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EXPLICIT FREE GROUPS IN DIVISION RINGS

J. Z. GONÇALVES AND D. S. PASSMAN

(Communicated by Lev Borisov)

Abstract. Let D be a division ring of characteristic �= 2 and suppose that
the multiplicative group D• = D \ {0} has a subgroup G isomorphic to the
Heisenberg group. Then we use the generators of G to construct an explicit
noncyclic free subgroup of D•. The main difficulty occurs here when D has
characteristic 0 and the commutators in G are algebraic over Q.

1. Introduction

LetD be a noncommutative division ring with multiplicative groupD• = D\{0}.
A longstanding conjecture of Lichtman [5] asserts

Conjecture 1.1. D• contains a free noncyclic subgroup.

A great deal of progress has been made on this problem in [1, 2, 6, 7]. See [3]
for a more detailed account. Unfortunately, there are some shortcomings to these
results. The first is that each one holds only for certain families of division rings
due to the fact that we do not know how to generate all of them. The second is that
many of the proofs are existential and do not actually exhibit the free subgroup. It
is this second problem that we address here.

As a partial answer to a question posed by J. Lewin, reference [1] proved

Theorem 1.2. Let k be a field of characteristic �= 2, let G be a torsion free nilpotent
group of class 2 and let D = Q(kG) be the division ring of fractions of the group
algebra kG. If x and y are any pair of noncommuting elements of G, and if α, β ∈
k•, then the subgroup 〈1 + αx, 1 + βy〉 is free of rank 2.

With this, it is natural to ask whether a division ring D that is generated over its
center by a torsion free nilpotent group G ⊆ D∗ has a free subgroup of rank 2 that
can be described as above. More precisely, if x and y are suitable noncommuting
elements of G, do 1 + x and 1 + y generate a free subgroup?

Now suppose G is any noncommutative torsion free nilpotent group and choose
x in the second center Z2(G) but not in the center Z(G). Then there exists y ∈ G
that does not commute with x, so the commutator [x, y] is not 1. Furthermore,
since x ∈ Z2(G), we see that [x, y] ∈ Z(G) commutes with both x and y. Of course,
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since G is torsion free, [x, y] has infinite multiplicative order. In particular, the
hypotheses of the following theorem are satisfied if G ⊆ D•. The goal of this paper
is to prove

Theorem 1.3. Let D be a division ring of characteristic different from 2, and
assume that D• contains elements x, y with commutator [x, y] = λ of infinite
multiplicative order. Suppose also that λ commutes with both x and y.

(i) If λ is transcendental over the prime subfield of D, then 〈1 + x, 1 + y〉 is a
free subgroup of D• of rank 2.

(ii) If charD = 0 and λ is algebraic over the rational field Q, then there exists
a nonnegative integer n such that the subgroup 〈1+x2n , 1+ y〉 of D• is free
of rank 2.

Note that if x and y satisfy the above commutator conditions, then so do αx and
βy for all α, β ∈ Z(D)•. We will prove the main result in Section 3, and as we will
see, part (i) above is actually the group ring case and follows almost immediately
from Theorem 1.2. Thus only Theorem 1.3(ii) is really new.

2. Some necessary number theory

We first consider certain absolute value inequalities in the complex numbers C.
As usual, in this section, we write i for

√
−1. To begin with, we need

Lemma 2.1. For any real angle θ and any n ≥ 1, we have | sin 2nθ| ≤ 2n | cos θ|.

Proof. Since sin 2θ = 2 sin θ cos θ, the case n = 1 follows from | sin θ| ≤ 1. Fur-
thermore, since | cos θ| ≤ 1, the double angle formula also yields | sin 2θ| ≤ 2| sin θ|.
Applying the latter iteratively, we obtain | sin 2nθ| ≤ 2n−1| sin 2θ| ≤ 2n| cos θ|. �

Next, we observe

Lemma 2.2. Suppose λ1, λ2, . . . , λs ∈ C all have absolute value 1 and define

f(n) =

s∏
j=1

|λ2n

j + 1|

for all n ≥ 0. Then:

(i) There exists n ≤ s+ 1 with f(n) ≥ 2−s2 .

(ii) There are infinitely many n with f(n) ≥ 2−s2 .

Proof. (i) Note that this result holds vacuously for s = 0 since the value of an
empty product is 1. Thus we can assume that s ≥ 1. Since |λj | = 1, we can write
λj = eiθj for some real angle θj . Also note that for any n ≥ 0, we have

|λ2n+1

j + 1| = |λ−2n

j |·|λ2n+1

j + 1| = |λ2n

j + λ−2n

j |
= |ei2nθj + e−i2nθj | = |2 cos 2nθj |.

Suppose by way of contradiction that f(n) < 2−s2 for all n = 1, 2, . . . , s + 1.
Then by the above we have

(∗) 2−s2 > f(n+ 1) =

s∏
j=1

|2 cos 2n+1θj |

for all n = 0, 1, . . . , s.
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Claim. Suppose that for some integer n with 0 ≤ n ≤ s we have | cos 2jθj | ≤ 2−s−1

for all j = 1, 2, . . . , n, where the hypothesis is vacuous when n = 0. Then n ≤ s− 1
and by suitably relabeling the remaining θ’s, we have | cos 2n+1θn+1| ≤ 2−s−1.

Proof. Now for each j = 1, 2, . . . , n, since j < n+ 1, Lemma 2.1 implies that

| sin 2n+1θj | = | sin 2(n+1−j)2jθj | ≤ 2(n+1−j)·| cos 2jθj | ≤ 2(n+1−j)2−s−1,

by hypothesis. Furthermore, (n+ 1− j)− (s+ 1) ≤ (n− s)− 1 ≤ −1 since n ≤ s.

Thus | sin 2n+1θj | ≤ 1/2 and therefore | cos 2n+1θj | ≥
√
3/2 ≥ 1/2. It follows that

|2 cos 2n+1θj | ≥ 1 for all j = 1, 2, . . . , n, so equation (∗) becomes

2−s2 ≥
n∏

j=1

|2 cos 2n+1θj |·
s∏

j=n+1

|2 cos 2n+1θj | ≥
s∏

j=n+1

|2 cos 2n+1θj |.

We conclude that the final product is nonempty and hence n ≤ s−1. Furthermore,
by relabeling, we can assume that the smallest factor in that nonempty right-hand
product occurs when j = n+ 1, and of course this factor must be ≤ 1. Thus

2−s2 ≥ |2 cos 2n+1θn+1|(s−n) ≥ |2 cos 2n+1θn+1|s

since (s− n) < s and |2 cos 2n+1θn+1| ≤ 1. Taking sth roots yields

2−s ≥ |2 cos 2n+1θn+1|,

so

2−s−1 ≥ | cos 2n+1θn+1|
thereby proving the Claim. �

With this, it is now a simple matter to complete the proof of (i). To this end,
we show by induction on n ≤ s that the angles θj can be suitably relabeled so that
| cos 2jθj | ≤ 2−s−1 for all j = 1, 2, . . . , n. Indeed, if n = 0, there is nothing to prove.
Next, if the inductive statement holds for n, then it holds for n + 1 by the above
Claim. Thus we conclude that the inductive statement holds for all j, that is, for
n = s. But then, by the Claim again, n ≤ s− 1 and this is a contradiction.

(ii) Here we let a be any nonnegative integer and notice that for all j we have

|λ2a

j | = 1 and (λ2a

j )2
b

= λ2a+b

j . Thus, by applying (i) to λ2a

1 , λ2a

2 , . . . , λ2a

s , we see

that there exists 0 ≤ n′ ≤ s+1 with f(a+n′) ≥ 2−s2 . By varying a appropriately,

we clearly obtain infinitely many integers n with f(n) ≥ 2−s2 . �

With this, we can easily prove

Lemma 2.3. Let λ1, λ2, . . . , λm ∈ C and define

f(n) =

m∏
j=1

|λ2n

j + 1|

for all n ≥ 0. Then:

(i) There exists a positive constant C, depending upon the λj’s, such f(n) ≥ C
occurs for infinitely many n.

(ii) If some λj has absolute value > 1, then the function f(n) is unbounded.
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Proof. (i) We divide the subscripts j into three sets R, S and T , corresponding to
whether |λj | < 1, |λj | = 1 or |λj | > 1, respectively. If |S| = s, then the preceding
lemma implies that the inequality

∏
j∈S

|λ2n

j + 1| ≥ 2−s2

holds for infinitely many n.
Next, let |R| = r and let ρ be the maximum of |λj | with j ∈ R. Then ρ < 1 and

|λ2n

j | ≤ ρ for all j ∈ R and all n ≥ 0. Thus |λ2n

j +1| ≥ 1− |λ2n

j | ≥ 1− ρ, and hence
we have ∏

j∈R
|λ2n

j + 1| ≥ (1− ρ)r

for all n ≥ 0. Of course, this is satisfied when r = 0 by choosing 1− ρ = 1.
Finally, let |T | = t and let τ be the minimum of |λj | with j ∈ T . Then τ > 1

and |λ2n

j | ≥ τ for all j ∈ T and all n ≥ 0. Thus |λ2n

j + 1| ≥ |λ2n

j | − 1 ≥ τ − 1, and
hence we have ∏

j∈T
|λ2n

j + 1| ≥ (τ − 1)t

for all n ≥ 0. Again, this is satisfied when t = 0 by taking τ − 1 = 1.

Now write C = (1 − ρ)r·2−s2 ·(τ − 1)t so that C > 0. Then, by multiplying
the three displayed inequalities above, we conclude that f(n) ≥ C occurs infinitely
often.

(ii) We can suppose that |λm| > 1 and let D > 0 be the constant given by (i)
for the product

g(n) =
m−1∏
j=1

|λ2n

j + 1|.

Then, for any n with g(n) ≥ D, we have

f(n) = g(n)·|λ2n

m + 1| ≥ D·(|λm|2n − 1).

Since |λm| > 1 and since the above inequality is satisfied for infinitely many n, we
conclude that f(n) is unbounded. �

Now let K be a finite Galois extension of the rationals Q. Say |K : Q| = m and
let G = Gal(K/Q). Then the Galois norm N : k �→

∏
σ∈G kσ is a multiplicative

homomorphism from K• to Q•. Furthermore, N sends the ring of algebraic integers
OK to the ring of ordinary integers Z. We fix an embedding of K into the complex
numbers C, so we can speak about the absolute values of elements of K. We can
now translate the preceding lemma into a norm inequality since the norm is a
product of m = |G| factors.

Lemma 2.4. Let α ∈ K, a finite Galois extension of Q.

(i) There exists a positive constant C depending on α such that the inequality
|N(α2n + 1)| ≥ C holds for infinitely many n ≥ 0.

(ii) If some Galois conjugate of α has absolute value > 1, then |N(α2n + 1)| is
unbounded as a function of n.
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Proof. If λ1, λ2, . . . , λm are the m Galois conjugates of α, then λ2n

1 , λ2n

2 , . . . , λ2n

m

are the Galois conjugates of α2n . Thus

|N(α2n + 1)| =
m∏
j=1

|λ2n

j + 1|

and the result follows immediately from Lemma 2.3. �

As a first consequence of the multiplicative nature of the norm map, we have

Lemma 2.5. Let α, β ∈ K. If either |N(α)| > 1 or |N(β)| > 1, then |N(α2n+β2n)|
is unbounded as a function of n.

Proof. By symmetry we can assume that |N(β)| > 1 and we write γ = αβ−1 ∈ K.
Then α2n + β2n = (γ2n + 1)β2n , so

|N(α2n + β2n)| = |N(γ2n + 1)|·|N(β)|2n .
Now Lemma 2.4(i) implies that there exists a constant C > 0 with |N(γ2n+1)| ≥ C
for infinitely many n ≥ 0. Thus since |N(β)|2n is strictly increasing and unbounded,
the result follows from the above displayed inequality. �

Now we consider algebraic integers and, for convenience, we write R = OK .
Since the expression |N(α2n + β2n)| is easy to understand if either α or β is zero,
we can assume that they are both nonzero. Notice also that if α and β are units of
OK and if αβ−1 = ε is a root of unity, then |N(α)| = |N(β)| = 1 and

|N(α2n + β2n)| = |N(ε2
n

+ 1)|·|N(β)|2n = |N(ε2
n

+ 1)|
takes on only finitely many values and hence is bounded as a function of n. As we
see below, this is the only situation where boundedness can occur.

Proposition 2.6. Let 0 �= α, β be algebraic integers in the finite Galois extension
K of Q. Then |N(α2n + β2n)| is unbounded as a function of n unless α and β are
both units in OK with αβ−1 a root of unity.

Proof. Let us assume that |N(α2n + β2n)| is bounded as a function of n. Since
0 �= α, β ∈ OK , we know that 0 �= N(α), N(β) ∈ Z. If either |N(α)| > 1 or
|N(β)| > 1, then the function is unbounded by Lemma 2.5. Thus we must have
|N(α)| = |N(β)| = 1 and hence both α and β are units in OK . Furthermore, if
ε = αβ−1 ∈ OK , then

|N(α2n + β2n)| = |N(ε2
n

+ 1)|·|N(β)|2n = |N(ε2
n

+ 1)|.
In particular, since this is bounded, Lemma 2.4(ii) implies that all of the Galois
conjugates of ε have absolute value ≤ 1. But |N(ε)| = 1 so the Galois conjugates
of the algebraic integer ε all have absolute value 1. As is well known, this implies
that ε is a root of unity. �

For α, β ∈ R, let us write

γn = α2n + β2n

for all integers n ≥ 0. Furthermore, we say that α and β are comaximal if R =
(α, β) = Rα +Rβ.

Lemma 2.7. Let α, β ∈ R and let P be a nonzero prime ideal of the ring R with
γr, γs ∈ P a for some a ≥ 1 and r �= s. If α and β are comaximal, then 2 ∈ P a.
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Proof. Suppose by way of contradiction that 2 /∈ P a, so that 1 �≡ −1 mod P a. By
comaximality, we have (α, β) �⊆ P , so say α /∈ P . Now the ring R = R/P a is local
with unique maximal ideal P = P/P a. Since ᾱ /∈ P , we see that ᾱ is invertible in
R and we can set δ̄ = β̄/ᾱ ∈ R.

Now γr ∈ P a implies that β2r ≡ −α2r mod P a and hence δ̄2
r

= −1 in R. In
particular, δ̄ is a unit in R whose order divides 2r+1. But δ̄2

r

= −1 �= 1, so the
order of δ̄ is precisely 2r+1. Similarly, if γs ∈ P a, then δ̄ has order 2s+1 in R. Thus
2r+1 = 2s+1 and r = s, a contradiction. �

With this, we can prove

Lemma 2.8. Let K be a finite Galois extension of Q and let 0 �= α, β ∈ OK .
Assume that α and β are not both units of OK with αβ−1 a root of unity. If α and
β are comaximal in OK , then there exist infinitely many nonzero prime ideals P of
OK that contain γn for some n.

Proof. As above, we write R = OK and let the prime factorization of the principal
ideal (2) be given by

(2) = P e1
1 P e2

2 · · ·P ek
k .

Of course, in this Galois situation, all ei are equal. If P is a prime ideal of R and
2 ∈ P a for some integer a ≥ 1, then P a | (2), so P = Pi for some i and a ≤ ei.
Since α and β are comaximal, it therefore follows from the preceding lemma that
there is at most one subscript ni with γni

∈ P ei+1
i .

If I is any proper ideal of R, write N(I) = |R/I|. As is well known (see [4]),
N(IJ) = N(I)·N(J). Furthermore, if I = (η) is principal, the N(I) = |N(η)|,
where N is the Galois norm.

Now let n �= n1, n2, . . . , nk. If γn ∈ P fi
i with fi maximal, then by definition of

ni we have fi ≤ ei. In particular,

(γn) = Jn·
k∏

i=1

P fi
i

for some ideal Jn not divisible by P1, P2, . . . , or Pk. Thus since
∏k

i=1 P
fi
i | (2), we

see that |N(γn)| ≤ |N(2)|·N(Jn) = 2m·N(Jn).
By the hypothesis and Proposition 2.6, there are infinitely many n with |N(γn)| >

2m. For each of these, we see that Jn is a proper ideal of R and hence has
a nontrivial prime factor Qn �= P1, P2, . . . , Pk. Of course, Qn ⊇ Jn ⊇ (γn) so
γn ∈ Qn. Finally, the various Qn obtained in this way are all distinct since oth-
erwise γn, γt ∈ Qn and hence 2 ∈ Qn, by Lemma 2.7 again, contradicting the fact
that Qn �= P1, P2, . . . , Pk. �

Finally, we handle arbitrary finite degree field extensions of Q and almost arbi-
trary algebraic integers α and β. We do this by extending the field in two different
ways.

Theorem 2.9. Let K be a finite degree field extension of Q and let 0 �= α, β ∈ R =
OK . Assume that α/β ∈ K is not a root of unity. Then there exist infinitely many
nonzero prime ideals P of R that contain γn = α2n + β2n for some n ≥ 0.

Proof. By [8, Theorem 9.12], there exists a finite degree extension field F of K with
S = OF such that the ideal αS + βS = ηS is principal. Then α/η, β/η ∈ S and
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η = αx + βy for some x, y ∈ S. Thus (α/η)x + (β/η)y = 1, so α/η and β/η are
comaximal in S. Also (α/η)/(β/η) = α/β is not a root of unity.

Next, we extend F to its Galois closure E over Q, so |E : Q| < ∞, and we
set T = OE ⊇ S. Then α/η and β/η are comaximal in T and the previous
lemma implies that there exists infinitely many nonzero prime ideals Q of T , each
containing (α/η)2

n

+ (β/η)2
n

for some n. Multiplying by η2
n

, we see that each Q
contains γn = α2n + β2n for some n ≥ 0.

But γn ∈ R, so γn ∈ R ∩ Q = P , a nonzero prime ideal of R. Finally, since
the map Q �→ Q ∩ R = P is finite-to-one by [8, Theorem 5.17], we obtain in this
way infinitely many distinct nonzero prime ideals P of R that contain γn for some
integer n. �

3. Proof of the main result

The proof of Theorem 1.3 is similar to that of Theorem 1.2. Roughly speaking,
we first see how x and y are embedded in D. In particular, we find a nice subring S
ofD that contains x, y, (1+x)−1 and (1+y)−1. Then we construct a homomorphism
from S to a division ring Q where we know that 1 + x̄ and 1 + ȳ generate a free

group of rank 2. The division ring Q will be a suitable quaternion algebra.
Let F be a field of characteristic different from 2 and let 0 �= a, b ∈ F . Recall that

the quaternion algebra (a,b)
F is the 4-dimensional F -algebra with F -basis {1, i, j,k}

and with multiplication determined by

i2 = a, j2 = b, ij = −ji = k.

Of course, the algebra (a,b)
F need not be a division ring in general. The following is

[1, Proposition 16].

Theorem 3.1. Let F0 be a field of characteristic �= 2 and let F = F0(a, b) be a
function field in the variables a and b. Then 1+ i and 1+ j generate a free subgroup

of rank 2 in the multiplicative group of the quaternion division algebra (a,b)
F .

If S is a ring, then an ideal P of S is said to be completely prime if S/P is a
domain. Equivalently, this occurs if st ∈ P implies that s or t is in P , and again
this is equivalent to M = S \ P being a multiplicatively closed subset of S. The
following argument is from [6]. It is proved by considering the π-adic valuation.

Lemma 3.2. Let S be a right Ore domain and let 0 �= π be a central element of the
ring. Assume that P = πS is a completely prime ideal of S and that

⋂∞
n=0 π

nS = 0.
Then M = S \ P is a multiplicatively closed right divisor set in S.

Proof. We know that M is multiplicatively closed. If 0 �= s ∈ S, then there exists
an integer n with s ∈ πnS \ πn+1S and hence s = πnm for some m ∈ M . Since
S is a domain, cancellation holds and it is easy to see that this expression for s is
unique. In other words, every 0 �= s ∈ S can be written uniquely as s = πν(s)μ(s)
with μ(s) ∈ M . Furthermore, if 0 �= s, t ∈ S, then

st = πν(s)μ(s)·πν(t)μ(t) = πν(s)+ν(t)μ(s)μ(t).

Since μ(s)μ(t) ∈ M , uniqueness implies that μ(st) = μ(s)μ(t).
We show now that S satisfies the right divisor condition with respect to M . To

this end, let 0 �= s ∈ S and let m ∈ M . Since S is a right Ore domain, there exist
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0 �= r, t ∈ S with sr = mt. Applying μ yields μ(s)μ(r) = mμ(t) and hence

sμ(r) = πν(s)μ(s)μ(r) = mπν(s)μ(t).

Thus sm1 = ms1 with m1 = μ(r) ∈ M and s1 = πν(s)μ(t) ∈ S. �
For the remainder of this paper, let D be a division ring with prime subfield

k and let x, y ∈ D• have commutator [x, y] = λ of infinite multiplicative order.
Furthermore, we suppose that λ commutes with both x and y and we let K be the
field K = k(λ) ⊆ D. Recall that the Heisenberg group H has generators X, Y and
Z with relations [X,Z] = [Y, Z] = 1 and [X,Y ] = Z. Part (i) below is not really
needed, but it does explain the hypotheses in Theorem 1.3. Part (ii) is a simple
special case of work of Zalesskĭı in [9].

Lemma 3.3. Let x, y, λ ∈ D• and let K ⊆ D be as above.

(i) The subgroup G = 〈x, y, λ〉 of D• is naturally isomorphic to the Heisenberg
group H.

(ii) The monomials xrys ∈ D, for all r, s ∈ Z, are linearly independent over K.

Proof. (i) The map θ : H → G given by X �→ x, Y �→ y and Z �→ λ is clearly
a well-defined group epimorphism. Furthermore, θ is one-to-one when restricted
to Z(H) = 〈Z〉 since λ has infinite multiplicative order. In particular, since any
nontrivial normal subgroup of H meets Z(H) nontrivially, we conclude that ker θ =
〈1〉 and hence that θ is an isomorphism.

(ii) The commutator relations on x and y imply that xy = y−1xy = λx and
yx = x−1yx = λ−1y. Thus since x and y commute with λ we have (xi)y = λixi

and (yj)x = λ−jyj . If the monomials xrys are linearly dependent over K, let

(∗∗)
∑
r,s

ar,sx
rys = 0

be a dependence relation, with ar,s ∈ K, involving the smallest number of nonzero
coefficients ar,s. Multiplying by a suitable xiyj , we can assume that a0,0 �= 0.

Conjugating equation (∗∗) by y and subtracting yields∑
r,s

(1− λr)ar,sx
rys = 0,

a dependence relation with a smaller number of terms since the 0, 0-term no longer
occurs. Thus (1 − λr)ar,s = 0 and since λ has infinite multiplicative order, we
conclude that ar,s = 0 if r �= 0.

Similarly, conjugating (∗∗) by x and subtracting yields∑
r,s

(1− λ−s)ar,sx
rys = 0

and hence ar,s = 0 if s �= 0. It follows that equation (∗∗) reduces to a single term
a0,0x

0y0 = 0, certainly a contradiction. �
With this, we can now prove the main result.

Proof of Theorem 1.3. (i) Suppose that λ is transcendental over k, the prime sub-
field of D. Then the preceding lemma implies that the elements xrysλt are linearly
independent over k and therefore the group algebra kG is embedded in D. Since
kG is a Noetherian domain, it follows that its division ring of quotients Q(kG) also
embeds in D. But G is nilpotent of class 2, so Theorem 1.2 yields the result.
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(ii) Here we assume that charD = 0, so k = Q is the field of rational numbers.
Also λ is algebraic over Q so K = Q(λ) is a finite degree extension field of Q,
an algebraic number field. If R = OK , then we can write λ = α/β for suitable
0 �= α, β ∈ R. As in the previous section, for each integer n ≥ 0, we set γn =
α2n + β2n ∈ R. Then, by Theorem 2.9, since λ is not a root of unity, there
exist infinitely many distinct nonzero prime ideals of R that contain some γn. In
particular, we can choose a nonzero prime ideal P of R with 2, α, β /∈ P but with
γn ∈ P for a fixed n ≥ 0. Say P lies over the rational prime p, so that p �= 2.

Let R̃ = RP be the localization of R at P . Then β is a unit in R̃, so λ = α/β ∈ R̃.

Also α2n + β2n ∈ P , so λ2n + 1 = (α2n + β2n)/β2n ∈ P̃ = PR̃, the unique nonzero

prime ideal of R̃. Since xrys·xr′
ys

′ ∈ R̃xr+r′
ys+s′

, it follows from Lemma 3.3(ii)
that

S̃ = ⊕
∑
r,s≥0

R̃xrys

is a subring of D. Indeed, S̃ is clearly the skew polynomial ring over R̃ generated
by x and y and subject to the single relation xy = λyx.

Set z = x2n so that y−1zy = λ2nz and let S be the R̃-subalgebra of S̃ given by

S = ⊕
∑
r,s≥0

R̃zrys.

Then S is clearly the skew polynomial ring over R̃ generated by z and y and subject
to the single relation zy = λ2nyz. Note that S is a Noetherian domain and hence
an Ore domain.

Recall that P̃ = PR̃ 
 R̃ and note that P̃ S = ⊕
∑

r,s≥0 P̃ zrys is an ideal of S.

If : S → S = S/P̃S denotes the natural homomorphism, then from the above

structure, we see that S = ⊕
∑

r,s≥0 F0z̄
r ȳs, where F0 is the field F0 = R̃/P̃ of

characteristic p > 2. Furthermore, since zy = λ2nyz and λ2n + 1 ∈ P̃ , we see that
z̄ȳ = −ȳz̄. Of course, S is a skew polynomial ring in the two variables z̄ and ȳ over

a field, so S is a domain. In particular, P̃ S is a completely prime ideal of S.
Since z̄ȳ = −ȳz̄, we see that a = z̄2 and b = ȳ2 are central in S, and F0[a, b] is

the polynomial ring in the two variables a and b. Thus F0[a, b] ⊆ F = F0(a, b), the
rational function field in the two variables a and b. It follows that

S ⊆ F ⊕ F i⊕ F j⊕ Fk = Q

where i = z̄, j = ȳ and k = z̄ȳ. Furthermore, we have i2 = a, j2 = b and
ij = −ji = k. In other words, by Theorem 3.1, S is contained in the quaternion

division ring Q = (a,b)
F where F = F0(a, b) and charF0 = p �= 2.

Since P̃S is a completely prime ideal of S, we know that M = S \ P̃ S is a

multiplicatively closed set. Furthermore, since P̃ is the unique nonzero prime of R̃,

it follows that R̃ is a valuation ring, P̃ is the principal ideal πR̃ and
⋂∞

t=0 π
tR̃ = 0.

With this, and the fact that S is a free R̃-module, we see that P̃ S = πS and⋂∞
t=0 π

tS = 0. In particular, Lemma 3.2 now implies that M is a right divisor set
in S. Hence we can localize S at M to obtain the ring SM−1. Of course, this ring is
also contained in D. Furthermore, since 1+ z and 1+ y are contained in M , we see
that they are invertible in SM−1, and therefore SM−1 contains the multiplicative
group G = 〈1 + z, 1 + y〉.
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Finally, since Q is a division ring and since M is disjoint from the kernel of
: S → Q, it is easy to see that the map extends uniquely to SM−1. In other words,

we now have a ring homomorphism : SM−1 → Q. Under this map, 1+ z �→ 1+ i
and 1+y �→ 1+j. But we know from Theorem 3.1 that the group G = 〈1 + i, 1 + j〉 is
free of rank 2 and hence the same must be true of G. This completes the proof. �
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