) log(z)
2n−2 ∈

2n−3∑
k=0

C({z}) log(z)k,

and hence the expected equality holds:

mβ;n,1(σ)mα;n,2(σ) = mα;n,1(σ)mβ;n,2(σ). �

Lemma 12. The Galois groups ρMα
(G) and ρMβ

(G) of Mα and Mβ respectively

satisfy the following property:5 ρMα
(G)0,der and ρMβ

(G)0,der are conjugate to either
SLn(C), SOn(C) or Spn(C).

Proof. This is proved in [2] and also in [8, Chapter 3, Theorem 3.5.8]. �

Lemma 13. There exists a character χ of G such that either ρMα
∼= χ ⊗ ρMβ

or
ρ∗Mα

∼= χ⊗ ρMβ
.

Proof. This lemma would follow from Goursat-Kolchin-Ribet [8, Proposition 1.8.2]
(applied to ρ1 := ρMα

and ρ2 := ρMβ
) if we knew that:

(a) ρM (G)0,der �=
(
ρMα

(G)0,der 0
0 ρMβ

(G)0,der

)
;

(b) if n = 8, then ρMα
(G)0,der is not conjugate to SO8(C).

Indeed, (a) means that the conclusion of [8, Proposition 1.8.2] does not hold. But
Lemma 12 implies that the irreducibility and the simplicity hypothesis [8, Propo-
sition 1.8.2, Hypothesis (1)] is satisfied, and Lemma 12 together with [8, Exam-
ple 1.8.1] implies that the Goursat adaptedness hypothesis [8, Proposition 1.8.2,
Hypothesis (2)] is also satisfied, except if n = 8 and if ρMα

(G)0,der and ρMβ
(G)0,der

are conjugate to SO8(C), but this is excluded by (b). Therefore, at least one of the
remaining hypotheses [8, Proposition 1.8.2, Hypothesis (3) or (4)] is not satisfied;
i.e. there exists a character χ of G such that ρMα

∼= χ⊗ ρMβ
or ρ∗Mα

∼= χ⊗ ρMβ
.

It remains to prove our claims (a) and (b).

5Let G be a linear algebraic group. We will denote by G0 the neutral component of G
(= connected component of G which contains the neutral element of G) and Gder its derived
subgroup (= commutator subgroup); G0,der stands for the derived subgroup of the neutral com-
ponent G0 of G.
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Lemma 11 implies that if G1 and G2 are some conjugates of either SLn(C),
SOn(C) or Spn(C), then

(9)

(
G1 0
0 G2

)
�⊂ ρM (G).

In particular, (a) is true.
In order to prove (b), we argue by contradiction: we assume that n = 8 and that

ρMα
(G)0,der is conjugate to SO8(C). Then [8, Proposition 3.5.8.1 and Theorem 3.4]

implies that there exists a permutation ν ∈ S8 of [[1, 8]] such that, for all i ∈ [[1, 8]],

αi + αν(i) ∈ Z and that
∑8

i=1 αi ∈ 1/2 + Z. Let O be the set of orbits of [[1, 8]]
under the action of the subgroup of S8 generated by ν. Consider i0 ∈ Ω ∈ O and
set ω := 
Ω. If ω is even, then

∑
i∈Ω

αi =

ω/2−1∑
k=0

(
αν2k(i0) + αν2k+1(i0)

)
∈ Z.

Assume that ω = 2ω′ + 1 is odd. We have

αi + αν(i) ∈ Z,

αν(i) + αν2(i) ∈ Z,

...
...

...

αν2ω′−1(i) + αν2ω′(i) ∈ Z,

αν2ω′(i) + αν2ω′+1(i) = αν2ω′(i) + αi ∈ Z.

This implies that, for all k ∈ Z, ανk(i0) = 1/2, so

∑
i∈Ω

αi =

2ω′∑
k=0

ανk(i0) ∈ 1/2 + Z.

But the number of orbits with odd cardinality is even (because
∑

Ω∈O 
Ω = 8 is
even). It follows clearly that

8∑
i=1

αi =
∑
Ω∈O

∑
i∈Ω

αi ∈ Z.

This yields a contradiction. �

In order to conclude the proof of Proposition 8, it remains to study both cases
ρMα

∼= χ ⊗ ρMβ
and ρ∗Mα

∼= χ ⊗ ρMβ
and to prove that in both cases, up to

permutation, α = β.

(1) Assume that ρMα
∼= χ ⊗ ρMβ

. By tannakian duality, there exists a rank
one object L of 〈M〉 such that Mα

∼= L⊗Mβ. Since Lα is regular singular
with singularities in {0, 1,∞}, we get that L is regular singular and that
its nontrivial monodromies are at most at 0, 1,∞. Since the monodromies
at 1 of both Mα and Mβ are pseudo-reflections ([2, Proposition 2.10]), we
get that the monodromy of L at 1 is trivial. Moreover, the monodromies
at 0 of both Mα and Mβ are unipotent, so the monodromy of L at 1 is also
trivial. Therefore, the monodromy representation of L is trivial, and hence
L is trivial. So Mα

∼= Mβ, and hence, up to permutation, α = β.
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(2) Assume that ρ∗Mα

∼= χ⊗ρMβ
. By tannakian duality, there exists a rank one

object L of 〈M〉 such that M∗
α
∼= L⊗Mβ. We now distinguish several cases

depending on the Galois groups of Mα and Mβ (we recall that ρMα
(G)0,der

and ρMβ
(G)0,der are conjugate to either SLn(C), SOn(C) or Spn(C) by

virtue of Lemma 12).
(a) Assume first that ρMα

(G)0,der is, up to conjugation, either SOn(C)
or Spn(C). Then ρMα

(G) is conjugated to some subgroup of either
C∗On(C) or C

∗Spn(C) (because the normalizers of SOn(C) and Spn(C)
in GLn(C) are C∗ On(C) and C∗ Spn(C) respectively). It follows that
ρ∗Mα

∼= η ⊗ ρMα
for some character η of G (for instance, if ρMα

(G) ⊂
P On(C)P

−1 for some P ∈ GLn(C), then η = η′ ◦ ρMα
where η′ is the

character of C∗P On(C)P
−1 defined, for c ∈ C∗ and A ∈ P On(C)P

−1,
by η′(cA) = c−2). So ρMα

∼= η−1 ⊗ χ ⊗ ρMβ
, and we are reduced to

the previous case. So, up to permutation, α = β.
(b) The case that ρMβ

(G)0,der is, up to conjugation, either SOn(C) or
Spn(C) is similar.

(c) In order to conclude the proof it is sufficient to prove that the case
ρMα

(G)0,der = ρMβ
(G)0,der = SLn(C) does not hold. We argue by

contradiction: we assume that ρMα
(G)0,der = ρMβ

(G)0,der = SLn(C).
Since M∗

α
∼= M1−α ([8, Theorem 3.4]), we have M1−α

∼= L ⊗ Mβ.
Arguing as above, we see that L is trivial (and β = 1 − α). So the
character χ is trivial and ρ∗Mα

∼= ρMβ
. This, together with inclusion

(8), implies that there exists P ∈ GLn(C) such that, for all A ∈
SLn(C),

(PA−tP−1)n,1An,2 = An,1(PA−tP−1)n,2.

It follows that, for all A ∈ GLn(C),

An,1 = 0 and An,2 �= 0 ⇒ (PA−tP−1)n,1 = 0.

Using a simple density argument, we get that, for all A ∈ GLn(C),

An,1 = 0 ⇒ (PA−tP−1)n,1 = 0.

This yields a contradiction by virtue of the following lemma.

Lemma 14. For any P ∈ GLn(C), there exists A ∈ E := {A ∈ GLn(C) | An,1 = 0}
such that (PA−tP−1)n,1 �= 0.

Proof. We argue by contradiction: we assume that, for all A ∈ E , we have
(PA−tP−1)n,1 = 0.

Setting X = (x1, . . . , xn) := P−1(1, 0, . . . , 0)t �= 0, we see that the hyperplane
H := P−1(Cn−1 × {0})t of Mn,1(C) is such that E−tX ⊂ H.

Using the fact that

(10)

(
GLn−1(C) 0

0 C∗

)
⊂ E ,

we get that either (x1, . . . , xn−1) = (0, . . . , 0) or xn = 0 (because otherwise we
would have ((C∗)n)t ⊂ E−tX ⊂ H; this would contradict the fact that H is a
hyperplane of Mn,1(C)). We are thus led to distinguish two cases:

(1) Assume that (x1, . . . , xn−1) = (0, . . . , 0) and hence xn �= 0. We denote by
(E(i, j), (i, j) ∈ [[1, n]]2) the canonical basis of Mn(C). For all i ∈ [[2, n−1]],
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In+E(n, i) ∈ E and (In+E(n, i))−t = In−E(i, n), so (In+E(n, i))−tX =
(0, . . . , 0,−xn, 0, . . . , 0, xn)

t ∈ H, where xn is at the ith and nth positions.
Moreover (In)

−tX = (0, . . . , 0, xn)
t belongs to H. So H = ({0} × Cn−1)t.

But In + E(n − 1, 1) + E(n, 2) ∈ E and (In + E(n − 1, 1) + E(n, 2))−t =
In −E(1, n− 1)−E(2, n) +E(1, n), so (In +E(n− 1, 1) +E(n, 2))−tX =
(xn, . . .)

t ∈ H; this contradicts the equality H = ({0} × Cn−1)t.
(2) Assume that xn = 0 and hence (x1, . . . , xn−1) �= (0, . . . , 0). Using the inclu-

sion (10), we see that ((C∗)n−1×{0})t ⊂ H and hence H = (Cn−1×{0})t.
Let i0 ∈ [[1, n − 1]] be such that xi0 �= 0. We have In + E(i0, n) ∈ E and
(In+E(i0, n))

−t = In−E(n, i0), so (In+E(i0, n))
−tX=(x1, . . . , xn−1,−xi0)

∈ H; this contradicts the equality H = (Cn−1 × {0})t. �

3. Dwork’s map α �→ α′ =: Dp(a)

For any prime number p, for any p-adic integer α in Q, we denote by Dp(α) the
unique p-adic integer in Q such that

pDp(α)− α ∈ [[0, p− 1]].

In other words,

Dp(α) =
α+ j

p
,

where j is the unique integer in [[0, p − 1]] such that α ≡ −j mod pZp. The map
α �→ Dp(α) was used by Dwork in [7] (and denoted by α �→ α′).

Proposition 15. Assume that α ∈ Q∩]0, 1[. Let m, a ∈ N∗ be such that α = a/m
and gcd(a,m) = 1 (so gcd(m, p) = 1). Then

Dp(α) =
x

m
∈ Q∩]0, 1[,

where x is the unique integer in [[1,m− 1]] such that px ≡ a mod m.
In particular, Dp(α) does not depend on the prime p coprime to m in a fixed

arithmetic progression k + Nm.

Proof. Since Dp(α) =
α+j
p = a+jm

pm , we have to prove that x := a+jm
p belongs to

[[1,m − 1]] and that px ≡ a mod m. We first note that x ∈ Z because α ≡ −j
mod pZp so a ≡ −jm mod pZ. The inequality a + jm > 0 is obvious. Moreover,

α+j ≤ α+p−1 < 1+p−1 = p, so a+jm
p = m

p (α+j) < m. Lastly, px = a+jm ≡ a

mod m. �

We will need the following result:

Proposition 16. For all j ∈ [[1, ϕ(m)]], consider pj ∈ Pj(α). Then, up to permu-
tation, we have

(Dp1
(α), . . . ,Dpϕ(m)

(α)) =

(
b

m

)
b∈[[1,m−1]],gcd(b,m)=1

.

Proof. Proposition 15 ensures that Dpi
(α) = xi

m , where xi is the unique integer in
[[1,m− 1]] such that pixi ≡ a mod m. The result follows from the fact that, up to
permutation, (x1, . . . , xϕ(m)) = (b)b∈[[1,m−1]],gcd(b,m)=1. �
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Proposition 17. Let us consider α ∈ (Q∩]0, 1[)n. Let d be the least denominator
of α in N∗. The following properties are equivalent:

i) for all j ∈ [[1, ϕ(d)]], there exists pj ∈ Pj(α) such that, up to permutation,
Dpj

(α) = α;
ii) α is R-partitioned.

Proof. For any k ∈ [[1, n]], we let mk, ak ∈ N∗ be such that αk = ak/mk and
gcd(ak,mk) = 1. Note that, for any k ∈ [[1, n]], the set {αj | mj = mk} is stable by
Dp(·) for any prime p coprime to mk; this follows from Proposition 15. Therefore,
we can assume without loss of generality that m1 = · · · = mn. In this case,
using Proposition 16, it is easily seen that, up to permutation, α coincides with
( b
m1

)b∈[[1,m1]],gcd(b,m1)=1 concatenated with itself a certain number of times. �

4. Proof of Theorem 4

Let us recall the hypotheses. We consider α ∈ (Q∩]0, 1[)n with n ≥ 3. We let
d be the least denominator in N∗ of α. We assume that, for all j ∈ [[1, ϕ(d)]], for
infinitely many primes p in Pj(α), we have

Qα(z) = z exp

(
Gα(z)

Fα(z)

)
∈ Zp[[z]].

We will need the following Dieudonné-Dwork Lemma (for a proof, see [16,
Lemma 5] for instance).

Lemma 18 (Dieudonné-Dwork’s Lemma). Let us consider f(z) ∈ zQ[[z]] and let
p be a prime number. The following assertions are equivalent:

1) ef(z) ∈ Zp[[z]];
2) f(zp) = pf(z) mod pZp[[z]].

Implication 1) ⇒ 2) of Dieudonné-Dwork’s Lemma ensures that, for all j ∈
[[1, ϕ(d)]], for infinitely many primes p in Pj(α),

Gα(z
p)

Fα(zp)
= p

Gα(z)

Fα(z)
mod pZp[[z]].

On the other hand, Dwork [7, Theorem 4.1] ensures that, for all prime p coprime
to d,

GDp(α)(z
p)

FDp(α)(zp)
= p

Gα(z)

Fα(z)
mod pZp[[z]].

Consequently, for all j ∈ [[1, ϕ(d)]], for infinitely many primes p in Pj(α),

(11)
GDp(α)(z)

FDp(α)(z)
=

Gα(z)

Fα(z)
mod pZp[[z]].

But Dp(α) does not depend on p ∈ Pj(α). So, for all j ∈ [[1, ϕ(d)]], for all prime
p ∈ Pj(α),

GDp(α)(z)

FDp(α)(z)
=

Gα(z)

Fα(z)

(apply to the Taylor coefficients of both sides of (11) the elementary fact that if a
and b are elements of Q such that a ≡ b mod pZp for infinitely many primes p, then
a = b). Using Proposition 8, we get that, up to permutation, Dp(α) = α for all
prime p coprime to d. Proposition 17 yields the desired result: α is R-partitioned.
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5. Auto-duality and integrality

Proposition 19. Let us consider α ∈ (Q∩]0, 1[)n. Let d be the least denominator of
α in N∗. Then, for all primes p congruent to −1 modulo d, we have Dp(α) = 1−α.

Proof. For any k ∈ [[1, n]], we let mk, ak ∈ N∗ be such that αk = ak/mk and
gcd(ak,mk) = 1. Using Proposition 15, we get, for any k ∈ [[1, n]],

Dp(αk) =
mk − ak

mk
= 1− αk.

�
The following result follows from [8, Theorem 3.4].

Proposition 20. Let us consider α ∈ (Q∩]0, 1[)n. The operator Lα is auto-dual
(i.e. isomorphic to its dual) if and only if, up to permutation, α = 1−α.

Arguing as in section 4, one can prove the following result:

Theorem 21. Let us consider α ∈ (Q∩]0, 1[)n with n ≥ 3. Let d be the least
denominator of α in N∗. The following assertions are equivalent:

i) for all primes p congruent to −1 modulo d, we have Qα(z) ∈ Zp[[z]];
ii) for infinitely many primes p congruent to −1 modulo d, we have Qα(z) ∈

Zp[[z]];
iii) Lα is auto-dual.
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