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SPACE WITH PRESCRIBED GAUSS MAPPING
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(Communicated by Lei Ni)

Abstract. Our aim in this paper is to show that a complete hypersurface
x : Mn → Hn+1 immersed with constant mean curvature into the hyperbolic
space Hn+1 is totally umbilical provided that its Gauss mapping ν has some
suitable behavior. In this setting, our first result requires that the image ν(M)

lies in a totally umbilical spacelike hypersurface of the de Sitter space S
n+1
1 ,

while in our second one we suppose that Mn has scalar curvature bounded
from below and that ν(M) is contained in the closure of a domain enclosed by

a totally umbilical spacelike hypersurface of Sn+1
1 determined by some vector a

of the Minkowski space Ln+2, with the tangential component of a with respect
to Mn having Lebesgue integrable norm.

1. Introduction and statements of the results

Let x : Mn → Qn+1 be an immersion of an orientable Riemannian manifold
Mn in a space form Qn+1 and ν : Mn → Qn+1 its associated Gauss mapping.
When Qn+1 is a Euclidean space and x is a complete graph of a smooth function
f : Rn → R, its Gauss mapping is contained in an open hemisphere of Sn. The
behavior of the Gauss mapping gives a deeper consequence for the immersion. For
instance, one of the most celebrated theorems of the theory of minimal surfaces
in R3 is Bernstein’s theorem [4], which establishes that the only complete minimal
graphs in R3 are the planes. This result was extended under the weaker hypothesis
that the image of the Gauss mapping of M2 lies in an open hemisphere of S2, as
we can see in the work of Barbosa and do Carmo [3]. Independently, de Giorgi [5]
and Simons [14] showed that a compact minimal hypersurface Mn of the Euclidean
sphere Sn+1 must be a totally geodesic sphere provided that the image of its Gauss
mapping lies in an open hemisphere of Sn+1. Such a result was extended by Nomizu
and Smyth in [9] to constant mean curvature hypersurfaces of Sn, proving that a
compact connected orientable manifold Mn of dimension n ≥ 2 immersed in the
sphere Sn+1 with constant mean curvature is a hypersphere if the Gauss image of
Mn lies in a closed hemisphere of Sn+1.

More recently, using the Lorentz model of the hyperbolic space Hn+1 (for details,
see Section 2), the second and third authors [2] showed that a constant mean
curvature complete hypersurface Mn which is contained in a geodesic ball of Hn+1

and such that the image of the Gauss mapping lies in a totally umbilical spacelike
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hypersurface of the de Sitter space Sn+1
1 must be a totally umbilical geodesic sphere

of Hn+1. Moreover, in the case that Mn is contained between two horospheres
(hyperspheres) of Hn+1 determined by some nonzero null (spacelike) vector a of
the Minkowski space Ln+2 and with the image of its Gauss mapping contained in a
totally umbilical spacelike hypersurface of Sn+1

1 determined by a, they proved that
Mn must be a horosphere (hypersphere) of Hn+1.

Here, motivated by the works previously described, we apply a suitable Simons-
type formula due to Nomizu and Smyth [10] jointly with the well known generalized
maximum principle of Omori-Yau [11,15] in order to obtain the following extension
of the results of [2] mentioned above.

Theorem 1.1. The only complete constant mean curvature hypersurfaces immersed
in Hn+1 such that the image of the Gauss mapping lies in a totally umbilical space-
like hypersurface of Sn+1

1 are the totally umbilical ones.

In [8], Montiel proved that if a complete spacelike hypersurface Σn in the de
Sitter space Sn+1

1 with constant mean curvature H ≥ 1 is such that the image of
its Gauss mapping is contained in the closure of the interior domain enclosed by a
horosphere of Hn+1, then its mean curvature is, in fact, equal to 1. When n = 2,
this implies that Σ2 is also a totally umbilical surface and, hence, the image of its
Gauss mapping is exactly a horosphere of H3. In our second rigidity theorem, we
establish a sort of dual for the result of Montiel mentioned above. For this, we
use as our main analytical tool an extension of the classical Hopf theorem on a
complete noncompact Riemannian manifold due to Yau [16] (cf. Lemma 3.2).

In what follows, we denote by a� the tangential component of a vector a ∈
Ln+2 with respect to an immersion x : Mn → Hn+1 ⊂ Ln+2 and, according to
the terminology established in [8], we say that the image of its Gauss mapping
ν is contained in the closure of a domain enclosed by a totally umbilical spacelike
hypersurface of Sn+1

1 determined by some vector a ∈ Ln+2 when the angle function
〈ν, a〉 does not change sign on Mn.

Theorem 1.2. The only complete constant mean curvature hypersurfaces immersed
in Hn+1 with scalar curvature bounded from below and whose image of the Gauss
mapping is contained in the closure of a domain enclosed by a totally umbilical
spacelike hypersurface of Sn+1

1 determined by some vector a ∈ Ln+2, with a� having
Lebesgue integrable norm along them, are the totally umbilical ones.

The proofs of Theorems 1.1 and 1.2 are given in Section 3.

2. Preliminaries

Throughout this paper we consider the Lorentz model of the hyperbolic space
Hn+1 obtained by furnishing the hyperquadric {p ∈ Ln+2; 〈p, p〉 = −1, pn+2 > 0}
with the Riemannian metric induced by the Lorentz metric of the Minkowski space
Ln+2. In this setting, let x : Mn → Hn+1 ⊂ Ln+2 be a connected orientable
hypersurface immersed into Hn+1. We recall that a unit normal globally defined
vector field ν of Mn can be regarded as a mapping ν : Mn → Sn+1

1 , where Sn+1
1

denotes the (n+ 1)-dimensional unitary de Sitter space; that is,

Sn+1
1 = {p ∈ Ln+2; 〈p, p〉 = 1}.
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In order to set up the notation, we will denote by ∇0,∇ and ∇ the Levi-Civita
connections of Ln+2, Hn+1 and Mn, respectively. Then the Gauss and Weingarten
formulas for Mn in Hn+1 are given, respectively, by

∇0
XY = ∇XY + 〈AX, Y 〉ν + 〈X,Y 〉x

and

AX = −∇Xν = −∇0
Xν,

for all tangent vector fields X,Y ∈ X(M), where A stands for the shape operator
of Mn with respect to ν.

In what follows, for a fixed arbitrary vector a ∈ Ln+2, let us consider the height
and the angle functions, defined respectively by la = 〈x, a〉 and fa = 〈ν, a〉. A direct
computation allows us to conclude that the gradient of such functions are given by
∇la = a� and ∇fa = −A(a�), where a� is the orthogonal projection of a onto the
tangent bundle TM , which is given by

a� = a− faν + lax.

Taking into account that ∇0a = 0 and using the Gauss and Weingarten formulas,
we have

(2.1) ∇Xa� = faAX + laX,

for all X ∈ X(M). We now use (2.1) and the Codazzi equation to deduce

∇XA(a�) = faA
2X + laAX + (∇a�A)(X)

for all X ∈ X(M). Thus, according to [12] (see also [1]), it follows from the last
two identities that

(2.2) Δla = nHfa + nla

and

(2.3) Δfa = −|A|2fa − nHla − n〈∇H, a�〉,

where H = (1/n)trace(A) is the mean curvature of Mn.
For what follows, it is also convenient to consider the traceless operator associated

to the second fundamental form, Φ : X(M) → X(M), which is given by

Φ(X) = AX −HX,

for all X ∈ X(M). It is easily checked that the Hilbert-Schmidt norm of Φ (that is,
|Φ|2 = tr(Φ∗Φ), where Φ∗ stands for the adjoint of Φ) satisfies

|Φ|2 = |A|2 − nH2.

Consequently, we have that |Φ|2 = 0 if and only if Mn is totally umbilical.
Now, we will recall the description of the totally umbilical spacelike hypersurfaces

of Sn+1
1 due to Montiel in [7]. Let Lρ be the spacelike hypersurface immersed into

Sn+1
1 given by

Lρ = {p ∈ Sn+1
1 ; 〈p, a〉 = ρ},

where a ∈ Ln+2, 〈a, a〉 = 1, 0,−1 and ρ2 > 〈a, a〉. Then, for p ∈ Lρ,

ν(p) =
1√

ρ2 − 〈a, a〉
(a− ρp) ∈ Hn+1
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is a unit normal vector field for Lρ. Consequently, the shape operator A of Lρ is
given by

AX =
ρ√

ρ2 − 〈a, a〉
X,

for all smooth vector fields X tangent to Lρ (cf. [7], Example 1). Hence, Lρ is

totally umbilical with constant mean curvature H =
ρ√

ρ2 − 〈a, a〉
. In fact, it can

be verified that:

(1) if a is a unit spacelike vector, then Lρ is isometric to an n-dimensional

hyperbolic space of constant sectional curvature − 1

ρ2 − 1
and H2 > 1;

(2) if a is a nonzero null vector, then Lρ is isometric to a Euclidean space Rn

and H2 = 1;
(3) if a is a unit timelike vector, then Lρ is isometric to an n-dimensional sphere

of constant sectional curvature
1

ρ2 + 1
and 0 ≤ H2 < 1.

To close this section, we quote a suitable characterization of totally umbilical
hypersurfaces in a semi-Riemannian space form due to Kim et al. [6], which corre-
sponds to a converse for a theorem due to Sharma and Duggal in [13].

Lemma 2.1. Let Mn be a connected semi-Riemannian hypersurface of a semi-

Riemannian space form M
n+1

(c). Suppose that M
n+1

(c) carries a conformal vector
field V whose tangential component V � on Mn becomes a conformal vector field.
Then, one of the following holds:

(i) Mn is a totally umbilical hypersurface;
(ii) the restriction of V to Mn reduces to a tangent vector field on Mn.

3. Proofs of Theorems 1.1 and 1.2

In order to prove our first result, we quote the well known generalized maximum
principle due to Omori-Yau [11] and Yau [15].

Lemma 3.1. Let Mn be an n-dimensional complete Riemannian manifold whose
Ricci curvature is bounded from below and let u : Mn → R be a smooth function
which is bounded from above on Mn. Then there exists a sequence (pk)k≥1 in Mn

such that

lim
k

u(pk) = sup
M

u, lim
k

|∇u|(pk) = 0 and lim
k

supΔu(pk) ≤ 0.

Proof of Theorem 1.1. Let x : Mn → Hn+1 be a complete immersed hypersurface
with constant mean curvature H and let us denote by A its Weingarten operator
with respect to a globally defined normal vector field ν. Using the characterization
of totally umbilical spacelike hypersurfaces of Sn+1

1 described in Section 2, we have
from our hypothesis under the image of the Gauss mapping ν of Mn that there
exists a vector a ∈ Ln+2 and a real number τ such that the angle function fa of
Mn satisfies fa = 〈ν, a〉 = τ on Mn, with τ2 > 〈a, a〉.

If τ = 0, then it immediately follows from (2.1) that the Hessian of the height
function la = 〈x, a〉 satisfies ∇2la = lag, where g stands for the Riemannian metric
of Mn. Consequently, we conclude that ∇ la = a� is a conformal vector field on
Mn. From Lemma 2.1, since H = 0 in this case, we obtain that Mn is a totally
geodesic hypersurface of Hn+1.
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If τ 
= 0, then H 
= 0 and formula (2.3) gives

(3.1) |A|2 = −nH

τ
la.

Now we use (3.1) to conclude that

τ

H
la = − τ2

nH2
|Φ|2 − τ2,

where Φ = A−HI was previously defined. Therefore, the height function la satisfies
|la| ≥ β for some positive constant β. We can assume, without loss of generality,
that la is a strictly positive function on Mn.

We claim that the height function la is upper bounded. Indeed, since the mean
curvature H of Mn is constant and a� = ∇la, we obtain from (3.1) the following
equality:

(3.2) a�
(
|A|2

)
= −nH

τ
|∇la|2.

Now we choose a local orthonormal frame {e1, . . . , en} on a neighborhood U ⊂ Mn

which is geodesic at a point p ∈ U . Thus, since A is a symmetric operator and
A(a�) = 0, the Codazzi equation gives

(3.3) a�
(
|A|2

)
= 2

n∑
i=1

〈∇a�Aei , Aei〉 = −2
n∑

i=1

〈A2(∇eia
�) , ei〉.

On the other hand, since ∇ei a
� = τAei + laei at p, we compare (3.1), (3.2) and

(3.3) to deduce

(3.4) nHtr(A3) = |A|4 + n2H2

2τ2
|∇la|2.

In [10], Nomizu and Smyth obtained the following Simons-type formula:

(3.5)
1

2
Δ|A|2 = −n|A|2 − |A|4 + n2H2 + nHtr(A3) + |∇A|2.

Returning to our context, since H is constant and fa = τ , it follows from (2.2) and
(3.1) that Δ|A|2 = Δ|Φ|2 = n|Φ|2. Therefore, we can use (3.4) and (3.5) to deduce

(3.6) |Φ|2 =
nH2

3τ2
|∇la|2 +

1

3n
|∇A|2.

Using that la is a strictly positive function and the identity |∇ la|2+τ2−l2a = 〈a , a〉,
we obtain from (3.6) the following expression:

(3.7)

(
H2

3τ2
〈a , a〉+ 2H2

3

)
1

la
+

H2

3τ2
la ≤ −H

τ
.

Now we are in a position to prove that the height function la is bounded. Suppose
by contradiction that there exists a sequence of points (qk)k≥1 in Mn such that
la(qk) → +∞ when k → ∞. But, from the above inequality we obtain, after a
straightforward computation, that

(3.8) lim
k

la(qk) ≤ −3τ

H
,

which gives a contradiction. Consequently, la is bounded and we finish our claim.
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Therefore, we can use (3.1) to conclude that |A|2 is also bounded. On the other
hand, from the Gauss equation we have that the Ricci curvature tensor of Mn,
denoted by RicM , is given by

(3.9) RicM (X,Y ) = −(n− 1)〈X,Y 〉+ nH〈AX, Y 〉 − 〈AX,AY 〉,
for all X,Y ∈ X(M). Thus, using the Cauchy-Schwarz inequality, from (3.9) we
have that

(3.10) RicM (X,X) ≥
(
1− n− n|H||A| − |A|2

)
|X|2,

for all X ∈ X(M). Since |A|2 is bounded and H is constant, we conclude from
(3.10) that RicM is bounded from below. So, we can apply Lemma 3.1 to pick out
a sequence of points (pk)k≥1 in Mn such that

lim
k

|Φ|2(pk) = sup
M

|Φ|2 and lim
k

supΔ|Φ|2(pk) ≤ 0.

Since Δ|Φ|2 = n|Φ|2, we get

0 ≥ lim
k

supΔ|Φ|2(pk) = n sup
M

|Φ|2 ≥ 0.

Hence, supM |Φ|2 = 0 and, therefore, |Φ|2 = 0 on Mn, which means that Mn is a
totally umbilical hypersurface of Hn+1 which was to be proved. �

Before we present the proof of our second result, we will quote an extension of
the classical Hopf maximum principle for an n-dimensional complete Riemannian
manifold Mn due to Yau [16]. In what follows, L1(M) stands for the space of
Lebesgue integrable functions on Mn.

Lemma 3.2. Let Mn be an n-dimensional complete Riemannian manifold and let
u : Mn → R be a smooth function. If u is a subharmonic (or superharmonic)
function with |∇u| ∈ L1(M), then u must actually be harmonic.

Proof of Theorem 1.2. Let x : Mn → Hn+1 be a complete immersed hypersurface
with constant mean curvature H. Initially, we observe that our hypothesis under
the image of the Gauss mapping ν of Mn amounts to the fact that, for some vector
a ∈ Ln+2, the angle function fa = 〈ν, a〉 does not change sign on Mn.

Now a straightforward computation allows us to conclude that the Hessian of
the height function la = 〈x, a〉 satisfies

(3.11) |∇2la|2 = |Φ|2f2
a +

1

n
(Δla)

2,

where A is the Weingarten operator of Mn while Φ is its associated traceless oper-
ator.

Moreover, since the mean curvature of Mn is constant, we have from formulas
(2.2) and (2.3) that

Δ(fa +Hla) = −|Φ|2fa.
Thus, Δ(fa +Hla) does not change sign on Mn.

On the other hand, from (3.9) we have that the scalar curvature R ofMn satisfies

R = n(1− n) + n2H2 − |A|2.
Since R is bounded from below, we get that |A|2 is bounded on Mn. Consequently,

|∇(fa +Hla)| = | −A(a�) +Ha�| ≤ (|A|+ |H|)|a�| ∈ L1(M).
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Thus, from Lemma 3.2 we conclude that the function fa +Hla is harmonic and,
hence, |Φ|2fa = 0 on Mn. On the other hand, since the Hilbert-Schmidt norm
of ∇2la − 1

nΔlag satisfies |∇2la − 1
nΔlag|2 = |∇2la|2 − 1

n (Δla)
2, we use (3.11) to

conclude that

∇2la =
1

n
(Δ la)g,

where g stands for the induced metric of Mn. Therefore, ∇la = a� is a conformal
vector field on Mn and, since a cannot be a tangent vector to the hypersurface, we
have from Lemma 2.1 that Mn is a totally umbilical hypersurface of Hn+1. This
completes the proof of our theorem. �
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[4] Serge Bernstein, Sur les surfaces définies au moyen de leur courbure moyenne ou totale
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