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A NOTE ON ZERO-SETS OF FRACTIONAL SOBOLEV

FUNCTIONS WITH NEGATIVE POWER OF INTEGRABILITY

ARMIN SCHIKORRA

(Communicated by Jeremy Tyson)

Abstract. We extend a Poincaré-type inequality for functions with large
zero-sets by Jiang and Lin to fractional Sobolev spaces. As a consequence,
we obtain a Hausdorff dimension estimate on the size of zero-sets for frac-
tional Sobolev functions whose inverse is integrable. Also, for a suboptimal
Hausdorff dimension estimate, we give a completely elementary proof based
on a pointwise Poincaré-style inequality.

1. Introduction

Let Ω ⊂ R
n be an open set. For functions u : Ω → R

n we are interested in the
size of the zero set Σ,

Σ := {x ∈ Ω : lim
r→0

–

∫
Br(x)

|f | = 0},

under the condition that for some α > 0,

(1.1)

∫
Ω

|f |−α < ∞.

Here and henceforth, for a measurable set A ⊂ R
n we denote the mean value

integral

–

∫
A

f ≡ (f)A := |A|−1

∫
A

f.

In [8] Jiang and Lin showed that if f ∈ W 1,p(Ω), then

Hs(Σ) = 0 where s = max{0, n− pα
p+α}.

They were motivated by the analysis of rupture sets of thin films, which is described
by a singular elliptic equation. We do not go into the details of this; instead, for
applications, we refer to, e.g., [2, 3, 6, 7].

In this note, we extend Jiang and Lin’s result to fractional Sobolev spaces and
obtain

Theorem 1.1. For σ ∈ (0, 1] and for any f ∈ W σ,p(Ω) satisfying (1.1), Hs(Σ) = 0,
where s = max{0, n− σ pα

p+α}.
Here, we use the following definitions for the (fractional) Sobolev space. For

more on these we refer to, e.g., [1, 4, 10].
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Definition 1.2. The homogeneous W σ,p-norms are defined as follows:

[f ]Ẇ 1,p(Ω) := ‖∇f‖Lp(Ω).

For σ ∈ (0, 1) we define the Slobodeckij-norm,

[f ]Ẇσ,p(Ω) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(∫
Ω

∫
Ω

(
|f(x)−f(y)|

|x−y|σ
)p

dx dy
|x−y|n

) 1
p

if p ∈ [1,∞),

sup
x�=y

|f(x)−f(y)|
|x−y|σ if p = ∞.

The respective Sobolev space W σ,p, σ ∈ (0, 1], p ∈ [1,∞] is then the collection of
functions f : Ω → R with finite Sobolev norms ‖f‖Wα,p(Ω),

‖f‖Wα,p(Ω) := ‖f‖Lp(Ω) + [f ]Ẇα,p(Ω).

To prove Theorem 1.1, the case p ≤ n/σ is the relevant one, since for the other
cases we can use the embedding into the Hölder spaces; see [8]. We have the
following extension to fractional Sobolev spaces of a Poincaré-type inequality from
[8].

Theorem 1.3. For any θ > 0, σ ∈ (0, 1], p ∈ (1, n/σ], s ∈ (n − σp, n], there is a
constant C > 0 such that the following holds for any R > 0:

Let BR be any ball in R
n with radius R, f ∈ W σ,p(BR) and assume that there

is a closed set T ⊂ BR such that

T ⊂ {x ∈ BR : lim sup
r→0

–

∫
Br

|f | = 0},

(1.2) Hs(T ) >
1

θ
Rs,

and for any ball Br with some radius r > 0,

(1.3) Hs(T ∩Br) ≤ θrs.

Then,

‖f‖Lp(BR) ≤ C Rσ [f ]Ẇσ,p(BR).

In [8] this was proven for the classical Sobolev space W 1,p, using an argument
based on the p-Laplace equation with measures and the Wolff potential. Our argu-
ment, on the other hand, is completely elementary and adapts the classical blow-up
proof of the Poincaré inequality; see Section 2.

Once Theorem 1.3 is established, one can follow the arguments in [8] to obtain
Theorem 1.1. These rely heavily on the theory of Sousslin sets, [9], to find the
closed set T ⊂ Σ with the condition (1.2) and (1.3) satisfied. Those arguments
are by no means elementary, but we were unable to remove them in order to show
that Hs(Σ) = 0. However, if one is satisfied in showing that Ht(Σ) = 0 for any
t > s, then there is a completely elementary argument, the details of which we
will present in Section 3. There, we prove the following “pointwise” Poincaré-style
inequality, from which the suboptimal Hausdorff dimension estimate easily follows;
see Corollary 3.1.
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Lemma 1.4. For any ε > 0, p ∈ [1,∞), there exists C > 0, such that the following
holds. Let f ∈ Lp

loc, and assume x ∈ R
n, such that

(1.4) lim
r→0

–

∫
Br(x)

|f | = 0.

Then for any R > 0, there exists ρ ∈ (0, R) such that∫
Bρ(x)

|f |p ≤ C

(
R

ρ

)ε ∫
Bρ(x)

||f | − (|f |)Bρ
|p.

2. Poincaré inequality: Proof of Theorem 1.3

By a scaling argument, Theorem 1.3 follows from Lemma 2.1.

Lemma 2.1. For any θ > 0, σ ∈ (0, 1], p ∈ (1, n/σ], s ∈ (n − σp, n], there is a
constant C > 0 such that the following holds:

Let f ∈ W σ,p(B1, [0,∞)) and assume that there is a closed set T ⊂ B1 such that

T ⊂ {x ∈ B1 : lim sup
r→0

–

∫
Br

f = 0}

and

Hs(T ) >
1

θ
,

as well as

Hs(T ∩Br) ≤ θrs for any ball Br with radius r > 0.

Then,
‖f‖Lp(B1) ≤ C [f ]Ẇσ,p(B1)

.

Proof. We proceed by the usual blow-up proof of the Poincaré inequality: As-
sume the claim is false, and that for fixed θ, p, s, σ for any k ∈ N there are
fk ∈ W σ,p(B1, [0,∞)) such that

Tk ⊂ {x ∈ B1 : lim sup
r→0

–

∫
Br

fk = 0},

Hs(Tk) >
1

θ
, Hs(Tk ∩Br) ≤ θrs ∀Br,

and
‖fk‖Lp(B1) > k [fk]Ẇσ,p(B1)

.

Replacing fk by fk
‖fk‖p

(note that this does not change the definition and size of

Tk), we can assume w.l.o.g.
‖fk‖Lp ≡ 1

and

[fk]Ẇσ,p(B1)
k→∞−−−−→ 0.

In particular, fk is uniformly bounded in W σ,p, and by the Rellich-Kondrachov
theorem, up to taking a subsequence, fk converges strongly in Lp, and weakly in
W σ,p to some f ∈ W σ,p, with [f ]Ẇσ,p(B1)

≡ 0, ‖f‖Lp = 1. Thus,

f ≡ |B1|−
1
p ,
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and setting gk := |B1|
1
p fk, we have found a sequence such that

gk → 1 in W σ,p(B1),

Hs(Tk) >
1

θ
,

and

Hs(Tk ∩Br) ≤ θrs for any ball Br.

This is a contradiction to Lemma 2.2. �

We used the following lemma, which essentially quantifies the intuition, that a
function approximating 1 in W σ,p cannot be zero on a large set.

Lemma 2.2. Let σ ∈ (0, 1], s ∈ (n − σp, n], fk ∈ W σ,p(B1, [0,∞)), and assume
that

‖fk − 1‖Wσ,p(B1)
k→∞−−−−→ 0.

Then, for any Tk ⊂ B1 closed and

Tk ⊂ {x ∈ B1 : lim sup
r→0

–

∫
Br

fk = 0},

as well as for some θ > 0,

(2.1) Hs(Tk ∩Br) ≤ θrs for any Br, for all k

we have

lim
k→∞

Hs(Tk) = 0.

Proof. By the subsequence principle, it suffices to show

lim inf
k→∞

Hs(Tk) = 0.

By extension, we also can assume that fk − 1 → 0 in W σ,p(Rn), and fk ≡ 1 on
R

n\B2.
On the one hand, we have

[fk]Ẇσ,p(Rn)
k→∞−−−−→ 0.

On the other hand, up to picking a subsequence, we can assume the existence of
Rk ∈ (0, 1), for k ∈ N, and limk→∞ Rk = 0, such that

inf
r>Rk,x∈B1

–

∫
Br(x)

fk ≥ 9

10
.

Since for any point x ∈ Tk we have that limt→0 –
∫
Br

fk(x) = 0, we expect the

average (fractional) gradient around x to be fairly large. More precisely, we have
the following

Claim. There is a uniform constant cs,σ,p > 0, such that the following holds: For
any x ∈ Tk, there exists ρ = ρk,x ∈ (0, Rk) such that

(2.2) cs,σ,p ρs ≤ ρ−σp

∫
Bρ

|fk − (fk)Bρ
|p ≤ C [fk]

p

Ẇσ,p(Bρ)
.

Of course, we only have to show the first inequality; the second inequality is the
classical Poincaré inequality.
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For the proof let us write f instead of fk. Then, since for x ∈ T ,

lim
l→∞

–

∫
B

2−l−1Rk(x)

f = 0,

we have that

9

10
≤

∞∑
l=0

⎛
⎜⎜⎝ –

∫
B

2−lRk
(x)

f − –

∫
B

2−l−1Rk(x)

f

⎞
⎟⎟⎠

≤ C
∞∑
l=0

(
(2−lRk)

−n

∫
B

2−lRk

|f − (f)B
2−lRk

|
)
.

Consequently, for any ε > 0, there has to be some cε > 0 and some l ∈ N such that(
(2−lRk)

−n

∫
B

2−lRk

|f − (f)B
2−lRk

|
)

≥ cε
(
2−lRk

)ε
,

because if the opposite inequality was true for all l ∈ N we would have

9

10
≤ C cεR

ε
k

∑
l∈N

2−εl ≤ C cε
∑
l∈N

2−εl,

which is false for cε small enough.
Thus, for ρ := 2−lRk ∈ (0, Rk),

ρn−σ+ε ≤ Cερ
−σ

∫
Bρ

|f − (f)Bρ
| ≤ Cε

(
ρ−σp

∫
Bρ

|f − (f)Bρ
|p
) 1

p

ρn−
n
p ,

that is,

ρn−σp+εp ≤ Cε ρ−σp

∫
Bρ

|f − (f)Bρ
|p.

Setting ε = s−(n−σp)
p > 0, we have shown for any x ∈ T the existence of some

ρ ∈ (0, Rk) satisfying (2.2), and the claim is proven.
For any k we cover Tk by the family

Fk := {Bρ(x), x ∈ T, Bρ(x) satisfies (2.2)}.

Since T ⊂ B2 is closed and bounded, i.e. compact, we can find a finite subfamily
still covering all of Tk, and then using Vitali’s (finite) covering theorem, we find a

subfamily F̃k ⊂ Fk of disjoint balls Bρ(x), so that the union of the B5ρ covers all

of Tk. We use this F̃k as a cover for an estimate of the Hausdorff measure:

Hs(Tk) ≤
∑

Bρ∈F̃k

Hs(B5ρ ∩ Tk)
(2.1)

≤ θ 5s
∑

Bρ∈F̃k

ρs

(2.2)

≤ Cθ,s

∑
Bρ∈F̃k

[fk]
p

Ẇσ,p(Bρ)
≤ Cθ,s [fk]

p

Ẇσ,p(Rn)

k→∞−−−−→ 0.

�
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3. An elementary proof for the suboptimal case

We start with the proof of the pointwise inequality, Lemma 1.4.

Proof. First, let us show the claim for p = 1:
Fix R, ε > 0, f ∈ L1

loc and assume x = 0. W.l.o.g., f ≥ 0. Set

(3.1) τ = 2−n−1

(
0∑

l=−∞
2εl

)−1

R−ε,

and Cε := R−ετ−1. Assume by contradiction that the claim was false, i.e. assume
that for any ρ ∈ (0, R),

(3.2) –

∫
Bρ

|f − (f)Bρ
| < τ ρε –

∫
Bρ

f.

Then for any K ∈ N,

–

∫
Bρ

|f − (f)Bρ
| < τ ρε

0∑
k=−K

–

∫
B

2kρ

f − –

∫
B

2k−1ρ

f + τρε –

∫
B2−K−1ρ

f

≤ 2nτ ρε
0∑

k=−K

–

∫
B

2kρ

|f − (f)B
2kρ

|+ τρε –

∫
B2−K−1ρ

f.

Setting now for l ∈ Z,

al := –

∫
B

2lR

|f − (f)B
2lR

|,

bl := –

∫
B

2lR

f,

the above equation applied to ρ = 2lR reads as

al ≤ 2nRε τ 2εl
0∑

k=−K

ak+l + τ (2lR)ε b−K+l−1 for any K ∈ N, l ∈ −N.

In particular for any L ∈ N,

0∑
l=−L

al ≤ 2nRε τ
0∑

l=−L

2εl
0∑

k=−K

ak+l + τ Rε
0∑

l=−L

2εl b−K+l−1

≤ 2nRε τ

0∑
l=−L

2εl
0∑

k=−K+l

ak + τ Rε ( sup
j≤−K

bj)

0∑
l=−∞

2εl

≤ 2nRε τ
0∑

k=−L−K

ak

k+K∑
l=−L

2εl + τ Rε ( sup
j≤−K

bj)
0∑

l=−∞
2εl

(3.1)

≤ 1

2

0∑
k=−L−K

ak +
1

2
sup

j≤−K
bj .
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Under the additional assumption that

(3.3)
0∑

l=−∞
al < ∞,

letting L,K → ∞, using that by (1.4) we have liml→∞ bl = 0, the above estimate
implies that ak = 0 for all k ≤ 0. This means that f is a constant on BR, and in
particular by (1.4), f is constantly zero in BR. This contradicts the strict inequality
(3.2).

To see (3.3), fix K ∈ N such that supj≤−K bj ≤ 2. Then for

cL :=
0∑

l=−L

al,

the above estimate becomes

cL ≤ 1

2
cL+K + 1 for any L ∈ N.

In particular, for any i ∈ N,

cL+iK ≤ 2−icL +
i∑

j=0

2−j .

Since ci is monotonically increasing,

sup
i≥L+K

ci ≤ cL +
∞∑
j=0

2−j < ∞.

This proves Lemma 1.4 for p = 1.
If p > 1, we apply this to fp, and obtain

(3.4)

∫
Bρ(x)

fp ≤ C

(
R

ρ

)ε ∫
Bρ(x)

|fp − (fp)Bρ
|.

We now need the following estimate, which holds for any p ∈ [1,∞), and δ ∈ (0, 1):

∣∣|a− b|p − |a|p − |b|p
∣∣ ≤ δ|a|p + Cp

δp
|b|p.

Since Bρ is fixed, let us write (f) for (f)Bρ
. First, for any δ ∈ (0, 1),

∣∣fp − (fp)
∣∣ ≤ ∣∣f − (f)

∣∣p + ∣∣(f)p − (fp)
∣∣+ C

δp
|f − (f)|p + δ(f)p.

Plugging this into (3.4), for δ = δ̃(R/ρ)−ε small enough, we arrive at

(3.5)

∫
Bρ(x)

fp ≤ C

(
R

ρ

)(1+p)ε ∫
Bρ(x)

|f − (f)|p + C ρn
(
R

ρ

)(1+p)ε ∣∣(f)p − (fp)
∣∣.

Next,

∣∣(f)p − (fp)
∣∣ ≤ (

|(f)p − fp
∣∣) ≤ (|f − (f)|p) + δfp +

C

δp
(|f − (f)|p).
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Plugging this now for δ = δ̃(R/ρ)−(1+p)ε into (3.5), by absorbing we arrive at

∫
Bρ(x)

fp ≤ C

(
R

ρ

)εcp ∫
Bρ(x)

|f − (f)|p.

Since this holds for ε > 0 is arbitrarily small, this proves Lemma 1.4. �

Corollary 3.1. For σ ∈ (0, 1] and for any f ∈ W σ,p(Ω) satisfying (1.1), Ht(Σ) =
0, whenever t > s = max{0, n− σ pα

p+α}.

Proof. Let ε > 0, R > 0, and x ∈ Σ. Pick ρ < R from Lemma 1.4, so that∫
Bρ(x)

|f |p ≤ C Rερσp−ε [f ]p
Ẇσ,p(Bρ)

.

By Hölder and Young inequality, as in [8, Corollary 2.1],

ρn+(2ε−σp) α
p+α ≤ C ρ2ε−σp

∫
Bρ(x)

|f |p + Cρε
∫

Bρ(x)

|f |−α

≤ C R2ε[f ]p
Ẇσ,p(Bρ)

+ C Rε

∫
Bρ(x)

|f |−α.

Now let ε > 0 such that t > n + (2ε− σp) α
p+α . Then what we have shown is that

for any R > 0 and any x ∈ Σ there exists ρ ∈ (0, R) such that

(3.6) ρt ≤ C Rε[f ]p
Ẇσ,p(Bρ)

+ C

∫
Bρ(x)

|f |−α.

Now let

VR := {Bρ(x) : x ∈ Σ, ρ < R, (3.6) holds}.

Any countable disjoint subclass UR ⊂ VR satisfies

∑
Bρ⊂UR

ρt ≤ C Rε[f ]p
Ẇσ,p(Ω)

+ CRε

∫
Ω

|f |−α.

By the Besicovitch covering theorem, as in, e.g., [5, Theorem 18.1], we find for any
R a countable subclass UR ⊂ VR, such that any point of Σ is covered at least once,
and at most a fixed number of times. Thus,

Ht(Σ) = lim
R→0

Ht
R(Σ) ≤ C lim

R→0

∑
Bρ⊂UR

ρt ≤ Cf lim
R→0

Rε = 0.

�
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