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A CLASS OF TORUS MANIFOLDS

WITH NONCONVEX ORBIT SPACE

MAINAK PODDAR AND SOUMEN SARKAR

(Communicated by Daniel Ruberman)

Abstract. We study a class of smooth torus manifolds whose orbit space has
the combinatorial structure of a simple polytope with holes. We construct
moment angle manifolds for such polytopes with holes and use them to prove
that the associated torus manifolds admit stable almost complex structure.
We give a combinatorial formula for the Hirzebruch χy genus of these torus
manifolds. We show that they have (invariant) almost complex structure if
they admit positive omniorientation. We give examples of almost complex
manifolds that do not admit a complex structure. When the dimension is
four, we calculate the homology groups and describe a method for computing
the cohomology ring.

1. Introduction

The moment polytope of the Hamiltonian action of the real torus Tn on a smooth
projective toric variety (toric manifold) may be identified with the orbit space of the
action. The moment polytope (Delzant polytope) is rather rigid with severe inte-
grality constraints; see Definition 2.1.1 of [Sil01]. In 1991 Davis and Januszkiewicz
[DJ91] introduced a generalization of toric manifolds, now known as quasitoric
manifolds, which may be obtained as identification spaces of Tn × P where P is
a simple n-dimensional polytope. In general these spaces do not have algebraic or
invariant symplectic structure, but they still have many remarkable properties; see
the survey [BP02]. In this article we study a class of even dimensional manifolds
which may be obtained as identification space of Tn × P where P is not convex,
but a simple polytope with holes which are also simple polytopes. In [Mas99] and
[HM03], Masuda and Hattori introduced the notion of torus manifold (see Defi-
nition 2.2). Our manifolds are a special class of torus manifolds. As in the case
of quasitoric manifolds, the torus action on our manifolds is locally standard, i.e.
locally equivalent to the natural action, up to automorphism, of U(1)n on C

n.
We describe the combinatorial construction of these manifolds in section 2. How-

ever, these manifolds are also obtained by gluing quasitoric manifolds along deleted
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neighborhoods of principal torus orbits (Lemma 2.1). We refer to this as the fiber
sum construction. It is a special case of a more general construction in [GK98].
This is used to endow the manifolds with smooth structure (Lemma 2.1), and in
certain cases with almost complex structure (Theorem 5.1).

We realize each of our manifolds as the quotient of a submanifold of Cm by the
free action of a compact torus in section 4. This may be viewed as a topological
analogue of the construction of toric manifolds by symplectic reduction, or of the
quotient construction of toric varieties. We use this to endow our manifolds with a
stable complex structure (Lemma 5.1). Using it, we give a combinatorial formula
for the χy genus of these manifolds (Theorem 5.3) following the work of Panov
[Pan01] in quasitoric case. The formula also follows from Lemma 5.1 and a more
general result in [HM03].

Our manifolds admit almost complex structure if they admit a positive omniori-
entation (Lemma 5.2 and Theorem 5.1). Positive omniorientation is also a necessary
condition if we require the almost complex structure to be Tn-invariant.

These manifolds cannot admit an invariant symplectic structure (Lemma 5.3) or
an invariant integrable complex structure (see [IK12]) if the orbit space has at least
one hole. It would be interesting to know if any of these torus manifolds admit a
symplectic or complex structure. If the orbit space has one hole, then the manifold
cannot be Kahler (Lemma 5.4). We give examples of almost complex manifolds
that do not admit a complex structure in section 5.2.

Much is known about the topological invariants of these manifolds from the works
[Mas99] and [HM03]. However as they have nontrivial homology in odd degrees (see
Theorem 9.3 of [MP06]), the formula for the cohomology ring given in Corollary
7.8 of [MP06] does not hold when the orbit space has holes. Even explicit formulas
for their (co)homology groups are not known in general. In section 3, we give a
combinatorial formula for the homology groups when the dimension is four. We
also describe a method for computing the cohomology ring for the four dimensional
manifolds.

2. Construction and smooth structure

2.1. Polytope with holes. A polytope is the convex hull of a finite set of points in
R

n. An n-dimensional polytope is said to be simple if every vertex is the intersection
of exactly n codimension one faces. Let P0 be an n-dimensional simple polytope in
Rn. Let P1, P2, . . . , Ps be a disjoint collection of simple polytopes belonging to the
interior of P0. Let

(2.1) P = P0 −
s⋃

k=1

P ◦
k .

We call P an n-dimensional polytope with simple holes. The polytopes P1, P2, . . . ,
Ps are called holes of P . The faces of P are the faces of Pk, k = 0, . . . , s.

2.2. Combinatorial construction. Let P be an n-dimensional simple polytope
with s simple holes. Let F(P ) = {F1, F2, . . . , Fm} be the set of all codimension one
faces (facets) of P . Note that F(P ) =

⋃s
k=0 F(Pk). Also, if F is a nonempty face

of P of codimension k, then F is the intersection of a unique collection of k facets
of P . The following definition is a straightforward generalization of the notion of
characteristic function for a simple polytope, which is a crucial concept for studying
quasitoric manifolds [DJ91,BP02].
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Figure 1. Polytopes with simple holes in R
2.

Definition 2.1. A function λ : F(P ) → Zn is called a characteristic function if it

satisfies the following condition: Whenever F =
⋂k

j=1 Fij is an (n− k)-dimensional

face of P , the span of the vectors λ(Fi1), λ(Fi2), . . . , λ(Fik) is a k-dimensional di-
rect summand of Z

n. We will denote λ(Fi) by λi for simplicity and call it the
characteristic vector of Fi.

For any face F =
⋂k

j=1 Fij of P , let N(F ) be the submodule of Zn generated by

λi1 , . . . , λik . The module N(F ) defines a sub-torus GF of Tn = Zn⊗R/Zn = Rn/Zn

as follows:

(2.2) GF := (N(F )⊗ R)/N(F ).

Define an equivalence relation ∼ on the product space Tn × P by

(2.3) (t, x) ∼ (u, y) if x = y and u−1t ∈ GF (x)

where F (x) is the unique face of P whose relative interior contains x.
We denote the quotient space as follows:

(2.4) M = M(P, λ) := (Tn × P )/ ∼ .

The space M is a 2n-dimensional manifold. The proof of this is analogous to
the quasitoric case [DJ91]. The Tn action on (Tn × P ) induces a natural effective
action of Tn on M , which is locally standard (see [DJ91]). Let π : M → P be the
projection or orbit map defined by π([(t, x)]) = x.

Definition 2.2 ([HM03]). A closed, connected, oriented, smooth manifold Y of
dimension 2n with an effective smooth action of Tn with nonempty fixed point set
is called a torus manifold if a preferred orientation is given for each characteristic
submanifold. A characteristic submanifold is, by definition, any codimension two
closed connected submanifold of Y , which is fixed by some circle subgroup of Tn

and contains at least one Tn-fixed point.

In the case of M , the Tn-fixed point set corresponds bijectively to the set of
vertices of P . Observe that the spaces Xi := π−1(Fi), i = 1, . . . ,m, are the charac-
teristic submanifolds of M . Each Xi is a 2(n− 1)-dimensional quasitoric manifold.
In section 2.4 we explain how the characteristic function λ endows each Xi with
a preferred orientation. We say that M is the torus manifold derived from the
characteristic pair (P, λ).
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2.3. Fiber sum construction.

Lemma 2.1. The torus manifold M(P, λ) is smooth and orientable.

Proof. By induction it is sufficient to prove that M(P, λ) has a smooth structure
when P is a polytope with one hole, that is, P = P0 − P 0

1 . Let F(P0) and F(P1)
be the set of facets of P0 and P1 respectively. The restrictions λ0 and λ1 of λ on
F(P0) and F(P1) are characteristic functions on P0 and P1 respectively. Let M0

and M1 be the quasitoric manifolds associated to the characteristic pairs (P0, λ0)
and (P1, λ1) respectively. These manifolds, being quasitoric, have smooth structure.

Let πk : Mk → Pk, k = 0, 1 be the orbit maps. Fix points xk ∈ P ◦
k . Let

(2.5) Lk = π−1
k (xk).

Let Uk ⊂ Mk be a Tn invariant neighborhood of Lk such that

(2.6) Bk := πk(Uk) ⊂ Pk

is diffeomorphic to an open ball in Rn.
The quasitoric manifolds Mk are orientable. An orientation on Mk is deter-

mined by orientations on R
n ⊃ Pk and T

n. Suppose p = (p1, . . . , pn) and let q =
(q1, . . . , qn) be the standard Cartesian and angular coordinates on Rn and Tn re-
spectively. Then the orientation on Mk corresponding to the ordering ∂

∂p1
, ∂
∂q1

, . . . ,
∂

∂pn
, ∂
∂qn

will be assumed.

By (2.6) there exist equivariant orientation preserving diffeomorphisms

(2.7) fk : Uk → T
n × B,

where B is the unit n-ball centered at the origin. Denote the punctured unit n-ball,
B − {0}, by B−. Let | · | be the Euclidean norm on Rn. Define

(2.8) r := |p| and Θ = (θ1, . . . , θn) :=
p

r
.

The space M(P, λ) can be obtained from M0 − L0 and M1 − L1 by identifying
U0 − L0 and U1 − L1 as follows. Let g : B− → B− be the orientation preserving
involution,

(2.9) g(p) =
1− r

r
(p1, . . . , pn−1,−pn).

In other words, g(r,Θ) = (1− r, θ1, . . . , θn−1,−θn).
Define

(2.10) h = f−1
0 ◦ (Id× g) ◦ f1.

Identify U0 −L0 with U1 −L1 by the orientation preserving equivariant diffeomor-
phism h. �

Remark 2.1. Note that the map g, as used in (2.10), radially inverts a deleted
neighborhood B−

1 of the point x1 in P ◦
1 and reflects it about the hyperplane pn =

0. Then the map h identifies it to a deleted neighborhood of x0 in P ◦
0 . Up to

homeomorphism, we can widen the puncture at x0, and fit P1 − B1 into it and
thus recover our picture of the orbit space of the glued manifold as the polytope
with hole P0−P ◦

1 . A smooth embedding of this orbit space into Euclidean space is
described in section 4. We do not know for sure if the smooth structure on the orbit
space coincides with the smooth structure of P coming from its given embedding
in Rn.
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Remark 2.2. We refer to the above gluing construction as fiber sum construction
because of its similarity to the symplectic fiber sum construction (see [Gro86],
[Gom95]). A more general fiber sum construction for spaces with torus action was
introduced in [GK98].

Remark 2.3. As we may observe from section 4, the exact formula for the gluing
map g is not important for the smooth structure.

Remark 2.4. The sign of the characteristic vectors do not affect the equivariant
diffeomorphism type of M . This follows from similar observation for quasitoric
manifolds; see [DJ91,BR01].

2.4. Omniorientation. We fix an orientation for M(P, λ) as above by choosing
standard orientations on Tn and Rn. Also each characteristic submanifold Xi is
quasitoric and hence orientable.

Definition 2.3. An omniorientation is an assignment of orientation for M(P, λ) as
well as for eachXi. Given such an assignment, we say thatM(P, λ) is omnioriented.

Given the above choice of orientation for M , the characteristic function λ de-
termines a natural omniorientation on M as follows: The characteristic vector λi

determines a fiberwise S1 action on the normal bundle of Xi, corresponding to
the isotropy group GFi

. This equips the normal bundle with a complex structure
and therefore an orientation. This, together with the orientation on M , induces
an orientation on Xi. We will refer to this omniorientation as the characteristic
omniorientation.

Consider an omniorientation on M . Let v ∈ M be a fixed point of the Tn action
(or corresponding vertex of P ). If the orientation of Tv(M) determined by the
orientation on M and the orientations of characteristic submanifolds containing v
coincide, then the sign σ(v) is defined to be 1, otherwise σ(v) is −1.

Definition 2.4. An omniorientation is called positive if σ(v) = 1 for each fixed
point v.

For the characteristic omniorientation, the sign of a vertex v may be computed
as follows [BP02]. Suppose v = Fi1 ∩ . . . ∩ Fin . To each codimension one face Fik

assign the unique edge Ek such that Ek ∩ Fik = v. Let ek be a vector along Ek

with origin at v. Order (rename) the eks so that e1, . . . , en is a positively oriented
basis for Rn. Consider the corresponding matrix Λ(v) = [λi1 . . . λin ]. Then

(2.11) σ(v) = detΛ(v).

Remark 2.5. It is also evident that the oriented intersection number of the sub-
manifolds Xi1 , . . . , Xin is σ(v).

3. Calculations in dimension four

Let π : M(P, λ) → P be a 4-dimensional torus manifold, where P is a polytope
with s simple holes. We give a CW structure onM(P, λ) and compute the homology
groups.

First assume that P has only one hole. Then P = P0 − P 0
1 , where P0 and

P1 are simple 2-dimensional polytopes with vertices {v1, . . . , vl0} and {u1, . . . , ul1}
respectively. Assume that dist(v1u1) ≤ dist(v1uj) for all j = 1, . . . , l1. Let Evi and
Euj

be the edges of P joining the vertices {vi, vi+1} and {uj , uj+1} respectively for
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i = 1, . . . , l0; j = 1, . . . , l1. Here assume vl0+1 = v1 and ul1+1 = u1. Let Ev1u1
be

the line segment joining v1 and u1.
We construct the i-th skeleton Xi of M(P, λ) as follows. Let X0 = {v1, . . . ,

vl0−1, u1, . . . , ul1}. Define

(3.1)

e1i = ({(1, 1)} × Evi)/ ∼ for i = 1, . . . , l0 − 2
e1l0−1 = ({(1, 1)} × Ev1u1

)/ ∼
e1l0+j−1 = ({(1, 1)} × Euj

)/ ∼ for j = 1, . . . , l1

X1 =
⋃l0+l1−1

i=1 e1i .

A picture of the 1-skeleton for a polytope with one hole is given in Figure 2(a).
Define

(3.2)

e2i = ((T2 × Evi)/ ∼)− e1i for i = 1, . . . , l0 − 2

e2l0−1 = (({1} × S1 × Ev1u1
)/ ∼)− e1l0−1

e2l0 = ((S1 × {1} × Ev1u1
)/ ∼)− e1l0−1

e2l0+j = ((T2 × Euj
)/ ∼)− e1l0+j−1 for j = 1, . . . , l1

X2 =
⋃l0+l1

i=1 e2i .

Define

(3.3)
e3 = ((T2 × Ev1u1

)/ ∼)− (e2l0−1 ∪ e2l0)

X3 = e3 ∪X2.

Define

(3.4) U4 = P − {Ev1 ∪ . . . ∪ Evl0−2
∪ ∂P1 ∪ Ev1u1

}.

Clearly U4 is homeomorphic to R2
≥0. So

(3.5) (T2 × U4)/ ∼ ∼= B4 = {x ∈ R
4 : |x| < 1}.

Define

(3.6) e4 = (T2 × U4)/ ∼ and X4 = e4.

For the above CW structure, by reasons of either dimension or orientation, the
cellular boundary maps d2, d3, d4 are zero. Since X1 is homotopic to a circle, we
get the following result.

Theorem 3.1. Suppose P is a 2-polytope with one hole. Then

Hi(M(P, λ),Z) =

⎧⎨⎩ Z
l0+l1 if i = 2,

Z if i = 0, 1, 3, 4,
0 if i > 4.

We can give a similar CW structure on M(P, λ) when P is a 2-polytope with
multiple holes. Figure 2(b) gives a representation of the 1-skeleton of such a struc-
ture when there are two holes.

Corollary 3.2. Suppose P is a 2-polytope with m vertices and s simple holes. Then

Hi(M(P, λ),Z) =

⎧⎪⎪⎨⎪⎪⎩
Z
m+2s−2 if i = 2,

Z
s if i = 1, 3,

Z if i = 0, 4,
0 if i > 4.
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Figure 2. 1-skeleta for 2-polytopes with (a) one hole and (b) two holes.

3.1. Cohomology ring. Assume that M has the characteristic omniorientation.
In dimension four it is possible to compute the cohomology ring by using Poincaré
duality and intersection product. To illustrate, we consider the case when there is
one hole. Let xk ∈ H2(M) denote the homology class of the sphere associated to
the 2-cell e2k. Here characteristic orientation is chosen for the sphere if k �= l0−1, l0.
Otherwise orientation determined by the direction v1u1 and standard orientation
of the associated S1 is assumed.

The products of two classes xi and xj , when i and j are both less than l0 − 1, is
the same as obtained by considering them as classes in H∗(M0). This is because the
homotopies needed to achieve transversality can be done away from a neighborhood
of any given principal torus fiber. Similar remarks apply when i and j both exceed
l0. If i < l0 − 1 and j > l0, or vice versa, then the product is obviously zero.

v2

v3v4

v1

Ev1u1

u1 u2

u3

u4

u5

w1

y2y1
w2

γ2

γ1

Figure 3. Homotopic copies of xl0−1, here l0 = 5 and l1 = 4.

Now consider the class xl0−1. To compute the self intersection x2
l0−1, we choose

two different homotopy representatives, S2
1 and S2

2 , of xl0−1 which intersect only
at v1 and u1. Let w1, y1 be points in the relative interior of the edges v1v2 and
vl0v1 respectively. Similarly, let w2, y2 be points in the relative interior of the edges
u1u2 and ul1u1 respectively. Let γ1, γ2 be the piecewise linear paths v1w1w2u1

and v1y1y2u1 respectively. Let S2
i be the homotopy sphere ({1} × S1) × γi/ ∼.

The circle subgroup {1} × S1 corresponds to the submodule of Z2 generated by
(0, 1). It is possible to express (0, 1) uniquely as an integral linear combination



1804 M. PODDAR AND S. SARKAR

a1λ1 + a2λl0 . Let d = det[λl0 , λ1] = σ(v1). Near v1, the sphere S2
1 is homotopic

to a2d times the characteristic sphere over v1v2. Similarly, S2
2 is homotopic to a1d

times the characteristic sphere over v1vl0 . Therefore the contribution of v1 to x2
l0−1

is (d)(a1d)(a2d) = a1a2d; see Remark 2.5. The contribution from the point u1

may be calculated similarly. Other intersection products of degree 2 classes may be
calculated by using similar homotopies. For example, x1 · xl0−1 = (d)(a1d) = a1.
Finally the intersection of the generators degree one and degree three homology
classes is 1 up to sign.

Example 3.3. Consider M to be the fiber sum of a Hirzebruch surface with CP
2

corresponding to Figure 2(a). Let x1, . . . , x7 be the generators of H2(M) as defined
above. Let y and z be the generators of H1(M) and H3(M) corresponding to the

cells
∑6

j=4 e
1
j and e3 respectively. Then

(3.7)

x2
1 = x2

3 = x2
4 = 0, x2

2 = −k, x2
i = 1 if i ≥ 5,

x1x3 = x2x3 = x2x4 = x3x6 = x3x7 = x4x5 = x4x6 = 0,
xixj = 0 if i = 1, 2 and j = 5, 6, 7,
x1x2 = x1x4 = x5x6 = x5x7 = x6x7 = 1, x3x5 = x4x7 = −1, yz = 1.

4. Moment angle manifold

Let M be the manifold obtained by fiber summing the smooth quasitoric mani-
folds Mi(Pi, λi). We may assume that each Pi lies in a distinct copy of Rn. Let Si

be the one point compactification of the copy of Rn that contains Pi, with standard
smooth structure.

The orbit space O of M inherits a smooth structure from the gluing operations in
Lemma 2.1. As noted in Remark 2.1, O is homeomorphic to P . Using the punctured
balls B−

k as tubes between different affine copies of Rn, we may construct a smooth
embedding of O into Rn+s, where s is the number of holes of P . However, we need
more. Consider the manifold with corners O+, obtained by gluing a punctured copy
of each Si, 1 ≤ i ≤ s, to P0 punctured at s points, according to the gluing maps in
Lemma 2.1. Then O+ is homeomorphic to P0. We may smoothly embed O+ into
Rn+s.

For notational simplicity we will describe the embedding in terms of P and the
Pis. Induce smooth structures on P and P0 using the homeomorphisms with O
and O+ respectively. Then there exists a smooth embedding ψ0 of P0 in Rn+s =
{(p1, . . . , pn+s)} such that the following hold:

(1) The image of P −
⋃s

k=1 Vk, where Vk is a small neighborhood of Pk in Rn,
lies in Rn = {p1, . . . , pn}.

(2) The image of Vk lies in the (n + 1)-dimensional subspace {pn+j = 0|1 ≤
j �= k ≤ s}. The projection of ψ0(Vk) to R

n lies inside Vk.
(3) The embedding ψ0 is affine when restricted to the boundary ∂Pk. The im-

age of ∂Pk lies in the affine subspaceHk := {pn+k = 1, pn+j=0 ∀ j such that
1 ≤ j �= k ≤ s}.

(4) ψ0(P0) ∩HK = ∂Pk.
(5) The image of P lies between the affine subspaces pn+k = 0 and pn+k = 1

for each 1 ≤ k ≤ s.

Consider any facet Fi of P . Suppose Fi ⊂ Pk where k ≥ 1. Choose a linear
polynomial Ai in the variables p1, . . . , pn, pn+k, other than ak := 1−pn+k, which is
zero on ψ0(Fi) and positive on ψ0(P )−ψ0(Fi). Define di = Ai+ak+

∑
1≤j �=k pn+j .
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If Fi is a facet of P0, then let Ai be the defining linear polynomial of Fi in the
variables p1, . . . , pn such that Ai is positive in the interior of P0. In this case define
di = Ai +

∑
1≤j pn+j .

Then for a point x in ψ0(P ), di(x) can be thought of as an l1-distance of x from
the affine subspace of ψ0(Fi). We construct a smooth embedding ψ1 of ψ0(P0) into
Rm by ψ1(x) = (d1(x), . . . , dm(x)) wherem = |F(P )|. The composition ψ := ψ1◦ψ0

defines an embedding of P0 into Rm = {(r1, . . . , rm)} such that the image of P lies
in Rm

≥ = {ri ≥ 0 ∀ i}. Suppose y ∈ ψ(P ). Then ri(y) = 0 if and only if y ∈ ψ(Fi).
The space C

m can be regarded as a quotient of T
m × R

m
≥ by an equivalence

relation ∼0 as follows: Let u1, . . . , um denote the standard basis of Zm. Let Ti

denote the circle subgroup (Zui ⊗ R)/Zui of T
m. For any face F = {rj = 0|j ∈ J}

of Rm
≥ , we define the subgroup TF :=

∏
j∈J Tj . For any y in R

m
≥ , let F (y) denote

the unique face of Rm
≥ whose relative interior contains y. Then define ∼0 by

(4.1) (t, x) ∼0 (u, y) if x = y and u−1t ∈ TF (y).

Definition 4.1. Let π0 : Cm → R
m denote the quotient map. Define the moment

angle complex Z(P ) of P by

Z(P ) = π−1
0 (ψ(P )).

We may identify π0 with the smooth map defined coordinate-wise by zi �→ |zi|2.
This shows that Z(P ) is smooth. The details are straightforward and left to the
reader.

Given a characteristic function λ for P , let Λ : Zm → Z
n be the linear map

defined by Λ(ui) = λi. Let K = kerΛ and TK = (K ⊗ R)/K. Then it is easy to
observe that topologically Z(P ) is a principal TK bundle over M(P, λ).

The leaf space M(P, λ) of the foliation corresponding to the smooth and free
action of TK on Z(P ) has a natural smooth structure. Since T

m ∼= TK × T
n, it is

not hard to check that M(P, λ) supports a smooth action of Tn. Moreover M(P, λ)
is equivariantly homeomorphic to M(P, λ) with respect to this action. There is a
one-to-one correspondence between normal orbit types and, in fact, an isomorphism
of Tn-normal systems (see [Dav78]) of M(P, λ) and M(P, λ). (Here the smooth
structures on the orbit spaces match that of O.) All of these may be ascertained
by studying the local representations of Z(P ), up to equivariant diffeomorphism,
by TK × C

k × (C∗)n−k near the faces of P . Therefore by Theorem 4.3 of [Dav78],
M(P, λ) and M(P, λ) are equivariantly diffeomorphic. We will henceforth identify
M(P, λ) with M(P, λ) without additional comments.

5. Almost complex structure

In this section we prove three results: i) That every omniorientation of M de-
termines a stable almost complex structure on it, ii) that if M admits a positive
omniorientation and dim(M) = 4, then there exists an almost complex structure
on M which is equivalent to the associated stable complex structure, and iii) that
there exists a T

n-invariant almost complex structure on M if and only if M has
a positive omniorientation. It is not known to us if the invariant almost complex
structure is equivalent to the associated stable almost complex structure.
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Lemma 5.1. Every omniorientation of the torus manifold M(P, λ) determines a
stable almost complex structure on it.

Proof. Let Q = ψ(P ) and Qk = ψ(Pk) where ψ is the embedding of P0 into
R

m constructed in section 4. The normal bundle of Q0 in R
m is trivial as Q0 is

contractible. Therefore the normal bundle NQ of Q is also trivial. We may in
fact identify NQ with a tubular neighborhood of Q in Rm

≥ following an idea in

[BR01]: Identify NQ with {(x, v)|x ∈ Q, v ∈ (TxQ)⊥ ⊂ Rm} where ⊥ denotes
orthogonal complement with respect to the dot product. Then define the map
f : NQ → R

m
≥ by f(x, v) = (ev1x1, . . . , e

vmxm) where the xis and vis denote the
coordinates of x and v respectively. Then a careful analysis of the situation shows
that v ·Df(x,0)(v) =

∑m
i=1 v

2
i xi is positive. This shows that Dfx(NQ) is transversal

to TxQ. We identify NQ with Df(NQ).
Since a tubular neighborhood of Q in Rm

≥ pulls back to a tubular neighborhood

of Z(P ) in C
m under π0, we may identify the normal bundle NZ of Z(P ) in C

m

with π∗
0NQ. Therefore NZ is trivial. Let NM denote the pullback of NQ to M

under ψ ◦ π. Then by a slight generalization of the Atiyah sequence [At57], we
obtain the following split exact sequence of bundles:

(5.1) 0 → tK ×M → (TZ(P )⊕NZ)
TK → TM ⊕NM → 0.

Here tK denotes the Lie algebra of TK . Since the action of TK on TCm is complex
linear, therefore (TZ(P ) ⊕ NZ)

TK = (TCm|Z(P ))
TK inherits a complex structure.

It follows that M admits a stable almost complex structure. �
As TK acts diagonally on C

m, the bundle (TCm|Z(P ))
TK splits naturally into a

direct sum of m complex line bundles over M , namely ν1, . . . , νm, corresponding to
the complex coordinate directions of Cm. These directions correspond to (distance
from) the facets of P . Since the angular direction ui maps to λi by Λ, the bundle νi
restricts to the normal bundle of Xi on the characteristic submanifold Xi. The total
Chern class of M(P, λ) associated to the above stable complex structure admits the
following product decomposition:

(5.2) c(TM) =

m∏
i=1

(1 + c1(νi)).

Using standard localization formula or Theorem 5.3, we obtain

(5.3) cn(TM) =
∑

σ(v)

where the sum is over all vertices of P .

Lemma 5.2. If M(P, λ) admits a positive orientation and dim(M) = 4, then
it admits an almost complex structure which is equivalent to the associated stable
almost complex structure.

Proof. By Theorem 1.7 of [Tho67], the lemma holds if c2(TM) = e(TM). This
follows from (5.3) and Corollary 3.2. �
Theorem 5.1. The torus manifold M(P, λ) admits a T

n-invariant almost complex
structure if and only if it has a positive omniorientation.

Proof. The necessity of positive omniorientation for existence of Tn-invariant al-
most complex structure follows from a similar argument as in a quasitoric case; see
[BP02].
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To prove sufficiency, first assume that the number of holes is one. Note that a
positive omniorientation of M(P, λ) induces positive omniorientation on M0 and
M1. Then by the work of Kustarev [Kus09], there exist T

n-invariant orthogonal
almost complex structures Jk on Mk, k = 0, 1. In particular, these structures are
orientation preserving. We may assume that the complex structure Jk is locally
constant in the normal direction near Lk, as explained below.

Recall the orientation preserving diffeomorphisms fk in (2.7). Since T (Tn × B)
is trivial, dfk defines an isomorphism

(5.4) dfk : TUk → T
n ×B × R

2n.

Consider the almost complex structures

(5.5) Ĵk = dfk ◦ Jk ◦ df−1
k

on Tn ×B × R2n. Choose a smooth nondecreasing function γ : R → R such that

(5.6) γ(t) =

{
0 if t ≤ ε1,
t if t ≥ ε2,

where 0 < ε1 < ε2 < 1 are small real numbers. Define

(5.7) J ′
k(q, r,Θ) = Ĵk(q, γ(r),Θ).

Replace Jk by df−1
k J ′

kdfk on Uk. Denote the resulting almost complex structure on
Mk by Jk without confusion. Note that these new almost complex structures are
orientation preserving and Tn-invariant.

Recall the orientation preserving diffeomorphism g in (2.9). Define

(5.8) φ0 := f0, φ1 := (Id× g) ◦ f1 : U1 − L1 → T
n × B−.

We have orientation preserving isomorphisms,

(5.9) dφk : T (Uk − Lk) → T
n ×B− × R

2n.

Consider the almost complex structures

(5.10) J̃k = dφk ◦ Jk ◦ dφ−1
k

on T
n × B− × R

2n. The space of orientation preserving almost complex struc-
tures on R2n may be identified with GL+(2n,R)/GL(n,C). Since φk is orientation

preserving, we can regard J̃k as a map

(5.11) J̃k : Tn ×B− → GL+(2n,R)/GL(n,C).

Since Jk is locally constant in the normal direction near Lk, we may define

(5.12) J̃0(q, 0,Θ) = J̃0(q, ε1/2,Θ), J̃1(q, 1,Θ) := J̃(q, 1− ε1/2,Θ).

The space GL+(2n,R)/GL(n,C) is path connected. Hence there exists a smooth
path
(5.13)

F (t) : [0.4, 0.6] → GL+(2n,R)/GL(n,C), F (0.4)= J̃1(1, 1,Θ), F (0.6)= J̃0(1, 0,Θ).

By Tn-invariance, we construct a smooth family of paths F (q, t) : Tn × [0.4, 0.6] →
GL+(2n,R)/GL(n,C),

(5.14) F (q, t) := dqF (t)dq−1,

satisfying F (q, 0.4) = J̃1(q, 1,Θ), F (q, 0.6) = J̃0(q, 0,Θ).
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Choose a smooth nondecreasing function α : (0, 1) → [0, 1) such that

(5.15) α(t) =

{
t if t ≥ 0.8,
0 if t ≤ 0.6.

Choose another smooth nondecreasing function β : (0, 1) → (0, 1] such that

(5.16) β(t) =

{
t if t ≤ 0.2,
1 if t ≥ 0.4.

Define a map J̃ : Tn ×B− → GL+(2n,R)/GL(n,C) by

(5.17) J̃(q, r,Θ) =

⎧⎨⎩
J̃0(q, α(r),Θ) if r > 0.6,
F (q, r) 0.6 ≥ r ≥ 0.4,

J̃1(q, β(r),Θ) if r < 0.4.

Note that

(5.18) J̃(q, r,Θ) =

{
J̃0(q, r,Θ) if r > 0.8,

J̃1(q, r,Θ) if r < 0.2.

Define a Tn-invariant almost complex structure Jk on T (Uk − Lk) by

(5.19) Jk = dφ−1
k ◦ J̃ ◦ dφk.

By construction, Jk agrees with Jk in a neighborhood of the outer boundary of
Uk − Lk. Therefore Jk extends to a Tn-invariant almost complex structure on
Mk − Lk. Moreover J0 ◦ dh = dh ◦ J1 on U1 − L1 since h = φ−1

0 ◦ φ1; see (2.10)

and (5.8). Therefore J0 and J1 glue to produce a Tn-invariant almost complex
structure J on M . Finally, note that we may apply induction when the number of
holes is greater than one. �

Remark 5.2. In dimension four, the sufficiency part of Theorem 5.1 also follows
from section 13 of [GK98] together with the main theorem of [Kus09].

5.1. The χy genus. The Hirzebruch χy genus is an invariant of the complex cobor-
dism class of the manifold and thus depends on the stable almost complex structure.
We give a combinatorial formula of the χy genus of M , following Panov’s work on
quasitoric manifolds. The proofs are the same as in [Pan01].

Let E be an edge of Pn. The isotropy subgroup of π−1(E) is an (n − 1)-
dimensional torus generated by a submodule K of rank (n− 1) in Z

n. A primitive
vector μ in (Zn)∗ is called an edge vector corresponding to E if μ(α) = 0 for each
α ∈ K. The edge vector of E is therefore unique up to sign.

Let ν be a primitive vector in Zn such that

(5.20) μ(ν) �= 0 for any edge vector μ.

Then the circle S1
ν = (Z〈ν〉⊗R)/Z〈ν〉 acts smoothly on M with only isolated fixed

points corresponding to the vertices of P .
We choose signs for each edge vector at a vertex v according to the characteristic

omniorientation as follows. Order the codimension one faces meeting at v and cor-
responding edges Eks as in subsection 2.4. Let μk be an edge vector corresponding
to Ek. Let M(v) be the matrix, M(v) = [μ1, . . . , μk]. Then choose sign for each

μk such that M t
(v)Λ(v) = In. Under this choice of signs the action of S1

ν induces a

representation of S1 on the tangent space TvM with weights μ1(ν), . . . , μn(ν).
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Definition 5.1. Define the index of a vertex v ∈ P as the number of negative
weights of the S1 representation on Tv(M),

indν(v) = |{k : μk(ν) < 0}|.

Theorem 5.3. For any vector ν satisfying (5.20),

χy(M) =
∑
v

(−y)indν(v)σ(v).

Note that Theorem 5.3 also follows from Lemma 5.1 together with Theorem
10.1 of [HM03]. Specializing the formula in Theorem 5.3 to y = −1 and y = 1,
respectively yield formulas for the top Chern number and the signature. Moreover
following Theorem 3.4 of [Pan01] or Theorem 4.2 of [Mas99] we obtain the following
formula for Todd genus of M :

(5.21) td(M) =
∑

indν(v)=0

σ(v).

5.2. Integrability questions.

Lemma 5.3. If the polytope P has at least one hole, then the torus manifold
M(P, λ) does not support any symplectic form for which the torus action is sym-
plectic.

Proof. When the dimension 2n > 4, M(P, λ) is simply connected. So any symplec-
tic circle action is Hamiltonian. Therefore if M(P, λ) supports a Tn-invariant sym-
plectic form, then the action of Tn must be Hamiltonian. Then M(P, λ) would be a
symplectic toric manifold with a moment map whose image is a Delzant polytope.
Then the orbit space of the Tn-action on M(P, λ) would be a Delzant polytope; see
Theorem 2.6.2 of [Sil01]. Therefore, as the orbit space of M(P, λ) is not convex, it
cannot support an invariant symplectic form.

When 2n = 4, a result of McDuff [McD88] states that a symplectic circle action
on a compact four dimensional manifold is Hamiltonian if and only if it has fixed
points. Therefore, again, if M(P, λ) supports a Tn-invariant symplectic form, then
the action of Tn must be Hamiltonian. We get a contradiction as above. �

It follows from the main result of [IK12] that M(P, λ) cannot admit a complex
structure with respect to which the torus action is holomorphic if it is not a toric
variety, for instance when P has at least one hole.

More generally, we may ask whether M(P, λ) admits any symplectic or complex
structure. We do not know of any example that does so in case P has at least one
hole.

Lemma 5.4. If P is a 2-polytope with an odd number of holes, then M(P, λ) can
not be Kahler.

Proof. If P has s holes, by Corollary 3.2, the first Betti number b1(M) = s. But for
a compact Kahler manifold, the Betti numbers of odd degree are even (see [GH94],
page 117). The result follows. �

It is not hard to produce examples ofM that admit almost complex structure but
do not admit an integrable complex structure. For an almost complex 4-manifold,
c21 and c2 are determined by the Euler characteristic and signature, and are therefore
independent of the choice of almost complex structure. Consider the equivariant
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connected sum Y of three copies of CP 2. This is a quasitoric manifold with a
pentagon as P . The characteristic vectors may be chosen to be (1, 0), (−1, 1),
(1,−2), (0, 1) and (−1,−1), thus endowing Y with a positive omniorientation and
an almost complex structure. However, Y has c21 = 19 and c2 = 5. Therefore
the Bogomolov-Miyaoka-Yau inequality, c21 ≤ 3c2, is not satisfied and Y does not
admit a complex structure. It may be argued using (5.2) and intersection theory
that c21 and c2 are additive with respect to the fiber sum operation. Therefore the
fiber sum of any finite number of copies of Y produces an almost complex manifold
which does not admit a complex structure. Since c21 = 3c2 for CP 2, the fiber sum
of copies of Y and CP 2 also yields such examples.
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